
Smashing WEP in A Passive Attack

Pouyan Sepehrdad1, Petr Sušil2 ?, Serge Vaudenay2, and Martin Vuagnoux

1 Intel CRI-SC at TU-Darmstadt, Darmstadt, Germany
2 EPFL, Lausanne, Switzerland

pouyan.sepehrdad@trust.cased.de,

{petr.susil, serge.vaudenay}@epfl.ch,
martin@vuagnoux.com

Abstract. In this paper, we report extremely fast and optimised active
and passive attacks against the old IEEE 802.11 wireless communication
protocol WEP. This was achieved through a huge amount of theoreti-
cal and experimental analysis (capturing WiFi packets), refinement and
optimisation of all the former known attacks and methodologies against
RC4 stream cipher in WEP mode. We support all our claims by pro-
viding an implementation of this attack as a publicly available patch
on Aircrack-ng. Our new attacks improve its success probability drasti-
cally. We adapt our theoretical analysis in Eurocrypt 2011 to real-world
scenarios and we perform a slight adjustment to match the empirical
observations. Our active attack, based on ARP injection, requires 22 500
packets to gain success probability of 50% against a 104-bit WEP key,
using Aircrack-ng in non-interactive mode. It runs in less than 5 seconds
on an off-the-shelf PC. Using the same number of packets, Aicrack-ng
yields around 3% success rate. Furthermore, we describe very fast passive
only attacks by just eavesdropping TCP/IPv4 packets in a WiFi com-
munication. Our passive attack requires 27 500 packets. This is much less
than the number of packets Aircrack-ng requires in active mode (around
37 500), which is a huge improvement. We believe that our analysis brings
on further insight to the security of RC4.

1 Introduction

RC4 was designed by Rivest in 1987. It used to be a trade secret until it was
anonymously posted on Cypherpunks mailing list in September 1994. Nowadays,
due to its simplicity, RC4 is widely used in SSL/TLS, Microsoft Lotus, Oracle
Secure SQL and Wi-Fi 802.11 wireless communications. The 802.11 [9] used to
be protected by WEP (Wired Equivalent Privacy) which is now being replaced
by WPA (Wi-Fi Protected Access) due to security weaknesses.

WEP uses RC4 with a pre-shared key. Each packet is encrypted by an XOR
to a keystream generated by RC4. The RC4 key is a pre-shared key prepended
with a 3-byte nonce initialisation vector IV. The IV is sent in clear for self-
synchronisation. There have been several attempts to break the full RC4 al-
gorithm, but it has only been devastating so far in this scenario. Indeed, the

? Supported by a grant of the Swiss National Science Foundation, 200021 134860/1.

adversary knows that the key is constant except the IV, which is known. An ac-
tive adversary can alter the IV. Nowadays, WEP is considered as being terribly
weak, since passive attacks can recover the full key easily by assuming that the
first bytes of every plaintext frame are known.

Structure of the paper. First, in Section 2, we refer to the motivation in this
research area, then we present RC4, WEP and Aircrack-ng in Section 3. In
Section 4, we go through all the existing well-known attacks on WEP. Next, we
introduce some useful lemmas in Section 5. Then, we present all known biases for
RC4 in Section 6. Subsequently, we elaborate on an optimised attack on WEP in
Section 7 and, we compare our results with Aircrack-ng 1.1 in Section 8. Finally,
we discuss some challenges and open problems in Section 9.

2 Motivation

For some people, attacking WEP is like beating a dead horse, but this horse is
still running wildly in many countries all over the world. Also, some companies
are selling hardware using modified versions of the WEP protocol, they claim
to be secure [2]. Moreover, the new analysis and biases presented in this paper
are related to RC4, which is the most popular stream cipher in the history of
symmetric key cryptography. WEP is an example of a practical exploitation of
these biases. The cryptanalysis of WEP is one of the most applied cryptographic
attacks in practice. Indeed, tools such as Aircrack-ng are massively downloaded
to provide a good example of weaknesses in cryptography. Finally, the TKIP
protocol used by WPA is not much different from WEP (just a patch over WEP),
so that attacks on WEP can affect the security of networks using TKIP, as seen
in [2,26]. For instance in [26], the authors used exactly the same biases as in
WEP to break WPA. Hence, gaining a better understanding of the behaviour of
these biases may lead to a practical breach of WPA security in future.

3 Preliminaries

3.1 Description of RC4 and Notations

The RC4 stream cipher consists of two algorithms: the Key Scheduling Algorithm
(KSA) and the Pseudo Random Generator Algorithm (PRGA). The RC4 engine
has a state defined by two registers (words) i and j and one array (of N words)
S defining a permutation over Z/NZ. The KSA generates an initial state for the
PRGA from a random key K of L words as described in Fig. 1. It starts with
an array {0, 1, . . . , N − 1}, where N = 28 and swaps N pairs, depending on the
value of the secret key K. At the end, we obtain the initial state S′0.

We define all the operators such as addition, subtraction and multiplication
in the ring of integers modulo N represented as Z/NZ, or ZN , where N = 256
(i.e. words are bytes). Thus, x+ y should be read as (x+ y) mod N .

2

KSA PRGA

1: for i = 0 to N − 1 do
2: S[i]← i
3: end for
4: j ← 0
5: for i = 0 to N − 1 do
6: j ← j + S[i] +K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i← 0
2: j ← 0
3: loop
4: i← i+ 1
5: j ← j + S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i] + S[j]]
8: end loop

Fig. 1. The KSA and the PRGA algorithms of RC4.

Once the initial state S′0 is created, it is used by the second algorithm of RC4,
the PRGA. Its role is to generate a keystream of words of log2N bits, which will
be XORed with the plaintext to obtain the ciphertext. Thus, RC4 computes the
loop of the PRGA each time a new keystream word zi is needed, according to the
algorithm in Fig. 1. Note that each time a word of the keystream is generated,
the internal state (i, j, S) of RC4 is updated.

Sometimes, we consider an idealised version RC4?(t) of RC4 defined by a pa-
rameter t as shown in Fig. 2. Namely, after round t, index j is assigned randomly.
This model has been already used in the literature such as in [17,22,20]. In fact, t
is the index of the last known state. For instance, since we know K[0],K[1],K[2]
in WEP protocol, we can initially assume t = 2.

KSA?(t) PRGA?

1: for i = 0 to N − 1 do
2: S[i]← i
3: end for
4: j ← 0
5: for i = 0 to N − 1 do
6: if i ≤ t then
7: j ← j + S[i] +K[i mod L]
8: else
9: j ← random

10: end if
11: swap(S[i],S[j])
12: end for

1: i← 0
2: j ← 0
3: loop
4: i← i+ 1
5: j ← random
6: swap(S[i],S[j])
7: output zi = S[S[i] + S[j]]
8: end loop

Fig. 2. The KSA?(t) and the PRGA? algorithms of RC4?(t).

