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Abstract. PRINCE is a low-latency block cipher presented at ASI-
ACRYPT 2012. The cipher was designed with a property called α-
reflection which reduces the definition of the decryption with a given key
to an encryption with a different but related key determined by α. In the
design document, it was shown that PRINCE is secure against known
attacks independently of the value of α, and the design criteria for α
remained open.
In this paper, we introduce new generic distinguishers on PRINCE-like
ciphers. First, we show that, by folding the cipher in the middle, the
number of rounds can be halved due to the α-reflection property. Fur-
thermore, we investigate many classes of α and find the best differential
characteristic for the folded cipher. For such α there exist an efficient
key-recovery attack on the full 12-round cipher with the data complex-
ity of 257.98 known plaintexts and time complexity of 272.39 encryptions.
With the original value of α we can attack a reduced six-round version
of PRINCE. As a result of the new cryptanalysis method presented in
this paper, new design criteria concerning the selection of the value of α
for PRINCE-like ciphers are obtained.
Keywords: block cipher, α-reflection property, PRINCE, statistical
attack, reflection attack.

1 Introduction

Recently, important applications in special constrained environments such as
RFID tags and sensors have received a lot of attention by the cryptographic
community. The new secure primitives should provide the best security possible
while under tight constraints. Traditionally, cryptographic algorithms have been
designed with large security margin to be on the secure side even when exposed
to new and unknown vulnerabilities. Since lightweight ciphers must be as small
and power-efficient as possible, it is of utmost importance to analyze and under-
stand the security of cryptographic designs to reduce the superfluous margins.
New innovative and unconventional designs pose new challenges. For instance,



to reduce the power consumption of the encryption algorithm, new cipher pro-
posals, such as PRINTcipher [7] and LED [5] with very simple key-schedule or
even without key-schedule, have been developed. With the emergence of such
constructions, new attacks have emerged.

PRINCE is a low-latency block cipher proposed at ASIACRYPT 2012 [2]. In
order to reduce the cost of implementation of decryption, this iterated cipher uses
a property called α-reflection. As the key-schedule of the encryption is almost
non-existent, the round constants play crucial role in preventing self-similarity
attacks like slide attacks. The α-reflection property is built in the cipher by
selecting the round constants in pairs. The constants that form a pair have a
difference equal to α, and if one of them is used on round r then the other one is
used on round 2R− r+ 1, where r = 1, 2, . . . , 2R, and 2R is the total number of
rounds of the cipher. As the round functions at round r and 2R− r + 1, r < R,
are selected to be inverses of each other, it follows that decryption with round
key K is identical to encryption with round key K ⊕ α.

In the original proposal, the security of PRINCE and the effects of the α-
reflection were studied extensively. In particular, it was shown that the cipher is
secure against known attacks with reasonable security margin. For instance, it
was shown that any differential or linear characteristic over 4 consecutive rounds
has at least 16 active S-boxes. This holds independently of the selection of the
non-zero parameter α.

In this paper, we study PRINCE in a more general setting of PRINCE-like
ciphers by allowing freedom in the selection of the value of α and of some other
components of the cipher. We identify new types of relations over the cipher,
and show that they can be used as distinguishers over PRINCE, but that their
effectivity depends crucially on the properties of α. We call these new relations
reflection characteristics. They are constructed by feeding input data of round r,
r ≤ R, forward over 2(R− r+ 1) rounds and comparing it with the correspond-
ing output data of round 2R − r + 1 by exclusive-or differences. We investigate
distributions of these reflection differences. Their non-uniformity properties cru-
cially depend on the relationships between the differential properties of the round
function, fixed points of the middle linear layer and the reflection parameter α.

The starting point of the reflection cryptanalysis is a probabilistic relation
on the middle rounds of the cipher. The extracted relations starting from the
middle of the cipher share some similarities with some attacks on Feistel ciphers.
Self-similarity properties can be used to determine classes of weak keys as for
instance for the DES [8]. The reflection attack [6] and its modifications for hash
functions [3] take advantage of involution properties when classes of fixed points
exist in some intermediate rounds. In this paper, the involution property is re-
placed by the α-reflection property, and the resulting reflection characteristics
are not necessarily deterministic, but evaluated in terms of differential probabil-
ities. The resulting attacks require known plaintext only.

In sharp contrast to differential and linear characteristics on PRINCE-like
ciphers, the number of active S-boxes in a reflection characteristic strongly de-
pends on the value of α. In particular, we show that for some values of α the



key-recovery attack using reflection characteristic works for the full cipher. We
present a known-plaintext single-key attack with the data complexity of 257.95

plaintexts and time complexity of 272.37. For the original α specified in [2], the
key recovery attack using a reflection distinguisher found in this paper breaks
reduced-round versions of the cipher only up to 6 rounds and hence does not
threaten the security of full 12-round version of PRINCE. Nevertheless, we be-
lieve that the introduction of the new distinguishers will shed light on the secu-
rity of PRINCE-like ciphers and can be taken into consideration when designing
ciphers according to the model of PRINCE.

The paper is organized as follows. In Section 2, we define a family of ciphers
called PRINCE-like ciphers. In Section 3, different characteristics for the ciphers
in this family are described and their probabilities determined. Concatenations
of these characteristics are also studied in order to provide characteristics on a
larger number of rounds. In Section 4, we show how reflection characteristics
over 2R − 2 rounds of the cipher can be converted to distinguishers and used
for key recovery attacks on the full 2R rounds of the cipher. In Section 5, we
evaluate the complexity of the best reflection attacks and identify classes of the
weakest α using the original S-layer and M-layer of PRINCE.

2 Brief Description of PRINCE

Distinguishers and attacks presented in this paper focus not only on the original
PRINCE but are more general and can be applied to all ciphers with simi-
lar reflection structure. To this aim, let us start by describing what we call a
PRINCE-like cipher.

