
Collision Attacks on the Reduced Dual-Stream
Hash Function RIPEMD-128

Florian Mendel1, Tomislav Nad2, Martin Schläffer2

1 Katholieke Universiteit Leuven, ESAT/COSIC and IBBT, Belgium
2 Graz University of Technology, IAIK, Austria

Abstract. In this paper, we analyze the security of RIPEMD-128 against
collision attacks. The ISO/IEC standard RIPEMD-128 was proposed 15
years ago and may be used as a drop-in replacement for 128-bit hash func-
tions like MD5. Only few results have been published for RIPEMD-128,
the best being a preimage attack for the first 33 steps of the hash func-
tion with complexity 2124.5. In this work, we provide a new assessment of
the security margin of RIPEMD-128 by showing attacks on up to 48 (out
of 64) steps of the hash function. We present a collision attack reduced
to 38 steps and a near-collisions attack for 44 steps, both with practical
complexity. Furthermore, we show non-random properties for 48 steps of
the RIPEMD-128 hash function, and provide an example for a collision
on the compression function for 48 steps.
For all attacks we use complex nonlinear differential characteristics. Due
to the more complicated dual-stream structure of RIPEMD-128 com-
pared to its predecessor, finding high-probability characteristics as well
as conforming message pairs is nontrivial. Doing any of these steps by
hand is almost impossible or at least, very time consuming. We present
a general strategy to analyze dual-stream hash functions and use an au-
tomatic search tool for the two main steps of the attack. Our tool is able
to find differential characteristics and perform advanced message modi-
fication simultaneously in the two streams.

Keywords: hash functions, RIPEMD-128, collisions, near-collisions, dif-
ferential characteristic, message modification, automatic tool

1 Introduction

In the last few years, the cryptanalysis of hash functions has become
an important topic within the cryptographic community. Especially the
collision attacks on the MD4 family of hash functions have weakened the
security assumptions of many commonly used hash functions. Still, most
of the existing cryptanalytic work has been published for this particular
family of hash functions [17,19,20]. In fact, practical collisions have been
shown for MD4, MD5, RIPEMD and SHA-0. For SHA-1, a collision attack
has been proposed with a complexity of about 263 [18]. However, some

members of this family including the ISO/IEC standard RIPEMD-128
(the successor of RIPEMD) seems to be more resistant against these
attacks. In this paper, we analyze the security of RIPEMD-128 against
collision attacks and show that the security margin is less than expected.

Related Work. Since its proposal 15 years ago only a few results have
been published for RIPEMD-128. Most published results are concerning
the preimage resistance of the hash function [13, 16]. The best currently
known attack is a preimage attack for 33 steps and 36 intermediate steps
of the hash function with a complexity only slightly faster than the generic
complexity of 2128 [16]. The only work regarding the collision resistance
of RIPEMD-128 has been published by Mendel et al. [11], where the
application of the differential attacks on RIPEMD by Dobbertin [5] and
Wang et al. [17] is studied. However, due to the increased number of steps
and the fact that the two streams are more different than in RIPEMD,
they concluded that RIPEMD-128 is secure against this type of attacks.

Our Contribution. In this paper, we first provide a general strategy
to analyze dual-stream hash functions in Sect. 2. We analyze different
methods to find high-probability differential characteristics which work
for both streams. Similar as in the attack on RIPEMD [17], characteris-
tics in two streams are impossible with a high probability. Therefore, in
our attacks an automatic search tool is essential for finding valid differen-
tial characteristics [4, 10]. This is especially important in the first round
of a hash function where characteristics are usually quite dense. In this
first round, one usually assumes that conditions imposed by the charac-
teristic can be fulfilled efficiently using message modification techniques.
However, message modification is much more difficult in the dual-stream
case since two state words are updated using a single message word. This
reduced freedom could in general be compensated with hand-tuned ad-
vanced message modification techniques [8, 9, 15, 20]. However, another
contribution of our work is to provide a fully automatic tool which can
be used to find conforming message pairs in the first round of a dual-
stream hash function.