3

Let Si[k] (resp. S′i[k]) denote the value of the permutation defined by the
array S at index k, after the round i in the KSA (resp. the PRGA). We also
denote SN−1 = S′0. Let ji (resp. j′i) be the value of j after round i of the KSA
(resp. the PRGA), where the rounds are indexed with respect to i. Thus, the
KSA has rounds 0, 1, . . . , N − 1 and the PRGA has rounds 1, 2, The KSA and
the PRGA are defined by

KSA PRGA

j−1 = 0 j′0 = 0
ji = ji−1 + Si−1[i] +K[i mod L] j′i = j′i−1 + S′i−1[i]

S−1[k] = k S′0[k] = SN−1[k]

Si[k] =

Si−1[ji] if k = i
Si−1[i] if k = ji
Si−1[k] otherwise

S′i[k] =

S′i−1[j′i] if k = i
S′i−1[i] if k = j′i
S′i−1[k] otherwise

zi = S′i[S
′
i[i] + S′i[j

′
i]]

Throughout this paper, we denote K̄[i]
def
= K[0] + · · ·+K[i]. We let z denote

the keystream derived from K using RC4. In the applications we are concerned,
the first bytes of a plaintext frame are often known (see Fig. 6 in Appendix), as
well as the IV, the first 3 bytes of K. That is, we assume that the adversary can
use the keystream z and the IV in a known plaintext attack.

We let I0 be a set of integers, which represents the key byte indices which
are already known. We define a set clue which consists of all K̄ bytes whose
indices are in I0. To begin with, we have I0 = {0, 1, 2} and clue = IV. Given a
set of indices I0 and an index i, we assume that we have a list rowRC4

i|I0 of di|I0
vectors (f̄j , ḡj , pj , qj), j = 1, . . . , di|I0 with functions f̄j and the corresponding
predicates ḡj such that

Pr
[
K̄[i] = f̄j(z, clue)|ḡj(z, clue)

]
= pj

for some probability pj 6= 1
N and

Pr [ḡj(z, clue)] = qj

where qj is called the density of the bias (for the list of such correlations, see
Table 1 in Appendix).

For simplicity, we assume that for some given i, z, and clue, all suggested
f̄j(z, clue) for j’s such that ḡj(z, clue) holds, are pairwise distinct. We further
assume that the events K̄[i] = f̄j(z, clue) with different i’s are independent. We
will also assume that f̄j and ḡj are of the form f̄j(z, clue) = fj(h(z, clue)) and
ḡj(z, clue) = gj(h(z, clue)), where µ = h(z, clue) lies in a domain of size Nµ.
In fact, h is just a function compressing the data to the minimum necessary
to compute f̄j and ḡj . The following prominent relation exists between the key
bytes of RC4:

K̄[i+ 16j] = K̄[i] + jK̄[15] (1)

4

for 0 ≤ i ≤ 15 and j = 0, 1, 2. This relation reveals that if K̄[15] is known, the
biases for K̄[i] and K̄[i+ 16j] can be merged. This relation was initially used in
[34] to derive a better success probability. For example, if we know K̄[15], we can
use the biases for K̄[19] to vote for K̄[3]. Similarly, the biases for K̄[15], . . . , K̄[18]
and K̄[31], K̄[32] can be merged to vote for K̄[15]. Consequently, later, we recover
K̄[15] before any other byte of the key.

Definition 1. Let A,B and C be three random variables over ZN . We say that
A is biased towards B with bias p conditioned on an event E and we represent

it as A
p
=
E
B if

Pr(A−B = x|E) =


p if x = 0

1−p
N−1 otherwise

When Pr[E] = 1, it is denoted as A
p
= B.

3.2 Description of WEP

WEP [8] uses a 3-byte IV concatenated to a secret key of 40 or 104 bits (5 or 13
bytes) as an RC4 key. Thus, the RC4 key size is either 64 or 128 bits. Since the
RC4 design does not accept an IV by default, WEP generates a per packet key
for each packet. A devastating problem of WEP is that the 13 bytes of the key
do not change for each packet encryption, while the first 3 bytes of the key are
changing. Thus, the attacker can run a statistical attack on the key. This was
avoided in WPA. In this paper, we do not consider the 40-bit key variant, but
a very similar approach can be leveraged to break the 40-bit key version. So,
L = 16. In fact, we have

K = K[0]‖K[1]‖K[2]‖K[3]‖ · · · ‖K[15] = IV0‖IV1‖IV2‖K[3]‖ · · · ‖K[15]

where IVi represents the (i+ 1)-th byte of the IV and K[3]‖...‖K[15] represents
the fixed secret part of the key. In theory, the value of the IV should be random
but in practice, it is a counter, mostly in little-endian and it is incremented by
one each time a new 802.11b frame is encrypted. Sometimes, some particular
values of the IV are skipped to thwart the specific attacks based on “weak IV’s”.
Thus, each packet uses a slightly different key.

To protect the integrity of the data, a 32-bit long CRC32 check sum called ICV
is appended to the data. Similar to other stream ciphers, the resulting stream
is XORed with the RC4 keystream and it is sent through the communication
channel together with the IV in clear. On the receiver’s end, the ciphertext is
again XORed with the shared key and the plaintext is recovered. The receiver
checks the linear error correcting code and it either accepts the data or declines
it.

It is well known [21,31,34] that a relevant portion of the plaintext is practi-
cally constant and that some other bytes can be predicted. They correspond to

5

the LLC header and the SNAP header and some bytes of the TCP/IPv4 and
ARP encapsulated frames. For example, by XORing the first byte of the cipher-
text with the constant value 0xAA, we obtain the first byte of the keystream.
Thus, even if these attacks are called known plaintext attacks, they are cipher-
text only in practice (see the Appendix for the structure of ARP and TCP/IPv4
packets).

We consider both passive and active adversaries in this paper. For an ac-
tive attack, the attacker eavesdrops the ARP packets and since the plaintext
bytes are known up to the 32-nd byte, she can compute z1, . . . , z32 values using
the ciphertext. It is also possible to inject data into the network. Because the
ARP replies expire quickly (resetting the ARP cache), it usually takes only a
few seconds or minutes until an attacker can capture an ARP request and start
re-injecting it [31]. On the other hand, active attacks are detectable by Intru-
sion Detection systems (IDS) and also some network cards require extra driver
patches to be able to inject data into the traffic, which is not available for all
network cards. This is not the case for a passive attack. The attacker can eaves-
drop the wireless communication channel for TCP/IPv4 packets, but some of
the data frames are not known in this case (see the Appendix). As represented
in Table 1, the Klein and the Maitra-Paul attacks require zi and zi+1 to recover
K̄[i] respectively. Hence in reality, we are not able to use those attacks to re-
cover some bytes of the key. This is not the case for the Korek attacks, since
they only require z1 and z2. To summarise, we need more packets in a passive
attack compared to an active attack. We are going to elaborate on both types
of attacks later.