2.1 PRINCE-like Cipher

A PRINCE-like cipher encrypts messages of n-bit blocks by iterating 2R times
a round function. We denote by Eαk the encryption function parametrized with
a 2n-bit key k = (k0||k1) ∈ F2n

2 and the reflection parameter α ∈ Fn2
∗.

The key schedule of a PRINCE-like cipher is simple. The 2n-bit key is split
into two n-bit parts k0 and k1. From k0, a key k′0 is derived using a rotation and
a shift as follows

k′0 = (k0 ≫ 1)⊕ (k0 � (n− 1)). (1)

The keys k0 and k′0 are used as whitening keys in the encryption operation that
follows the FX structure. The n-bit key k1 is added to the state in the 2R rounds
of the cipher.

The core function Gαk1 of this cipher (denoted by PRINCEcore in the original
proposal) is defined as an iteration of the 2R rounds. To keep it as general
as possible, we assume that we have a non-linear S-layer composed of a set of
parallel Sboxes and two different linear layers, defined by n×n matrices M ′ and
M , where M ′ is an involution matrix.



The first R − 1 rounds Rr : Fn2 → Fn2 , 1 ≤ r ≤ R − 1, are identical and are
composed (in this order) of addition of the round constant RCr and the key k1,
the non-linear layer S and the linear permutation layer M . The R−1 last rounds
Rr : Fn2 → Fn2 , R+ 2 ≤ r ≤ 2R are, in the reverse order, equal to inverses of the
first R−1 rounds except that the round constants are modified by α so that the
following holds:

RC2R−r+1 = RCr ⊕ α, for all r = 1, . . . , 2R. (2)

We call these rounds with r ≤ R − 1 or r ≥ R + 2 the external rounds of the
PRINCE-like cipher.

The symmetry is broken by specifying the two middle rounds R and R+1 to
be different from each other and from the external rounds. Below we summarize
the definitions for all rounds.

Rr(x) = M(S(x⊕RCr ⊕ k1)) if 1 ≤ r ≤ R− 1
Rr(x) = M ′(S(x⊕RCr ⊕ k1)) if r = R
Rr(x) = S−1(x)⊕RCr ⊕ k1 if r = R+ 1
Rr(x) = S−1(M−1(x))⊕RCr ⊕ k1 if R+ 2 ≤ r ≤ 2R

(3)

The function Gαk1(x) is then defined as the composition of these 2R round
functions. The structure of the cipher is depicted in Figure 1. The family of
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Fig. 1. Description of a 2R = 12 rounds PRINCE-like cipher

PRINCE-like ciphers have been designed, like for the original cipher, such that
decryption can be obtained from encryption with a different key. If we denote
by P a plaintext, the corresponding ciphertext is computed as C = Eαk (P ) with
k = (k0||k′0||k1). Decryption of C can be obtained by computing the encryption
over a related key: Dα

k (C) = Eαk′(C) with k′ = (k′0||k0||k1 ⊕ α).

2.2 Description of PRINCE

The full specification of PRINCE is given in [2]. It is a PRINCE-like cipher with
n = 64 and R = 6. The reflection constant is defined as α = C0AC29B7C97C50DD.



The function Gαk1 is called PRINCEcore. The S-layer is a non-linear layer where
each nibble is processed by the same Sbox. The action of this Sbox is given in
Table 5, in Appendix. To construct the linear layers, first two 16 × 16 binary
involution matrices M̂0, M̂1 are defined. Definition of these components can be
found in Appendix A.1. Then the 64×64 block diagonal matrix M ′ is generated
by setting its diagonal equal to (M̂0, M̂1, M̂1, M̂0). Then M ′ is an involution.
The second linear matrix M for PRINCE is obtained by composition of M ′ and
a permutation SR of nibbles by setting M = SR ◦M ′. The permutation SR is
analogous to the AES shift row operation, but instead of bytes, it operates on
nibbles.

Definition of the original round constants can be found in [2]. Exact values
of these round constants are not used in the analysis presented in this paper.
However, our attacks exploit the α-reflection of the round constants RCr, r =
1, . . . , 12, given in (2).

The description of the round functions given in Section 2.1 differs slightly
from the original. Nevertheless, it is easy to see that both descriptions are equiv-
alent.

3 Distinguishers for PRINCE-like Ciphers

In this section, different reflection characteristics on PRINCE-like ciphers are
constructed and investigated. The necessary notations for describing these char-
acteristics are depicted in Figure 1 and explained next in more detail.

Given the round number r, 1 ≤ r ≤ R, we denote by XI
r the input state of the

round number r, and by XK
r , XS

r and XM
r , the states after the key and round

constant addition, the S-layer, and the M -layer, respectively. In order to exploit
the symmetry of the cipher, we give different definitions for R + 1 ≤ r ≤ 2R.
For these rounds, we denote by Y Or the output state of the round number r, and
by Y Kr , Y Sr and YMr , the states before the key and round constant addition, the
S-layer, and the M -layer, respectively.

To build a distinguisher on a PRINCE-like cipher, we introduce two types
of characteristics. First we focus on the middle rounds of the cipher which are
different from the external ones. Characteristics on the middle rounds depend
on the property of the matrix M ′. Then by using a folded view of the cipher and
the α-reflection property, we extend these characteristics to the external rounds
of the cipher.

3.1 Characteristics on the Middle Rounds

We identify two kinds of characteristics on 2 or 4 middle rounds of the cipher.
The first characteristic on the 2 midmost rounds is independent of the reflection
parameter. The second one is defined on 4 rounds and extends over one round
before and one round after the midmost rounds. It behaves differently depending
of the reflection parameter. Probability of both of these characteristics is related
to the number of fixed points of the matrix M ′.



Definition 1. Let f : A→ A be a function on a set A. A point x ∈ A is called
a fixed point of the function f if and only if f(x) = x.