We apply our attack strategy and tools to the ISO/IEC standard
RIPEMD-128 which we describe in Sect. 3. Using our automatic tools,
we are able to construct the first practical collisions for up to 38 steps of
RIPEMD-128 with a complexity of 214. We describe the collision attack
in details in Sect. 4. The attack can be extended (Sect. 5) to practical
near-collisions on 44 steps with complexity 232. Furthermore, we provide

2

Table 1. Summary of our new and previous results on RIPEMD-128.

component attack steps complexity generic reference

hash collision 38 example, 214 264 Sect. 4

hash near-collision 44 example, 232 247.8 Sect. 5.1

hash non-randomness 48 270 276 Sect. 5.2

compression collision 48 example, 240 264 Sect. 5.3

hash preimage 33 2124.5 2128 [13]

hash preimage interm. 35 2121 2128 [13]

hash preimage interm. 36 2126.5 2128 [16]

a theoretical distinguisher of the hash function for 48 steps (3 out of 4
rounds) and show that 3 rounds of the RIPEMD-128 compression function
are not collision free. Our results are summarized in Table 1, together with
all known previous results. Finally, we conclude in Sect. 6 and discuss
directions of future work on hash functions with parallel state update
transformation.

2 Cryptanalysis of Dual-Stream Hash Functions

In this section, we describe our attack strategy for the cryptanalysis of
dual-stream hash functions. The general attack strategy is based on the
recent results in cryptanalysis of the MD4-family of hash functions [17,20].
However, the application of this strategy is nontrivial in the case of dual
stream hash functions. Since in each step, one message word is used to
update two state words, the freedom of an attacker in finding valid dif-
ferential characteristics and performing message modification is limited.
Hence, a more careful analysis is required to overcome this problem.

2.1 Collision Attacks on Hash Functions

In the following, we first give a brief overview of the attack strategy used
in the recent collision attacks on the MD4-family of hash functions [17,20].
All attacks basically use the same strategy which we adopt for dual-stream
hash functions. The high-level strategy can be summarized as follows:

1. Find a characteristic for the hash function that holds with high prob-
ability after the first round of the hash function.

2. Find a characteristic (not necessary with high probability) for the first
round of the hash function.

3

3. Use message modification techniques to fulfill conditions imposed by
the characteristic in the first round. This increases the probability of
the characteristic.

4. Use random trials to find values for the remaining free message bits
such that the message follows the characteristic.

The most difficult and important part of the attack is to find a good dif-
ferential characteristic for both the first round and the remaining rounds
of the hash function, since this defines the final attack complexity. There
are several methods to find good differential characteristics. The second
important part of the attack is to find conforming inputs for the complex
nonlinear differential characteristic in the first round of the hash function
using message modification techniques.

2.2 Collision Attacks on Dual-Stream Hash Functions

In the following, we will describe our approach to construct good differen-
tial characteristics and find colliding message pairs for dual-stream hash
functions. We focus on hash functions like RIPEMD-128, but the general
idea is applicable to any hash function with two or more streams.

Finding suitable differential characteristics. If the two streams of
the hash function are the same except for constant additions, the same
differential characteristic can be used in both streams. For instance, in
the case of RIPEMD, the permutation and rotation values are indeed
equal for both streams. Hence, it is sufficient to find a collision-producing
characteristic for only one stream (3 rounds) and apply it simultaneously
to both streams [17]. Nevertheless, the number of necessary conditions
increases for two streams. Hence, it is more likely to have contradicting
conditions. In fact, Wang et al. reported that among 30 selected collision-
producing characteristics only one can produce a real collision.

If the two streams are more different, we first need to find a differential
characteristic for the hash function after round 1, which holds with a high
probability in both streams. One approach is to find such characteristics
is to use a linearized model of the hash function and algorithms from
coding theory [2, 7, 14]. This works quite well for hash functions with a
regular message expansion and step update transformation (like SHA-1),
and can be applied to dual-stream hash functions in a straight-forward
way.

However, the linearization approach does not work well for hash func-
tions with a permutation of words in the message expansion and different

4

rotation values in the state update transformation (RIPEMD-128 and
RIPEMD-160). One usually gets linear differential characteristics with
high Hamming weight and hence, a high complexity. However, for such
hash functions, we can still make use of the approach of Wang et al. in
the attacks on MD4, RIPEMD and MD5 [17, 20]. The idea is to use dif-
ferences in one or more message words to find local (or inner) collisions
within a few steps in the last round(s) of the hash function. Then a suit-
able characteristic for the remaining steps, preferably also using short
local collisions, has to be constructed. Although this is obviously more
difficult for dual-stream hash functions, we were able to construct such
high-probability differential characteristics for reduced RIPEMD-128 (see
Sect. 4.1).