3.3 Aircrack-ng

Aircrack-ng [5] is a WEP and WPA-PSK keys cracking program that can re-
cover keys once enough data packets have been captured. It is the most widely
downloaded cracking software in the world. It implements the standard Fluhrer,
Mantin and Shamir’s (FMS) attack [7] along with some optimisations like the
Korek attacks [13,14], as well as the Physkin, Tews and Weinmann (PTW) at-
tack [31]. In fact, it currently has the implementation of state of the art attacks
on WEP and WPA. We applied a patch on Aircrack-ng 1.1 in our implementa-
tion.

4 State of the Art Attacks on WEP

WEP key recovery process is harder in practice than in theory. Indeed, some
bytes of the keystream are unknown, depending on which type of packets are
captured. Moreover, theoretical success probability has often been miscalculated
and conditions to recover the secret key are not the same depending on the paper.
For example, [31,34,2,25] check 2 × 106 most probable keys instead of the first
one as in [7,14,13,11,27,28]. Additionally, IEEE 802.11 standard does not spec-
ify how the IV’s should be chosen. Thus, some attacks consider randomly picked

6

IV’s or incremental IV’s (both little-endian and big-endian encoded). Some im-
plementations specifically avoid some classes of IV’s which are weak with respect
to some attacks.

To unify the results, we consider recovering a random 104-bit long secret key
with random IV’s. This corresponds to the default IV behaviour of the 802.11
GNU/Linux stack. We compare the previous and the new results using both
theoretical and practical analysis:

– In [7], Fluhrer, Mantin and Shamir’s (FMS) attack is only theoretically de-
scribed. The authors postulate that 4 million packets would be sufficient to
recover the secret key of WEP with success probability of 50% with incre-
mental IV’s. A practical implementation of this attack has been realised by
Stubblefield, Ioannidis and Rubin [27,28]. They showed that indeed between
5 million to 6 million packets are required to recover the secret key using
the FMS attack. Note that in 2001, almost all wireless cards were using
incremental IV’s in big-endian.

– There is no theoretical analysis of the Korek [13,14] key recovery attacks.
Only practical implementations such as Aircrack-ng [5] are available. Ad-
ditionally, Aircrack-ng classifies the most probable secret keys and does a
brute-force attack on this list. The success probability of 50% is obtained
when about 100 000 packets are captured with random IV’s. Note that the
amount of the brute-forced keys depends on the values of the secret key and
the “Fudge” factor [5] (the highest vote counter is divided by the Fudge
factor and all values with votes higher than this value is brute-forced), a
parameter chosen by the attacker (often 1, 2 or 3). By default, around one
thousand to one million keys are brute-forced.

– The ChopChop attack was introduced in [12,30], which allows an attacker
to interactively decrypt the last m bytes of an encrypted packet by sending
128 ×m packets in average to the network. The attack does not reveal the
main key and is not based on any special property of the RC4 stream cipher.

– In [11], Klein showed theoretically that his new attack needs about 25 000
packets with random IV’s to recover the secret key with probability 50%.
Note that, there is no practical implementation of the Klein attack alone,
but both PTW [31] and VV07 [34] attacks (using Klein attack by default),
which theoretically improve the key recovery process, need more than 25 000
packets. So, the theoretical success probability of the Klein attack was over
estimated. We implemented this attack and we obtained the success proba-
bility of 50% with about 60 000 packets (random IV’s).

– Physkin, Tews and Weinmann (PTW) showed in [31] that the secret key
can be recovered with only 40 000 packets for the same success probability
(random IV’s). However, this attack brute-forces the 2 × 106 most proba-
ble secret keys. Thus, the comparison with previous attacks is less obvious.
Moreover, there is no theoretical analysis of this attack, only practical results
are provided by the authors. We confirmed this practical result.

7

– Vaudenay and Vuagnoux [34] showed an improved attack, where the same
success probability can be reached with an average of 32 700 packets with
random IV’s. This attack also tests the 2 × 106 most probable secret keys.
Moreover, only practical results are provided by the authors. We confirmed
this practical result.

– According to [2], Beck and Tews re-implemented the [34] attack in 2009, ob-
taining the same success probability with only 24 200 packets using Aircrack-
ng in “interactive mode”, i.e., the success probability is fixed in this approach
and the goal is to derive the least average number of packets for a successful
attack. Obviously, this approach requires less packets than the case where
we fix the number of packets and compute the success rate. We focus on
the latter approach, since this is done often in the literature as a measure of
comparison. Since Beck and Tews’s attack was implemented on Aircrack-ng,
we ran it in non-interactive mode. We observed that 24 200 packets brings
about only less that 8% success rate in non-interactive mode. In fact, it needs
more than 36 000 packets to yield the success probability of 50%. Therefore,
it seems this attack does not yield any more success rate than the [34] attack.

– Sepehrdad, Vaudenay and Vuagnoux [25], showed that only 9 800 packets is
enough to break WEP with success probability of 50%, while they used a
class of weak IV’s for their attack. We show in the following that reaching
9 800 packets to break WEP with random IV’s is extremely ambitious by the
currently available biases for RC4.

– In Eurocrypt 2011 [26], we presented an attack on WEP by optimising all
the previous known attacks in the literature and by introducing a few new
correlations. As a result, we claimed theoretically that using 4 000 packets,
our analysis provides a success probability of 50% to break WEP. We did not
implement the attack at that time. Only theoretical results were presented.
In this paper, we show that some parts of that evaluation is not precise
enough and need modification. In fact, we show that our theory needs more
than 4 000 packets, due to the imprecise approximation of the variance of
the rank of the correct key and an improper estimation of the probability
distribution of this random variable.

– In this paper, in an optimised attack, we drop the number of packets to 22 500
for the same success probability by modifying the [26] attack and patching
Aircrack-ng in non-interactive mode. It requires only 19 800 packets using
Aircrack-ng in interactive mode. In our approach, the 2×106 most probable
secret keys are brute-forced and we use random IV’s.

We are going to construct a precise theory behind the WEP attack in the
subsequent sections. All our analysis has been checked precisely through exten-
sive amount of experiments. We show that we can recover a 104-bit long WEP
key using 22 500 packets in less than 5 seconds using an off-the-shelf PC. With
less number of packets, the attack will run for a longer period.

8

5 Some Useful Lemmas

Lemma 1. Let A,B and C be random variables in ZN such that

A
p1
= B B

p2
= C

then we assume that A−B and B−C are independent. We have A
P
= C, where

P =
1

N
+

(
N

N − 1

)(
p1 −

1

N

)(
p2 −

1

N

)
def
= p1 ⊗ p2

Proof. See Chapter 3 of [24] for the proof. ut
Corollary 1. Let A,B,C,D and E be random variables in ZN such that

A
p1
= B B

p2
= C C

p3
= D D

p4
= E

then we assume that A−B, B−C, C−D and D−E are independent. We have

A
P
= E, where

P = p1 ⊗ p2 ⊗ p3 ⊗ p4 =
1

N
+

(
N

N − 1

)3

·
4∏
i=1

(
pi −

1

N

)
For p4 = 1, we obtain

P = p1 ⊗ p2 ⊗ p3 =
1

N
+

(
N

N − 1

)2

·
3∏
i=1

(
pi −

1

N

)
Proof. The ⊗ operation is commutative and associative over [0, 1] and 1 is the
neutral element. The above statements should be trivial using these properties.

ut

We can extend the above Corollary by adding new conditions.