In [2] it is stated based on the result of [4] that the number of fixed points of an
involution f : Fn2 → Fn2 is on the average equal to 2n/2. While the result of [4]
holds in general, restricting to the case of linear involutions f over F2 gives the
following result.

Lemma 1. Let f : Fn2 → Fn2 be a linear involution. Then the number of fixed
points of f is greater than or equal to 2n/2.

Proof. Let us denote B = f⊕I, where I is the n×n identity matrix over F2. Then
B2 = 0, which means that Im(B) ⊂ Ker(B). As dim(Ker(B))+dim(Im(B)) = n,
we have dim(Ker(B)) ≥ n

2 . As Ker(B) is the set of fixed points of f , the claim
follows.

In what follows, we denote by FM ′ , the set of fixed points of the matrix M ′ and
by |FM ′ | the size of this set, which by Lemma 1 is larger than or equal to 2n/2.
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Fig. 2. Middle-round characteristics

Characteristic I1. The characteristic

Y OR+1 ⊕XI
R = α

over two rounds RR+1 ◦RR of a PRINCE-like cipher holds with probability

PI1 = PFM′ =
|FM ′ |

2n
.

Characteristic I1 is depicted in Figure 2(a). By Lemma 1 we have that PI1 ≥
2−n/2. As the matrix M ′ of PRINCE has exactly 232 = 2n/2 fixed points, it
minimizes the probability of characteristic I1.

Characteristic I2. The characteristic

Y OR+2 ⊕XI
R−1 = α



over four rounds RR+2 ◦RR+1 ◦RR ◦RR−1 of a PRINCE-like cipher holds with
probability

PI2 = 2−n#
{
x ∈ Fn2 |S−1

(
M ′
(
S(x)

))
⊕ x = α

}
.

Characteristic I2 is depicted in Figure 2(b). Next we show that PI2 can be
computed efficiently. We write

PI2 = 2−n
∑
∆∈Fn2

#
{
x ∈ Fn2 |M ′

(
S(x)

)
⊕ S(x) = ∆,S(x⊕ α)⊕ S(x) = ∆

}
.

The set on the right hand side of the equality is not empty only if ∆ ∈ Im(M ′⊕I).
We then deduce as in the proof of Lemma 1 that ∆ ∈ FM ′ , and obtain

PI2 = 2−n
∑

∆∈FM′

# {x ∈ Fn2 |M ′(S(x))⊕ S(x) = ∆,S(x⊕ α)⊕ S(x) = ∆} .

Assuming that the fixed point properties of M ′ and differential properties of
S are independent we obtain

PI2 ≈ PFM′
∑

∆∈FM′

PrX [S(X)⊕ S(X⊕ α)) = ∆] . (4)

The exact expression of the probability can be efficiently evaluated as the sum-
mation is taken over the fixed points only. In the case where M ′ is a block-
diagonal matrix, the probability PI2 can be computed by decomposing the
probabilities over the different blocks, and will be shown in detail in the case of
PRINCE in Section 5.

This characteristic is useful for building a distinguisher if PI2 > 2−n. But
depending on M ′ and the value of α, it is also possible that PI2 = 0. In this
case we get an impossible reflection characteristic. We will show in Section 4.2
how characteristic I2, even if impossible, can be used for a distinguisher. Such
a situation occurs if S(x⊕ α)⊕ S(x) is never equal to a fixed point of M ′.

3.2 External Characteristic

When the probabilities PI1 and PI2 are large, it is useful to extend the character-
istics I1 and I2 to more rounds. In what follows, we denote these characteristics
by Iv, v = 1, 2. The structure of PRINCE-like ciphers is such that the first and
the last external rounds are symmetrical. One of the main ideas in this paper
is to use this specific property to extend the distinguishers Iv, which cover 2v
middle rounds, to external rounds. This idea is illustrated in Figure 3, which
gives another view of the cipher. In this representation, the 2R-round cipher
can be viewed as composed of two parallel copies of a (R − v)-round cipher
connected together by 2v rounds. Then characteristics on 2u external rounds,
1 ≤ u ≤ R − v, are built as ordinary related key differential characteristics
with input data difference equal to α and the key difference or round constant
difference equal to α.
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Fig. 3. A folded view of a PRINCE-like cipher: The external characteristic

Characteristic Cu. Suppose that the characteristic Y OR+v⊕XI
R−v+1 = α holds.

The characteristic
Y OR+u+v ⊕XI

R−u−v+1 = ∆

on the 2u external rounds is denoted by Cu. It holds with probability

PCv = PrX [Fu0 (x)⊕ Fuα (x⊕ α) = ∆] ,

where Fu0 = R−1R−v−u+1 ◦ · · · ◦R
−1
R−v and Fuα = R−1R+v+u ◦ · · · ◦R

−1
R+v+1 .

The probability of this characteristic can be computed by using techniques
similar to the ones used in classical differential cryptanalysis. In particular, using
the Branch and Bound algorithm, it is possible to find the best characteristics
for a fixed reflection parameter α. Description of this method for PRINCE is
detailed in Section 5.

In comparison with differential cryptanalysis, the characteristic Cu benefits
from the related constant α. Similarly to related key differential attacks, zero
differences between states are possible. Then two parallel rounds, say RR−z+1

and RR+z, can for some characteristics be passed with probability equal to 1.
This happens when the data difference is cancelled by the key or round constant
difference. Examples of such situations will be given in Section 5. Even when the
difference is non-zero, two rounds of the cipher can be passed at the cost of one
non-linear layer, where the classical differential cryptanalysis on PRINCE-like
ciphers must consider differential probabilities over two non-linear layers.

Distinguishers over several rounds of the cipher, can then be built using a
combination of the external characteristic Cu with Iv, v = 1, 2. If PIv × PCu >
2−n, then 2v + 2u rounds of the cipher are distinguishable from random. In
Section 5 we identify classes of parameters α such that 4, 6, 8 and 10 rounds of
a PRINCE-like cipher can be distinguished from random.

4 Key Recovery

The characteristics constructed in the previous section can be used to build
either a probabilistic or a deterministic distinguisher. The combination of Iv



and Cu gives a probabilistic reflection distinguisher. Then the relation

Y OR+i ⊕XI
R−i+1 = ∆, (5)

for some i = u+ v, holds with a positive probability p.
A deterministic distinguisher over 4 rounds exists for those values of α such

that PI2 = 0. Then we have an impossible reflection distinguisher such that the
relation

Y OR+2 ⊕XI
R−1 6= α, (6)

holds with probability 1.
In this section we describe how to convert these distinguishers on 2i rounds

to a key recovery attack on a cipher of 2R = 2i+ 2 rounds.

4.1 Probabilistic Reflection Setting

Assuming a probabilistic distinguisher on 2i rounds of a PRINCE-like cipher as
described in Section 3, a key recovery attack can be derived by counting the
number of plaintext-ciphertext pairs such that the difference between XI

2 and
Y O2i+1 is equal to ∆.

In what follows, we denote by 2m the data complexity of the attack. This
value can be computed using Algorithm 1 of [1]. If we denote by a the advantage
of this attack, the corresponding false alarm probability is pfa = 2−a.
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Key Recovery Attack for 2R = 2i + 2 Rounds. Let us assume that a
characteristic Y O2i+1⊕XI

2 = ∆ over the midmost 2i rounds holds with probability
p, 0 < p ≤ 1. Without modification of the probability, this characteristic can be
extended in both sides over linear layer M−1 to obtain a characteristic Y S2i+2 ⊕
XS

1 = M−1(∆) = ∆∗ depicted in Figure 4.
To find the values of XS

1 and Y S2i+2 for all pairs (P,C), the whole key (k0||k1)
needs to be guessed. The procedure makes use of the word-oriented structure of
the non-linear layer. We assume that the S-layer is nibble-oriented like in the
original PRINCE.



We present the n-bit state with n/4 nibbles and number them from 1 to n/4.
The j-th nibble of any n-bit word X is denoted by X(j). The complexity of the
attack depends of the number of non-zero nibbles of ∆∗. In what follows, we
denote by w(∆∗), the number of non-zero nibbles of the difference ∆∗.

As depicted in Figure 4, the following property holds for all 1 ≤ j ≤ n/4:

∆∗(j) = S
(
P (j)⊕ k0(j)⊕ k1(j)⊕RC1(j)

)
⊕ S

(
C(j)⊕ k′0(j)⊕ k1(j)⊕RC2R(j)

)
.

We denote the number of nibbles of ∆∗ that are equal to zero by ` = n/4−w(∆∗).
Indices of these nibbles are stored in a list L. Hence |L| = `. Then the property

P (j)⊕ k0(j)⊕ C(j)⊕ k′0(j)⊕ α(j) = 0,

holds for all j ∈ L, and can be used to reduce the time complexity of the attack.
For these nibbles, the value of k1(j) need not be guessed. Guessing k0 ⊕ k′0 and
computing P (j)⊕k0(j)⊕C(j)⊕k′0(j) allows us to discard already a large number
of (P,C) pairs.

Let us assume that the attacker has 2m plaintexts with corresponding cipher-
texts. Then the attack proceeds as follows:

1. For 24` values of K0 such that K0(j) = k0(j)⊕ k′0(j) holds for all j ∈ L
1.0 Take all 2m plaintext ciphertext pairs
1.1 For all j ∈ L

Among the remaining pairs discard the ones such that
P (j)⊕ C(j)⊕K0(j)⊕ α(j) 6= 0.

1.2 For 24w(∆∗) = 2n−4` values of K1 such that K1(j) = k0(j)⊕ k1(j) holds
for all j /∈ L and for all 2n−4` completions of K0

1.2.1 For all j /∈ L
Compute K ′1(j) = K0(j)⊕K1(j) = k′0(j)⊕ k1(j)
Among the remaining pairs discard the ones such that
S (P (j)⊕K1(j)⊕RC1(j))⊕ S (C(j)⊕K′1(j)⊕RC2R(j)) 6= ∆∗(j).

1.2.2 Count the number of remaining pairs.
Store this number to a counter indexed by (K0||K1)

2. Keep a list of (K0||K1) ordered according to the counter values with the
highest value on top. Compute the corresponding keys k0 from K0 according
to the key expansion. Also compute k1(j) for j /∈ L.

3. For the 22n−4`−a top candidates of k0 on the list and the 24` remaining bits
of k1, do an exhaustive search to find the whole key (k0||k1).

For each j in Step 1.1, only 4 bits out of 24` of key K0 are involved. The
first time we do this loop, we have to check the equality of 2m plaintexts, among
which 2m−4 pairs are expected to remain. After z iterations of the loop in Step
1.1, for each 4z − 4 key bits guessed in the previous steps and the 4 key bits of
the current iteration, we should guess a nibble of the key and check the property
for all remaining 2m−4(z−1) plaintext-ciphertext pairs. The time complexity of
Step 1.1 is

∑`
z=1 2m−4z+4 · 24z = ` · 2m+4 simple operations.

Using the same arguments, Step 1.2 is iterated 24`
∑n/4
z=`+1 2m−4z+4 ·28(z−`) =

2m−4`+4
∑n/4
z=`+1 24z ' 2m+n+4−4` = 2m+4ω(∆∗)+4 times. If we denote ω =



w(∆∗), the total time complexity of Step 1 corresponds to 2m+4ω+4 double

S-box evaluations, which is equivalent to 2m+5+4ω

(n/4)·(2R) = 2m+6+4ω

n·R full encryptions.