Lemma 2. Let A,B,C,D and E be random variables in ZN and Cond and
Cond′ be two events such that

A
p1
= B B

p2
= C C

p3
=

Cond′
S[D] D

p4
= E

We assume that A − B, B − C, C − S[D], D − E and Cond′ are independent;
Furthermore, we assume

(A = S[D] ∧ Cond)⇔ (A = S[D] ∧ Cond′) and Pr[Cond] = Pr[Cond′]

Assuming that

Pr[A = S[E]|A 6= S[D], D 6= E,Cond] =
1

N − 1

we have
Pr[A = S[E]|Cond] = p1 ⊗ p2 ⊗ p3 ⊗ p4

9

Proof. See Chapter 3 of [24] for the proof. ut

Lemma 3. To avoid the key byte dependency, the following equation can be
extracted to have a better key recovery attack.

K̄[i] = ji −
i∑

x=1

Sx−1[x]

Proof. We prove it by induction on i by using

ji = ji−1 + Si−1[i] +K[i]

ut

Lemma 4. For 0 ≤ t < i, the following five relations hold on RC4?(t) for any
set (m1, . . . ,mb) of pairwise different mj’s such that mj ≤ t or mj > i− 1.

P bA(i, t)
def
= Pr

 b∧
j=1

Si−1[mj] = · · · = St+1[mj] = St[mj]

 =
(
N−b
N

)i−t−1
Si−1[mj]

P 1
A= St[mj]

i∑
x=1

Sx−1[x]
PB(i,t)

= σi(t) where

PB(i, t)
def
=

i−t−1∏
k=0

(
N − k
N

)
+

1

N

(
1−

i−t−1∏
k=0

(
N − k
N

))

P0
def
= Pr[S′i−1[i] = · · · = S′1[i] = SN−1[i] = · · · = Si[i]] =

(
N−1
N

)N−2
S′i−1[i]

P0= Si[i]

where mj’s are distinct and

σi(t) =

t∑
j=0

Sj−1[j] +

i∑
j=t+1

St[j]

Proof. See Chapter 3 of [24] for the proof. ut

6 The List of Biases for RC4

In this section, we only report RC4 correlations which are exploitable against
WEP application. All such biases are listed in Table 1 in Appendix, following
the notations in Section 3.1. This list includes the improved version of the Klein

10

attack in [34] and the improved version of the Maitra-Paul attack in [15]. Fur-
thermore, it includes an improved version of 19 biases by Korek [14,13] and
SVV 10, the improved bias of Sepehrdad, Vaudenay and Vuagnoux in [25]. All
the probabilities are new. We have proved all the correlations listed in Table 1,
but, we have omitted the proofs due to the lack of space 3. Biases were computed
using the formulas represented after Table 1.

As an example, we are going to elaborate and provide a proof for the Klein-
Improved attack, since it is fundamental in our WEP attack. The proof of all the
other correlations are similar. The interested reader can also look at [24,26,4] for
more details.

6.1 The Klein-Improved Attack

Andreas Klein combined the Jenkins correlation for the PRGA and weaknesses
of the KSA and derived a correlation between the key bytes and the keystream.
This bias was further improved in [34] by recovering K̄[i]’s instead of K[i] to
reduce the secret key bytes dependency.

Theorem 1 (Jenkins correlation [10], Sec. 2.3 in [16]). Assume that the
initial permutation S′0 = SN−1 is randomly chosen from the set of all the possible
permutations over {0, . . . , N − 1}. Then,

Pr[S′i[j
′
i] = i− zi] ≈ 2

N Pr[S′i[i] = j′i − zi] ≈ 2
N

Proof.

Pr[S′i[j
′
i] = i− zi] = Pr[S′i[j

′
i] = i− zi|S′i[i] + S′i[j

′
i] = i] . Pr[S′i[i] + S′i[j

′
i] = i]

+Pr[S′i[j
′
i] = i− zi|S′i[i] + S′i[j

′
i] 6= i] . Pr[S′i[i] + S′i[j

′
i] 6= i]

= 1
N + 1

N

(
1− 1

N

)
≈ 2

N

By symmetry, the other equation can be proved similarly. ut

We use the theorem by Jenkins and explain how it can be merged with
the weaknesses of the KSA (see Algorithm 1). In fact, the attacker checks the
conditions. If they all hold, she votes for K̄[i] using the key recovery relation. We
are only using the assumptions in Algorithm 1 to compute the Klein-Improved
attack success probability. More clearly, we do not assume these relations always
hold. They are all probabilistic.
Exploiting the Jenkins correlation and the relations in the KSA and the PRGA,
we obtain

1. S′i[j
′
i]
PJ= i− zi (Lemma 1)

2. S′i[j
′
i] = S′i−1[i]

3 See [23] for the proof of SVV 10 bias and for all the others, see Chapter 6 of [24].

11

Algorithm 1 The Klein-Improved Attack

Success Probability: PKI(i, t)
Assumptions: (see Fig. 3)
1: St[ji] = · · · = Si−1[ji] = Si[i] = S′i−1[i] = S′i[j

′
i] = i− zi

Conditions: (i− zi) 6∈ {St[t+ 1], . . . , St[i− 1]} (Cond)
Key recovery relation: K̄[i] = S−1

t [i− zi]− σi(t)

3. S′i−1[i]
P0= Si[i] (Lemma 4)

4. Si[i] = Si−1[ji]

5. Si−1[ji]
P 1

A=
Cond′

St[ji] (where Cond′ is the event that ji ≤ t or ji > i− 1.)

6. ji = K̄[i] +
i∑

x=1

Sx−1[x] (Lemma 3)

7.

i∑
x=1

Sx−1[x]
PB= σi (Lemma 4)

We make the same heuristic assumptions of independence as in Lemma 2, then
using Lemma 2 and Lemma 4, we derive

PKI(i, t) = PJ ⊗ P0 ⊗ P 1
A(i, t)⊗ PB(i, t)

conditioned to Cond (see Algorithm 1). Hence, the key recovery relation becomes

K̄[i]
PKI=
Cond

S−1t [i− zi]− σi(t)

Next, we are going to describe our modifications on Sepehrdad, Vaudenay
and Vuagnoux attack [26] to mount a very fast key recovery attack on WEP.

7 An Optimised Attack on WEP

We define an statistical attack using the following mapping:

zm, IVm
hi−−−−−−→ µi

f`i (µi)−−−−−−→
if g`i (µi)

xi

Our goal is to recover the values of K̄[i]’s for i = {3, . . . , 15}. For each key can-
didate value xi (corresponding to K̄[i]), each packet m, and each `i = 1, . . . , di
(corresponding to each bias), if the agglomerated condition g`i(hi(z

m, IVm))
holds, we define xi = f`i(hi(z

m, IVm)) as the value of the RC4 key byte suggested
by the bias `i on packet m, which is correct with probability p`i . We let Xxi,m,`i

be some magic coefficient a`i (to be optimised later) if f`i(hi(z
m, IVm)) = xi

and 0 otherwise. We let

Yxi
=

n∑
m=1

di∑
`i=1

Xxi,m,`i

12

!"

!"

!"−!

!
′
"−!

!

!
′
"

!′"

!− "!

!− "!

!− "!

!− "!

!− "!

!"

Fig. 3. The RC4 state update in the Klein-Improved attack

where ni is the total number of packets to be used in attacking K̄[i]. Clearly,
the correct value for xi is suggested with probability p`i and others are obtained
randomly. We assume the incorrect ones are suggested with the same probability
1−p`i
Nxi
−1 . So, the Xxi,m,`i for the incorrect xi’s are random variables with the

expected values a`iq`i
1−p`i
Nxi
−1 if xi is not the correct value. For the correct xi, then

Xxi,m,`i are random variables with the expected value a`iq`ip`i . The difference
between these two expected values is important. This is also the case for the
difference of the variances. As every xi is suggested with probability roughly
q`i
Nxi

, we assume that the variance of a bad Xxi,m,`i can be approximated by

q`i
Nxi

(
1− q`i

Nxi

)
a2`i . In [26], it was assumed that the variance of a good and a bad

counter Yxi
is the same. Our experiments revealed that they are actually very

different. Let ∆ be the operator making the difference between the distributions

13

of a good xi and a bad one. We have

E(Yxi bad) =
ni

Nxi
− 1

∑
`i

a`iq`i(1− p`i)

E(Yxi good) = E(Yxi bad) +∆E(Yi)

∆E(Yi) =
ni

1− 1
Nxi

∑
`i

a`iq`i

(
p`i −

1

Nxi

)
V (Yxi bad) ≈ ni

∑
`i

a2`i
q`i
Nxi

(
1− q`i

Nxi

)
V (Yxi good) = V (Yxi bad) +∆V (Yi)

∆V (Yi) ≈
ni

1− 1
Nxi

∑
`i

a2`iq`i

(
p`i −

1

Nxi

)
where E(Yxi bad) and V (Yxi bad) denote the expected value and the variance of
a Yxi variable for any bad xi respectively. Here, we removed the subscript xi of
Yxi

in ∆E(Yi) as this does not depend on a specific value for xi. Let λi be such
that ∆E(Yi) = λi

√
V (Yxi bad) + V (Yxi good). The probability that the correct

Yxi
is lower than an arbitrary wrong Yxi

is ρi = ϕ (−λi). That is, the expected
number of wrong xi’s with larger Yxi is

ri = (Nxi
− 1)ϕ (−λi) (2)

So,

ni =

λ2
i

∑
`i

a2`i

[
2

(
q`i
Nxi

)(
1− q`i

Nxi

)(
1− 1

Nxi

)2

+ q`i

(
p`i −

1

Nxi

)(
1− 1

Nxi

)]
∑

`i

a`iq`i

(
p`i −

1

Nxi

)
2

By derivating both terms of the fraction with respect to a`i and equaling them,
we obtain that the optimal value is reached for

a`i = aopti

def
=

(
p`i − 1

Nxi

)
(
p`i − 1

Nxi

)
+ 2

Nxi

(
1− 1

Nxi

)(
1− q`i

Nxi

)
The above aopti is very different from the one derived in [26]. In fact, aopti is the
most crucial value to be optimised in the WEP attack. Using the old value of
aopti in [26], the success probability would be much lower. Hence, we obtain

ni = nopt
def
=

λ2i

(
1− 1

Nxi

)
∑
`i

a`iq`i

(
p`i −

1

Nxi

) (3)

The attack works as in Algorithm 2, where Step 9 is computed using the below
algorithm:

14

1: Set I = (3, 4, . . . , 15) and I0 = {0, 1, 2}.
2: Initialize the Yxi

counters to 0.
3: for m = 1 to ni do
4: for `i = 1 to di do
5: if g`i(hi(z

m, IVm)) holds then
6: Compute xi = f`i(hi(z

m, IVm)), the suggested value for K̄[i].
7: Increment Yxi

by a`i .
8: end if
9: end for

10: end for
11: Output xi = arg maxxi

Yxi
.

This attack produces a ranking of possible xi’s (possible K̄[i]) in the form
of a list Li by decreasing order of likelihood. The complexity of voting for each
K̄[i] is represented as ci, where

ci = nidi (4)

Algorithm 2 An optimised attack against the WEP protocol

1: compute the ranking L15 for I = (15) and I0 = {0, 1, 2}
2: truncate L15 to its first ρ15 terms
3: for each k̄15 in L15 do
4: run recursive attack on input k̄15
5: end for
6: stop: attack failed
recursive attack with input (k̄15, k̄3, . . . , k̄i−1):
7: If input is only k̄15, set i = 3.
8: if i ≤ imax then
9: compute the ranking Li for I = (i) and I0 = {0, . . . , i− 1, 15}

10: truncate Li to its first ρi terms
11: for each k̄i in Li do
12: run recursive attack on input (k̄15, k̄3, . . . , k̄i−1, k̄i)
13: end for
14: else
15: for each k̄imax+1, . . . , k̄14 do
16: test key (k̄3, . . . , k̄14, k̄15) and stop if correct
17: end for
18: end if

Let Nxi = N for all i and ri, ci be their parameters following Eq. (2), Eq. (4).
Let Ri be the rank of the correct k̄i value in Li. Let’s define a random variable
Uij = 1(Yxi good<Yxi badj

), where Yxi badj
is the j-th bad counter in attacking

K̄[i]. Hence, we have

Ri =

Nxi
−1∑

j=1

Uij

15

The expected value and the variance of this random variable can be computed
as follows:

ri = E(Ri) = (Nxi
− 1)ϕ(−λi)

and

E(R2
i) = E(Ri) + (Nxi − 1)(Nxi − 2) · E(Ui1.Ui2)

(5)

where

E(Ui1.Ui2) = 1√
2πV (Yxi good)

∫∞
−∞ e

− (Y−E(Yxi good))
2

2V (Yxi good)

(
1− ϕ

(
Y−E(Yxi bad)√
V (Yxi bad)

)2
)
dY

This finally yields

V (Ri) = (Nxi − 1)ϕ(−λi) + (Nxi − 1)(Nxi − 2) . E(Ui1.Ui2)− (Nxi − 1)2ϕ(−λi)2 (6)

In [26], Ui1 and Ui2 were incorrectly assumed to be independent, leading to

V (Ri) ≈ (Nxi
− 1)ϕ(−λi)(1− ϕ(λi)) ≈ ri

which did not match our experiment. Now, the fundamental question is what
would be the distribution of Ri. This is discussed in the next section.

7.1 Analysis Based on Pólya Distribution

In [26], it was assumed that the distribution of Ri is normal. Running a few
experiments, we noticed that in fact it is not normal and it is following a distri-
bution very close to the Poisson distribution. A crucial observation was that the
variance of the distribution was much higher than the expected value. A number
of distributions have been devised for series in which the variance is significantly
larger than the mean [1,6,18], frequently on the basis of more or less complex
biological models [3]. The first of these was the negative binomial, which arose in
deriving the Poisson series from the point binomial [29,35]. We use a generalised
version of negative binomial distribution called the Pólya distribution.