Step 3 corresponds to 22n−a full encryptions, where 0 ≤ a ≤ 2n− 4`. Step 2, is
negligible compared to Step 1 and 3 and the total complexity of the algorithm
is 22n−a+ 1

n·R ×2m+6+4w(∆∗) full encryptions. When the advantage is large, the
second term dominates.

To perform the described attack, storage of the 2m plaintext-ciphertext pairs
is necessary, as well as storage of all the 22n−l counters, one per guessed key.
Nevertheless, the memory complexity can be reduced by keeping only keys for
which the number of remaining pairs is above some fixed bound.

4.2 Impossible Reflection Setting

In this attack we make use of I2 and assume that the parameter α is such that I2
holds with probability equal to zero. Then a deterministic reflection distinguisher
with probability equal to one can be built. A guessed key can be discarded if it
gives a data pair such that the difference is equal to α.

Key Recovery for 2R = 2i + 2 Rounds. In the case of I2 we have i = 2,
but the attack works for any i, if an impossible characteristic over 2i rounds can
be built. To reduce the time complexity, we precompute certain values from the
states of the second round and the second to last round of the cipher. We denote
by P ′ = P ⊕ k0 and C ′ = C ⊕ k′0 the states after modification of the plaintext
and ciphertext by the whitening keys. For all 0 ≤ b ≤ 2n − 1, we denote by
(Vb,Wb) the following values:

Vb = S−1(b)⊕RC1,

Wb = S−1(b⊕M−1(α))⊕RC2R. (7)

Then, as depicted in Figure 4, the following properties hold for the pairs (P ′, C ′)
and the corresponding (Vb,Wb):

P ′ ⊕ Vb = k1,

P ′ ⊕ C ′ = Vb ⊕Wb.

Assume again we have 2m known pairs (P,C) of plaintexts with corresponding
ciphertexts. The goal is to find for as many key candidates k1 as possible a
(P ′, C ′) such that (P ′⊕ k1, C ′⊕ k1) is equal to some pair (Vb,Wb). Then we can
conclude that the key k1 is a wrong key and discard it. After pre-computation,
the attack works as follows.

Attack Procedure when (k0, k
′
0) is known

1. Consider a list of all keys k1.
2. For each 2m pairs (P ′, C ′)

Compute Λ = P ′ ⊕ C ′.
For all Vb in the row Λ in the hash table T compute the value k1 =
P ′ ⊕ Vb and discard it from the list.



3. If there is still a key in the list of key k1, consider k = (k0||k1) as a key
candidate.

On average, there is one Vb in each row of T . So by using 2m known plaintexts
and by considering the collisions, the number of remaining wrong keys k1 is about
2n(1− 2−n)2

m

= 2n(1− 2−n)2
n2m−n ≈ 2ne−2

m−n
= 2n−1.44×2

m−n
, for each fixed

k0. The remaining keys are then searched exhaustively.

The impossible characteristic I2 holds for the involution matrix M ′, the
non-linear layer S and the reflection parameter value α specified for the original
PRINCE. In Section 5.4, many more such values of α are shown to exist. For
all these α, by using the full codebook, the right key can be found after 2126.56

encryptions. In total 267 bytes are necessary for the storage of the hash table.
Considering only PRINCEcore, using the full codebook, the right key k1 can be
found after 262.56 encryptions.

5 Various Classes of α-reflection

In [2], the security of PRINCE and the effects of the α-reflection were studied
extensively. In particular, it was shown that the cipher is secure against known
attacks with reasonable security margin. For instance, it was shown that any
differential or linear characteristic over 4 consecutive rounds has at least 16 active
Sboxes. This holds independently of the selection of the non-zero parameter α.

In this section, we focus on a sub-family of PRINCE-like ciphers using the
same S-layer and the same linear layers M and M ′ as in the original PRINCE.
Definition of these components as given in [2] are recalled in Section A.1. We
compute the probabilities PI1 , PI2 , and PCu (1 ≤ u ≤ 4) of the distinguishers
proposed in Section 3, for various classes of values of α. Then we use these distin-
guishers for key-recovery attacks on PRINCE presented in Section 4, determine
the maximum number of rounds that can be attacked, and give complexities of
these attacks. The key-recovery attacks in Section 4, can be modified to apply on
PRINCEcore, in which case their complexities will be reduced. We will give these
complexities for comparison, but omit the descriptions of the actual attacks on
PRINCEcoredue to lack of space.

5.1 Probability of the Characteristics: Computation

The difference between I1 and I2 is noticeable, since the probability of the former
is independent of the value of α, which is not the case for I2 on the 4 midmost
rounds. Next we describe how to compute the probability of these characteristics
for PRINCE.

Characteristic I1. The involution matrix M ′ of the original PRINCE is such

that |F ′M | = 232. The probability of the characteristic I1 is then PI1 = 232

264 =
2−32.

Characteristic I2. As M ′ is a block-diagonal matrix constructed from the 16×
16 matrices M̂0 and M̂1, probability PI2 can be computed exactly by computing



the following probabilities:

P(β)

M̂0
= 2−16#

{
x ∈ F16

2 |S−1
(
M̂0

(
S(x)

))
⊕ x = β

}
P(β)

M̂1
= 2−16#

{
x ∈ F16

2 |S−1
(
M̂1

(
S(x)

))
⊕ x = β

}
where β is a 16-bits word and S is the application of 4 Sboxes. Then if α =
(α0, α1, α2, α3), we have

PI2 = P(α0)

M̂0
× P(α1)

M̂1
× P(α2)

M̂1
× P(α3)

M̂0
. (8)

Characteristic Cu. As presented in Section 3.2, characteristics on the exter-
nal rounds can be seen as a differential characteristics with input difference α
and related constant difference α, see Figure 3. As PRINCE is a 64-bit cipher
with 12 rounds, only 3 or 4 external rounds must be considered, and therefore
computation of the best characteristics for a fixed α is possible by the Branch
and Bound algorithm. Finding the weakest α for such a characteristic remains
nevertheless a challenging task. When aiming at a combination with I2, focusing
on the best α for I2 gives a good starting point, whereas I1 is independent of
α, a more complex analysis should be done to find the values of α for which an
attack on the full 12 rounds of PRINCEcoreis possible.