To be more precise, if two events occur with Poisson distribution and their
expected values are very low, then it can be assumed that those events are
happening independently. On the other hand, for the Poisson events with high
expected values (approximated as normal), the occurrence of the former event
may increase the probability of the latter. In such cases, the overall distribu-
tion would be the Pólya [32,33]. Regarding the current problem, the events
(Yxi good < Yxi badj

) and (Yxi good < Yxi badj′) are not independent. There-
fore, they tend to follow the Pólya distribution. As E(Ri) and V (Ri) are known
from Eq. (5), Eq. (6), the values pi and ri for attacking K̄[i] can be simply
computed by

pi =

(
1− E(Ri)

V (Ri)

)
and ri =

(
E(Ri)

2

V (Ri)− E(Ri)

)

16

As a proof of concept, we have sketched the probability distribution of R3 for
5 000 packets. The corresponding parameters for the Pólya distribution would be
p = 0.9839 and r = 0.356 (see Fig. 4). As can be observed, those two distributions
are extremely close. Also,

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 10 20 30 40 50

P
ro

b
a

b
ili

ty

R3 Realization

Polya distribution with p = 0.9839 and r = 0.356
Experimental R3 distribution for 5000 packets

Fig. 4. R3 distribution using 5 000 packets following the Pólya distribution

ui
def
= Pr[Ri ≤ ρi − 1] = 1− Ipi(ρi, ri)

where I is the regularised incomplete beta function. Overall, the success proba-
bility is

u = u15

imax∏
i=3

ui

and the complexity is

c = c15 + ρ15
(
c3 + ρ3

(
c4 + ρ4

(
· · · cimax

+ ρimax
N14−imax · · ·

)))
To be able to compare our results with the state of the art, we set u = 50%.

To approximate the optimal choice of ρ’s, let imax = 14. We have to deal with
the following optimisation problem:

Minimize c in terms of ρi’s, limiting u =

15∏
i=3

(1− Ipi(ρi, ri)) =
1

2

17

To solve this optimisation problem, we use Lagrange multipliers to find the
optimal solution. We used the fmincon function in Matlab with the Sequen-
tial Quadratic Programming [19] (SQP) algorithm as the default algorithm to
compute the local minimum. As this algorithm needs a starting point x0 for its
computations, we used the GlobalSearch class which iterates the fmincon function
multiple times using random vectors for x0. Simultaneously, it checks how the
results merge towards the global minimum. One can also use Genetic algorithms
to find the optimal values.

8 Comparison with Aircrack-ng

Fig. 5 represents a comparison between Aircrack-ng and our new attack. The
reader can see that our passive attack outperforms Aircrack-ng running in active
mode. This gives significant advantage to the attacker, since for some network
cards, the driver has to be patched so that the network card can inject packets,
and in some cases such patch is not available at all. Moreover, the active attacks
are detectable by intrusion detection systems. Similarly, passive attacks can be
performed from much large distance. Moreover, the TCP/IPv4 packets can be
captured with much higher rate than ARP packets. As a rule of thumb, in a high
traffic network, (for instance the user is downloading a movie), if we consider
TCP/IPv4 packets with maximum size around 1500 bytes, in a 20 Mbit/sec
wireless network, it takes almost 10 seconds to capture 22 500 packets. This
amount is already enough to find a key with our improved Aircrack-ng in less
than 5 seconds.

9 Challenges and Open Problems

WEP key recovery process is harder in practice than in theory. This is because
the biases in RC4 are not independent, and several bytes of the keystream are un-
known in ARP and TCP/IP packets. Therefore, the theoretical analysis is more
complex if the dependencies are considered. Also, some bytes of the keystream
have to be guessed, and the proportion of TCP/IP packets to ARP packets is
distinct for every network and attack (passive vs. active). The a priori probabil-
ity of guessing those bytes correctly can not be precisely determined, and we had
to leverage some heuristics to deal with this problem; Since this proportion also
depends on the traffic itself, finding the ρ which is optimised for every network
is not feasible. We leveraged some heuristics to set the ρ to obtain a high success
rate in practice. Moreover, the Aircrack-ng is not an interactive software. The
interaction with the user may allow to tweak the ρ and/or wait for more packets
to capture. This trade-off should also be considered in real life applications.

The Algorithm 2 is recursive. This recursion is very expensive in practice,
since with a wrong guess on a key byte, all the subsequent key bytes with higher
indices are recovered incorrectly (in theory), so we need to recompute the vote for
each of them again. In practice, we observed that a wrong guess of a key byte does
not influence the next key bytes recovery significantly. For instance, even with

18

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10000 15000 20000 25000 30000 35000 40000 45000 50000

S
u

c
c
e

s
s
 P

ro
b

a
b

ili
ty

Number of Packets

Aircrack-ng-Patched Active
Aircrack-ng-Original Active

Aircrack-ng-Patched Passive

Fig. 5. Our attacks success probability (both active and passive attacks) with respect
to the number of packets compared to Aircrack-ng in active attack mode.

a wrong guess on K̄[3], in many cases, we could still recover all the subsequent
bytes correctly. This is because a wrong guess for K̄[3] mandates only 16 wrong
swaps out of 256 iterations of the KSA. A further improvement to our work can
be to adjust our theory to consider such cases. Hence, in our implementation,
we perform a recursive attack to only find the best key candidate, and if it turns
out to be a wrong key, we then use the pre-computed voted list to perform an
exhaustive search, with no re-voting.

10 Conclusion

In this paper, we gave a precise theoretical background to improve the state of the
art attacks on WEP. As an empirical proof, we updated Aircrack-ng and showed
that our attack significantly outperforms the previous versions in all scenarios.
We modified the algorithm according to the theoretical results, removed the
ad-hoc constants which were initially found empirically in previous papers and
implementations. We gave a theoretical background for all constants which affect
the performance of the new Aircrack-ng. This result shows the significance of
theoretical analysis in practical scenarios, and allows the attacker to break WEP
even on constrained devices. As a result, the best attack to date requires 22 500
packets for the success probability of 50% to break WEP.

19

Note. The imprecision of distributions and variances also affect our analysis
reported for WPA in [26]. But, we recomputed all numerical values with the
precise theoretical formulas and observed only a negligible overheard compared
to the derived complexity in [26].

Acknowledgment. We would like to sincerely thank Dr. Erik Tews for giving
very helpful comments on Aicrack-ng implementation.

References

1. F.J. Anscombe. Sampling theory of the negative binomial and logarithmic series
distributions. Biometrika, 37(3-4):358–382, 1950.

2. M. Beck and E. Tews. Practical Attacks Against WEP and WPA. In WISEC,
pages 79–86. ACM, 2009.

3. C.I. Bliss and R.A. Fisher. Fitting the Negative Binomial Distribution to Biological
Data. Biometrika, 9:176–200, 1953.

4. R. Chaabouni. Break WEP Faster with Statistical Analysis. Semester Project,
EPFL, Switzerland, 2006.

5. C. Devine and T. Otreppe. Aircrack-ng, accessed October 22, 2011.
http://www.aircrack-ng.org/.

6. W. Feller. On a general class of “contagious” distributions. Ann. Math. Stat.,
14:389–400, 1943.

7. S.R. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the Key Scheduling Algo-
rithm of RC4. In SAC, volume 2259, pages 1–24. Springer, 2001.

8. IEEE. IEEE Std 802.11, Standards for Local and Metropolitan Area Networks:
Wireless Lan Medium Access Control (MAC) and Physical Layer (PHY) Specifi-
cations, 1999.

9. IEEE. ANSI/IEEE standard 802.11i, Amendment 6 Wireless LAN Medium Access
Control (MAC) and Physical Layer (phy) Specifications, 2003. Draft 3.

10. R. Jenkins. ISAAC and RC4, 1996. http://burtleburtle.net/bob/rand/isaac.html.
11. A. Klein. Attacks on the RC4 Stream Cipher. Design, Codes, and Cryptography,

48:269–286, 2008.
12. Korek. chopchop (experimental WEP attacks), 2004. http:

//www.netstumbler.org/showthread.php?t=12489.
13. Korek. Need Security Pointers, 2004.

http://www.netstumbler.org/showthread.php?postid=89036#pos%t89036.
14. Korek. Next Generation of WEP Attacks?, 2004.

http://www.netstumbler.org/showpost.php?p=93942&postcount=%35.
15. S. Maitra and G. Paul. New Form of Permutation Bias and Secret Key Leakage

in Keystream Bytes of RC4. In FSE, volume 5086, pages 253–269. Springer, 2008.
16. I. Mantin. Analysis of the Stream Cipher RC4. Master’s thesis, Weizmann Institute

of Science, 2001.
17. A. Maximov. Two Linear Distinguishing Attacks on VMPC and RC4A and Weak-

ness. In FSE, volume 3557, pages 342–358. Springer, 2005.
18. J. Neyman. On a new class of “contagious” distributions, applicable in entomology

and bacteriology. Ann. Math. Stat., 10:35–57, 1939.
19. J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Operations

Research. Springer Verlag, second edition, 2006.

20

20. G. Paul and S. Maitra. Permutation After RC4 Key Scheduling Reveals the Secret.
In SAC, volume 4876, pages 360–377. Springer, 2007.

21. J. Postel and J. Reynolds. A Standard for the Transmission of IP Datagrams over
IEEE 802 Networks, 1988. http://www.cs.berkeley.edu/∼daw/my-posts/my-rc4-
weak-keys.

22. A. Roos. A Class of Weak Keys in RC4 Stream Cipher (sci.crypt), 1995.
http://marcel.wanda.ch/Archive/WeakKeys.

23. S. Sen Gupta, S. Maitra, G. Paul, and S. Sarkar. (Non)Random Sequences from
(Non)Random Permutations - Analysis of RC4 Stream Cipher. Journal of Cryp-
tology, 2012.

24. P. Sepehrdad. Statistical and Algebraic Cryptanalysis of Lightweight and Ultra-
lightweight Symmetric Primitives. PhD thesis, EPFL, Switzerland, 2012.

25. P. Sepehrdad, S. Vaudenay, and M. Vuagnoux. Discovery and Exploitation of New
Biases in RC4. In SAC, volume 6544, pages 74–91. Springer, 2010.

26. P. Sepehrdad, S. Vaudenay, and M. Vuagnoux. Statistical Attack on RC4: Distin-
guishing WPA. In EUROCRYPT, volume 6632, pages 343–363. Springer, 2011.

27. A. Stubblefield, J. Ioannidis, and A.D. Rubin. Using the Fluhrer, Mantin, and
Shamir Attack to Break WEP. Network and Distributed System Security Sympo-
sium (NDSS), 2002.

28. A. Stubblefield, J. Ioannidis, and A.D. Rubin. A key recovery attack on the 802.11b
wired equivalent privacy protocol (WEP). ACM Transactions on Information and
System Security (TISSEC), 7(2), 2004.

29. Student. On the error of counting with a haemocytometer. Biometrika, 5:351–360,
1907.

30. E. Tews. Attacks on the WEP Protocol. In Cryptology ePrint Archive, 2007.
http://eprint.iacr.org/2007/471.pdf.

31. E. Tews, R. Weinmann, and A. Pyshkin. Breaking 104 Bit WEP in Less Than 60
Seconds. In WISA, volume 4867, pages 188–202. Springer, 2007.

32. H.C.S. Thom. The Frequency of Hail Occurrence. Theoretical and Applied Clima-
tology, 8:185–194, 1957.

33. H.C.S. Thom. Tornado Probabilities. American Meteorological Society, pages 730–
736, 1963.

34. S. Vaudenay and M. Vuagnoux. Passive-only Key Recovery Attacks on RC4. In
SAC, volume 4876, pages 344–359. Springer, 2007.

35. L. Whitaker. On the Poisson law of small numbers. Biometrika, 10:36–71, 1914.

21

A IEEE 802.11 Data Frames Encapsulating ARP and
TCP/IPv4 Protocols

ARP Packet

0xAA DSAP
0xAA SSAP
0x03 CTRL
0x00
0x00 ORG Code
0x00

0x08 ARP
0x06

0x00 Ethernet
0x01

0x08 IP
0x00

0x06 Hardware size
0x04 Protocol
0x00 Opcode Request/Reply
0x??

0x?? MAC addr src
0x??
0x??
0x??
0x??
0x??

0x?? IP src
0x??
0x??
0x??

0x?? MAC addr dst
0x??
0x??
0x??
0x??
0x??

TCP/IPv4 Packet

0xAA DSAP
0xAA SSAP
0x03 CTRL
0x00
0x00 ORG Code
0x00

0x08 IP
0x00

0x45 IP Version + Header length
0x00 Type of Service
0x?? Packet length
0x??

0x?? IP ID RFC815
0x??

0x40 Fragment type and offset
0x??

0x?? TTL
0x06 TCP type
0x?? Header checksum
0x??

0x?? IP src
0x??
0x??
0x??

0x?? IP dst
0x??
0x??
0x??

0x?? Port src
0x??

0x?? Port dst
0x??

Fig. 6. The plaintext bytes of the 802.11 data frames encapsulating ARP and
TCP/IPv4 protocols [31,34]. The values in white are almost fixed or can be com-
puted dynamically. The values in light Grey can be guessed. The values in dark Grey
are not predictable. Often one of Port src or Port dest can be guessed, but not both.