5.2 Maximizing PCu for Combination of Cu with I1

We describe here the method we use to derive the α for which 12 rounds of the
cipher can be attacked using a combination of I1 and C4. As we have seen in
Section 4, a key-recovery attack on 12 rounds can be derived using a distinguisher
on 10 rounds. Hence we are interested in finding values of α which maximize PC4 .

Maximizing PC4 . We start by the analysis of the properties of the S-box and
permutation layer M of PRINCE. Indeed, the values of α for which a minimal
number of Sboxes are active (that is, have non-zero differences) at each round
and the differential probabilities of the Sbox are maximal. To this aim, we first
express some properties of the matrices M̂0 and M̂1.

To maximize PCu , we want to minimize the weight of α = (α0, α1, α2, α3) and
M−1(α). Since M̂ε, ε = 0, 1, have a branch number 4, w(β) +w(M̂ε(β)) ≥ 4 and
we have only 61 out of the total of 216 values β such that w(β)+w(M̂ε(β)) = 4 for
both ε = 1 and ε = 2. Among these 61 values, 57 are such that β = (a1, a2, a3, a4),
where ai ∈ {0, 1, 2, 4, 8}. Differential probabilities of the inverse Sbox for single-
bit differences are given in Table 1. Based on this table and experiments, we
assume that α with some nibble equal to 2 is not likely to maximize PC4 . To
find the best distinguisher on 10 rounds, we reduce the search space of α using
the following procedure: For α = (a1, a2, · · · , a15, a16), where ai ∈ {0, 1, 4, 8}
(232 values), we select the ones such that there exists a characteristic C2 with



a\b 1 2 4 8

1 2−2 2−3 2−3 0

2 0 0 2−3 2−3

4 2−3 0 2−3 2−2

8 2−2 2−3 2−3 2−3

Table 1. Differential probabilities of the inverse Sbox for single-bit differences.

α ∆∗ w(∆∗) PC4
PRINCEcore PRINCE

Data / Time Data Time

8400400800000000 8800400400000000 4 2−22 256.21 257.98 272.39

8040000040800000 8080000040400000 4 2−22 256.21 257.98 272.39

0000408000008040 0000404000008080 4 2−22 256.21 257.98 272.39

0000000048008004 0000000044008008 4 2−22 256.21 257.98 272.39

0000440040040000 0000440040040000 4 2−24 258.72 260.28 274.69

8008000000008800 8008000000008800 4 2−24 258.72 260.28 274.69

Table 2. The weakest α with attack on 12 rounds (using C4◦I1). Iterative characteristic
based on the cancellation idea.

PC2 ≥ 2−12 (there are more than 300 values of α of this sort). Among the
remaining ones, check if there is a characteristic C4 with PC4 ≥ 2−28.

In Table 2 and Table 3, we present some values of α, for which we obtain a dis-
tinguisher on 10 rounds. Estimated time and data complexities of a key recovery
attack on the 12-round cipher are also shown in the same tables. These esti-
mates have been computed under the assumption that the right key maximizes
the number of remaining pairs in Step 4 of the key recovery attack, meaning
that the advantage is a = n + 4w(∆∗). The success probability is taken equal
to 95%. The data complexity is derived using Algorithm 1 of [1] and the time
complexity is derived as for the key recovery attack presented in Section 4.1.

Iterative Characteristic. For the α in Table 2, which maximize the proba-
bility PC4 × PI1 , the characteristic C4 is particular since a cancellation of the
difference occurs every second round. For instance, we can have Y OR+1⊕XI

R = α,
Y OR+2⊕XI

R−1 = 0, Y OR+3⊕XI
R−2 = α, Y OR+4⊕XI

R−3 = 0, and Y OR+5⊕XI
R−4 = α.

Then every second folded round can be passed with probability one, and it can
be applied iteratively to minimize the probability of the characteristic. Such
characteristic are easily found even by hand. We just look for α such that α and
M−1(α) are non-zero on exactly the same nibble position. Such a cancellation
property occurs for some particular values of α. When w(α) = 4, the cancellation
property leads to an attack on 12 rounds of the cipher. No α with less than 4
active nibbles or with w(α) = 5 can satisfy the cancellation property. Neverthe-
less some α with 6 active nibbles have characteristic which cancel the difference



α ∆∗ w(∆∗) PC4
PRINCEcore PRINCE

Data /Time Data Time

0108088088010018 0000001008000495 5 2−26 261.22 262.80 279.21

0088188080018010 00000100C09D0008 5 2−26 261.22 262.80 279.21

0108088088010018 000000100800D8CC 6 2−26 261.42 262.86 283.27

0001111011010011 1101100110000100 7 2−28 263.57(†) 263.57(†) 2112

Table 3. Example of α with attack on 12 rounds (using C4 ◦ I1).
†: complexities computed for an advantage of a = 16 bits.

after two rounds. As for these α, Y OR+3⊕XI
R−2 = α with probability PC2 ≤ 2−16,

the iterative characteristic Cu can be applied only once and a distinguisher on
6 rounds with probability p, where 2−49 ≤ p ≤ 2−48, leads to a key-recovery
attack on 8 rounds.

Non-Iterative Characteristic. In Table 3, we give other values of α, which
allow an attack on 12 rounds. While the list is not exhaustive, this table illus-
trates that also α with larger weight can lead to an attack on 12 rounds. Different
characteristic for the same α can be derived. While the weight of ∆∗ is larger for
these characteristics, the time complexity of this attack is still reasonable. While
the list of α with a key recovery attack on 12 rounds is already quite large, the
number of α such that attacks on 6, 8, or 10 rounds are possible is even larger.
Search for α of this sort can be done by adjusting the constraint of the Branch
and Bound algorithm.