22

B Computation of Biases

Table 1. The biases for RC4, exploitable against WEP and WPA

row reference f̄ ḡ p

i Klein− Improved S−1
t [−zi + i]− σi(t) (i− zi) 6∈ {St[t+ 1], . . . , St[i− 1]} PKI(i, t)

i 6= 1 MP− Improved zi+1 − σi(t) i 6= 1, zi+1 ≥ i, ∀0 ≤ i′ ≤ t : ji′ 6= zi+1 PMPI(i, t)

i A u15 2− σi(t) St[i] = 0, z2 = 0 P 1
fixed−j

i A s13 S−1
t [0]− σi(t) St[1] = i, (S−1

t [0] < t + 1 or S−1
t [0] >

i− 1), z1 = i
Kor21

i A u13 1 S−1
t [z1]− σi(t) St[1] = i, (S−1

t [z1] < t+ 1 or S−1
t [z1] >

i− 1), z1 = 1− i
Kor21

i A u13 2 1− σi(t) St[i] = i, St[1] = 0, z1 = i P 3
fixed−j

i A u13 3 1− σi(t) St[i] = i, St[1] = 1− i, z1 = 1− i P 3
fixed−j

i A s5 1 S−1
t [z1]− σi(t) St[1] < t + 1, St[1] + St[St[1]] = i,

z1 6= {St[1], St[St[1]]}, (S−1
t [z1] < t +

1 or S−1
t [z1] > i− 1)

Kor32

i A s5 2 S−1
t [St[1]− St[2]]− σi(t) St[2] + St[1] = i, S−1

t [St[1] − St[2]] 6=
{1, 2}, (S−1

t [St[1] − St[2]] < t +
1 or S−1

t [St[1] − St[2]] > i − 1), z2 =
St[1]

Kor32

i A s5 3 S−1
t [z2]− σi(t) St[2] + St[1] = i, S−1

t [z2] 6= {1, 2},
(S−1

t [z2] < t + 1 or S−1
t [z2] > i − 1),

z2 = 2− St[2]

Kor32

i A u5 1 S−1
t [S−1

t [z1]− i]− σi(t) St[1] = i, S−1
t [z1] < t+1, S−1

t [S−1
t [z1]−

i] 6= 1, (S−1
t [S−1

t [z1] − i] < t +
1 or S−1

t [S−1
t [z1] − i] > i − 1), z1 6=

{i, 1− i, S−1
t [z1]− i}, S−1

t [z1] 6= 2i

Kor32

i A u5 2 1− σi(t) St[i] = 1, z1 = St[2] P 2
fixed−j

i A u5 3 1− σi(t) St[i] = i, S−1
t [z1] 6= 1, S−1

t [z1] < t+ 1,
z1 = St[St[1] + i]

P 5
fixed−j

i A s3 S−1
t [z2]− σi(t) St[1] 6= 2, St[2] 6= 0, St[2]+St[1] < t+1,

St[2] + St[St[2] + St[1]] = i, S−1
t [z2] 6=

{1, 2, St[1] + St[2]}, St[1] + St[2] 6=
{1, 2}, (S−1

t [z2] < t + 1 or S−1
t [z2] >

i− 1)

Kor43

4 A 4 s13 S−1
t [0]− σ4(t) St[1] = 2, St[4] 6= 0, (S−1

t [0] < t +
1 or S−1

t [0] > i− 1), z2 = 0
P 4

fixed−j

4 A 4 u5 1 S−1
t [N − 2]− σ4(t) St[1] = 2, z2 6= 0, z2 = St[0], z2 6= N −

2, (S−1
t [N − 2] < t+ 1 or S−1

t [N − 2] >
3)

Kor32

4 A 4 u5 2 S−1
t [N − 1]− σ4(t) St[1] = 2, z2 6= 0, (S−1

t [N − 1] < t +
1 or S−1

t [N − 1] > 3), z2 = St[2]
Kor32

i A neg 1 1− σi(t) or 2− σi(t) St[2] = 0, St[1] = 2, z1 = 2 Pneg(i, t)

i A neg 2 2− σi(t) St[2] = 0, St[1] 6= 2, z2 = 0 Pneg(i, t)

i A neg 3 1− σi(t) or 2− σi(t) St[1] = 1, z1 = St[2] Pneg(i, t)

i A neg 4 −σi(t) or 1− σi(t) St[1] = 0, St[0] = 1, z1 = 1 Pneg(i, t)

16 SVV 10 S−1
t [0]− σ16(t) S−1

t [0] < t + 1 or S−1
t [0] > 15, z16 =

−16, j2 /∈ {t+ 1, . . . , 15}
PSVV10(t)

23

PKI(i, t) = PJ ⊗ P0 ⊗ P 1
A(i, t)⊗ PB(i, t)

PMPI(i, t) = PD(i)⊗ PB(i, t)

Korbc(i, t) = Rb
c(i, t)⊗ PB(i, t)

Pneg(i, t) =
(

1−PB(i,t)
N−1

)
PSVV10(t) = Pdb2 ⊗ P 1

A(16, t)⊗ PB(16, t)

P 1
fixed−j = C(i, t).

[
1
2P

1
A(i, t)

(
N−1
N

)N−i
+ 1

N

(
1− P 1

A(i, t)
(
N−1
N

)N−i)]
+Pneg(i, t)

P 2
fixed−j =

[
1
ξP

2
A(i, t)

(
N
N−1

)t−2 (
N−2
N

)N−1−i
+
(

1− P 2
A(i, t)

(
N−2
N

)N−i−1)]
.(

1
N

)
C(i, t) + Pneg(i, t)

P 3
fixed−j =

[(
N−1
N

)t+1 (N−2
N

)N−1−i
. P 2

A(i, t) + 1
N

(
1− P 2

A(i, t)
(
N−2
N

)N−i−1)]
.

C(i, t) + Pneg(i, t)

P 4
fixed−j =

[
1
2

(
N−1
N

)t+1 (N−2
N

)N−1−i
. P 2

A(i, t) + 1
N

(
1− P 2

A(i, t)
(
N−2
N

)N−i−1)]
.

C(i, t) + Pneg(i, t)

P 5
fixed−j =

[
(N−1

N)
t+1

(t
N)(N−3

N)
N−1−i

(1− 1
N)(N−1

N)
t+1

(t
N)+ 1

N

. P 3
A(i, t) + 1

N

(
1− P 3

A(i, t)
(
N−3
N

)N−i−1)]
.

C(i, t) + Pneg(i, t)

where PJ = 2
N , P0 =

(
N−1
N

)N−2
, Pdb2 = 9.444

N ,

ξ = 1
N

[(
N−1
N

)N (
1− 1

N + 1
N2

)
+ 1

N2 + 1
]
.

C(i, t) =
(
NPB(i,t)−1

N−1

)
P bA(i, t) =

(
N−b
N

)i−t−1
PB(i, t) =

∏i−t−1
k=0

(
N−k
N

)
+ 1

N

(
1−∏i−t−1

k=0

(
N−k
N

))
PD(i) = (N−i−1)(N−i)

N3

(
N−2
N

)N−3+i (N−1
N

)3
Rbc(i, t) = rc(i)P

b
A(i, t) + 1

N (1− rc(i)P bA(i, t))

r1(i) =
(
N−2
N

)N−i−1
r2(i) =

(
N−3
N

)N−i−1
r3(i) =

(
N−4
N

)N−i−1
24