5.3 Maximizing PI2 for Combination with Cu

Finding the values of α which maximize PI2 can be done exhaustively by de-
composing over the matrices M̂ε, ε = 0, 1, see Section 5.1. Computation for 216

values of β gives us the list of best α regarding to this characteristic. In what

follows, we focus on β 6= 0 such that 2−12 ≤ P(β)

M̂ε
≤ 2−10.54. As P0

M̂ε
≤ 2−8, we

obtain a list of 632 × 732 ≈ 224.33 values of α for which 2−48 ≤ PC2 ≤ 2−34.54.
Two values of α reach this upper bound. They are α = 0000111100000000 and
α = 0000000011110000.

The values α which maximize I2 and for which 10 rounds of a PRINCE-like
cipher can be distinguished from random also allow a combination of C4 and I1.
For instance, for α = 0000408000008040 we have a characteristic with PC3 =
2−19 and PI2 = 2−40. None of these characteristics give a better cryptanalysis
results than the ones given in Table 2. While for the attacks on 12 rounds all
values of α are such that w(α) ≥ 4, we can find α of smaller nibble weight which
allow a key recovery attack on a 10-round cipher using a combination of C2 and
I2 as illustrated in Table 4.

For all the α presented in this section, also other characteristics can be de-
rived. Complexities of our attacks are based on the best characteristic.



α ∆∗ w(∆∗) PC2 PI2
PRINCEcore PRINCE

Data/Time Data Time

0000000001100000 1000111011011101 10 2−20 2−36 258.17 258.17 2112

0000000008040000 9189505500008991 11 2−24 2−36 263.57 263.57 2112

0000000000000804 4C0C18998C0C0000 10 2−24 2−36 263.57 263.57 2112

Table 4. Example of α with attack on 10 rounds and w(α) = 2 (using C2 ◦ I2).
Computation done for PS = 95% and a = 16.

5.4 Impossible Attack

If PI2 = 0, a deterministic distinguisher on 4 rounds of the cipher can be built.
It leads to a key-recovery attack for a 6-round cipher described in Section 4.2.
The time complexity of this attack correspond to 2126.56 encryptions and 267

bytes are necessary for the storage of the hash table. This attack is efficient, in
particular, for α = C0AC29b7C97C50DD of PRINCE. But we can find many more
values of α with PI2 = 0.

As specified by Equation (8), the computation of PC2 can be decomposed

over M̂0 and M̂1. For M̂0, the number of β ∈ F16
2 for which P(β)

M̂0
= 0 is 5940. For

M̂1, the number of β for which P(β)

M̂1
= 0 is 6914. In total, we deduce that the

impossible distinguisher is valid for approximately 2 · (212.54)×248 +2 · (212.76)×
248 = 262.65 values of α.

Using the fact that M̂0 and M̂1 have no fixed points of weight 1, we conclude
that PC2 = 0, for all α with only 1 or 3 non-zero nibbles. Also a large number of
α with 2, 4 and 5 non-zero nibbles allow this impossible distinguisher. We also
found that for some α with 4 active nibbles we have an attack on 12 rounds,
while for some other α the best attack we found is on 6 rounds only. Hence the
weight of α alone does not prove anything about security or insecurity against
the reflection attacks discussed in this paper.

5.5 Truncated Attack

When the linear layer is defined as in the original proposal, using the shift
row operation of the AES, truncated reflection distinguishers can be derived
for α such that M−1(α) has a small number of active nibbles. Proof of the
characteristic presented below can be found in Appendix A.2.

Lemma 2. Assume α is such that M−1(α) =


∗ 0 0 0
0 0 0 ∗
0 0 ∗ 0
0 ∗ 0 0

, where ∗ can be any 4-bit

value. Then the following truncated characteristic

Y OR+3 ⊕XI
R−2 =

 ∗ 0 0 0
∗ 0 0 ∗
∗ 0 ∗ 0
∗ ∗ 0 0

⊕ α, (9)



holds on 6 rounds RR−2 ◦ · · · ◦RR+3 of the cipher with probability PFM′ = 2−32.
Similar characteristics can be obtained for α such that:

M−1(α) =


0 ∗ 0 0
∗ 0 0 0
0 0 0 ∗
0 0 ∗ 0

 or M−1(α) =


0 0 ∗ 0
0 ∗ 0 0
∗ 0 0 0
0 0 0 ∗

 or M−1(α) =


0 0 0 ∗
0 0 ∗ 0
0 ∗ 0 0
∗ 0 0 0

.

In all four cases of the characteristics, nine nibbles of the data difference are
equal to those of α. Hence the probability of such a truncated characteristic is
2−36.

By the previous lemma, such truncated characteristics exist for 4×(216−1) ≈
218 values of α. While distinguisher of Section 5.2 and Section 5.3 focused on
α with a small number of active nibbles, this distinguisher is targeted on α, for
which M−1(α) has a small number of active nibbles, but α itself can have any
number of non-zero nibbles. As an example, we give

α =


7 1 C B

9 5 9 3

9 A 5 9

3 6 8 D

 , M−1(α) =


7 0 0 0

0 0 0 B

0 0 D 0

0 9 0 0

.

This truncated distinguisher enables a key-recovery attack for a cipher reduced to
eight rounds in the same way that the key recovery attack described in Section 4.
The keys k0 and k1 can then be recovered independently. In Appendix A.2
details of this key recovery attack are explained. This key recovery attack has
data complexity 236.85, time complexity of 297.8 memory accesses and 280 full
encryptions. The memory complexity is dominated by the storage of 263.6 bytes
for the hash table.

Several other kinds of truncated reflection characteristics can be derived for
different configuration of M−1(α). For instance, in some configurations, where
M−1(α) has up to eight non-zero nibbles a key-recovery attack on a 6-round
cipher can be done using a distinguisher on 4 rounds.

6 Conclusion

In this paper, we investigated the security of a family of ciphers, which includes
the new design PRINCE. This family is characterized by the α-reflection prop-
erty. We constructed new types of characteristics for such ciphers starting from a
probabilistic or impossible relation on the midmost rounds of the cipher. By us-
ing properties of the constant α and the symmetry of the cipher, such reflection
characteristics can be considered as differential characteristics over a half of the
cipher, and in particular, their probabilities can be computed efficiently using
ordinary differential probabilities over the non-linear components of the cipher.
In the security analysis of PRINCE given in [2] the properties of α did not re-
ceive much attention. In this paper, we show that the security of PRINCE-like
ciphers depends strongly on the choice of the value of α. By keeping the other
components of PRINCE as in the original design, and by varying the value of α,
we identified special classes of α for which reduced-round versions of the cipher



can be distinguished from random. The values of α in the weakest class allow
an efficient key-recovery attack on 12 rounds of the cipher. These results show
that the security of PRINCE is not independent of the value of α. On the other
hand, the best attack we could construct using this technique on PRINCE with
the original value of the reflection parameter α, was a key recovery attack on a
reduced 6-round version of the cipher. While the new technique, which exploits
the special reflection structure of the cipher, did not reveal any vulnerabilities
in the original design, it provided new information about the security criteria
for the selection of the reflection parameter as well as other componenets of the
cipher.
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A Appendix

A.1 Components of PRINCE

The linear layer of PRINCE is defined using four 4 × 4 matrices M0, M1, M2,
M3 given as follows:

M0 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , M1 =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , M2 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 , M3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .

Then the two 16× 16 matrices M̂0 and M̂1 are defined as:

M̂0 =


M0 M1 M2 M3

M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

 , M̂1 =


M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

M0 M1 M2 M3

 .

The non-linear layer S consists of 16 copies of a 4-to-4-bit Sbox given in Table 5.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

Table 5. Sbox of PRINCE

A.2 Truncated Reflection Characteristic

Proof of Lemma 2. The 4 types of truncated characteristics given in Lemma 2
differ only by the position of the completely undetermined column of the differ-
ence. We present here the proof for the first column. Proofs for the other types
are similar.

As described by the characteristic C1, the probability that XI
R⊕Y OR+1 = α is

equal to PFM′ (= 2−32 for PRINCE). For the previous and the next round, we
have

Y OR+2 ⊕XI
R−1 = S−1

(
M−1(α)

)
⊕ α =


∗ 0 0 0
0 0 0 ∗
0 0 ∗ 0
0 ∗ 0 0

 ⊕ α.
Since M−1 = M ′ ◦ SR−1 is linear and



M−1



∗ 0 0 0
0 0 0 ∗
0 0 ∗ 0
0 ∗ 0 0


 =


∗ 0 0 0
∗ 0 0 0
∗ 0 0 0
∗ 0 0 0

 ,

we have

Y OR+3 ⊕XI
R−2 = S−1

(
M−1(α)⊕


∗ 0 0 0
∗ 0 0 0
∗ 0 0 0
∗ 0 0 0

) ⊕ α =


∗ 0 0 0
∗ 0 0 ∗
∗ 0 ∗ 0
∗ ∗ 0 0

 ⊕ α.

Key Recovery Attack. For simplicity, we restrict to the characteristic given
by Equation (9). As this characteristic is completely undetermined in the first
column, and will stay completely undetermined in the same column after ap-
plication of the inverse of shift row, it is sufficient to focus on the 12 nibbles
corresponding to the three most right columns of the matrix of (9). For a state
Z, we denote the truncation of the state to the last three columns by Zt. Let
(P,C) be a plaintext-ciphertext pair. The distinguisher involves only partial en-
cryption of 48 bits of the plaintext Pt and partial decryption of the ciphertext
Ct with the key k0, k

′
0 and k1. It means that only up to 49 bits of k0 and 48 bits

of k1 can be obtained in a similar way to the attack of Section 4. An exhaustive
search on the remaining bits is then necessary to recover the full key.

The attack procedure is as follows:

Pre-computation
For each possible 260 pairs (a, b) ∈ (F48

2 )2 such that a ⊕ b is equal to the

truncated state of


∗ 0 0 0
∗ 0 0 ∗
∗ 0 ∗ 0
∗ ∗ 0 0

 ⊕ α compute the pair (νa, ωb) ∈ (F48
2 )2 such that

νa = S−1
(
M−1(a)

)
⊕RC1,

ωb = S−1
(
M−1(b)

)
⊕RC8.

Store νa in the row Λ = νa ⊕ ωb of the hash table T . The hash table T has
248 rows and on average each row have 260

248 = 212 values.
Attack Procedure

1. Guess 49 bits of the key k0 and extract 48 bits of k0 and of k′0.
(i) Allocate a counter Dk1 for each 248 values of k1.

(ii) For each 2m pairs (P ′t , C
′
t) = (Pt ⊕ k0, Ct ⊕ k′0)

Compute Λ = P ′t ⊕ C ′t.
For all νa in the row Λ of the hash table T increase the counter
D(P ′t⊕νa) by one.

(iii) Consider a list of 248−a of the keys k1 with highest counter values.
2. Do an exhaustive search on the remaining 128− a bits of key.

The time complexity of the attack without whitening keys (Steps (i) to (iii))
corresponds to 2m+12 memory accesses. To obtain k0, the attack should be re-
peated for 249 keys k0. So the time complexity to find the whole key corre-
sponds to 261+m memory accesses in addition to 2128−a full encryptions. We
need 260 × 48/8 × 2 ' 263.6 bytes for the storage of the hash table T and
249+48−a × 48/8 = 299.6−a bytes for the storage of the list of keys candidates.