Once, the characteristic after round 1 is fixed we need to find a char-
acteristic (not necessary with high probability) for the first round of the
hash function for both streams. Note that in the previous part of the
attack it might still be possible to construct inner collisions with hand by
choosing the differences carefully. However, to construct a valid nonlinear
differential characteristic for both streams in the first round, an automatic
search tool is needed. While one can use complex differential characteris-
tics in both streams, we aim for differential characteristics that are sparse
in at least one of the two streams, since such sparse characteristics will
then also reduce the complexity of the message modification step.

Using message modification techniques. Once we have fixed the dif-
ferential characteristic for both streams we start with the message search.
In the first round, the freedom of the whole message block can be used
to get a conforming message pair for the first 16 steps. For single-stream
hash function, basic message modification techniques simply choose con-
forming state words and invert each step update transformation to get
the message word [20]. However, as already noted by Wang et al. [17],
message modification is more complicated for two streams since the con-
ditions on two state words need to be fulfilled using a single message
word. While in RIPEMD the same message word is used in the same step
of the left and right stream, this is not the case in RIPEMD-128, which
significantly increases the complexity of message modification.

In the attack on RIPEMD, two techniques have been proposed exploit-
ing the freedom of other message bits using carry effects, the Boolean func-
tion and previous message words. The same rotation values in RIPEMD
allow an easier application of this idea since it is still possible to fulfill
conditions from LSB to MSB. However, for streams with different rota-

5

tion values, previously corrected conditions may become invalid again. In
general, conditions on two state words using a single message word can
be fulfilled using advanced message modification techniques. Many ded-
icated techniques have been proposed in recent years [8, 9, 15, 20], which
could also be used to fulfill conditions in the first round of dual-stream
hash functions.

To simplify the message modification we use a more general approach.
Instead of complicated, dedicated techniques, we use an automated tool
for the message modification in the first round. To be more precise, we
use the same tool as for the differential path search in the first round.
Instead of searching for valid differential characteristics in both streams,
we search for valid bit-wise assignments of 0’s and 1’s to the message and
state bits in the first round. Since we solve for conforming message words
bit-wise, a different message word permutation, different rotation values
and carry effects are handled automatically, similar as in the search for
differential characteristics. Moreover, this approach can be generalized to
any ARX based design.

The disadvantage of our automated bit-wise approach is a slightly
higher complexity, compared to a hand-tuned word-wise approach. How-
ever, this increased costs can be amortized by randomizing message words
at the end of round 1 to find solutions efficiently for the high-probability
characteristic of the remaining rounds.

2.3 Automatic Search Tool

The application of the above strategies is far from being trivial and re-
quires an advanced set of techniques and tools to be successful. Due to
the increased complexity of dual-stream hash functions with different
streams, finding good differential characteristics by hand is almost im-
possible. Therefore, we have developed an automatic tool which can be
used for finding complex nonlinear differential characteristics as well as
for solving nonlinear equations involving conditions on state words and
free message bits, i.e. to find confirming message pairs. Our tool is based
on the approach of Mendel et al. [10] to find both complex nonlinear
differential characteristics and conforming message pairs for SHA-2.

The basic idea is to consider differential characteristics which impose
arbitrary conditions on pairs of bits using generalized conditions [4]. Gen-
eralized conditions are inspired by signed-bit differences and take all 16
possible conditions on a pair of bits into account. Table 2 lists all these
possible conditions and introduces the notation for the various cases.

6

Table 2. Notation for possible generalized conditions on a pair of bits [4].

(Xi, Xi
∗) (0, 0) (1, 0) (0, 1) (1, 1)

? X X X X
- X - - X
x - X X -
0 X - - -
u - X - -
n - - X -
1 - - - X
- - - -

(Xi, X
∗
i) (0, 0) (1, 0) (0, 1) (1, 1)

3 X X - -
5 X - X -
7 X X X -
A - X - X
B X X - X
C - - X X
D X - X X
E - X X X

Using these generalized conditions and propagating them in a bitsliced
manner, we can construct complex differential characteristics in an effi-
cient way. The basic idea of the search algorithm is to randomly pick a bit
from a set of bit positions with predefined conditions, impose a more re-
stricted condition and compute how this new condition propagates. This
is repeated until an inconsistency is found or all unrestricted bits from
the set are eliminated. Note that this general approach can be used for
both, finding differential characteristics and conforming message pairs.

For example, the search strategy for finding nonlinear characteristics
works as follows (for a more detailed description of the search algorithm
or how the conditions are propagated we refer to [4, 10]):

1. Define a set of unrestricted bits (?) and unsigned differences (x).
2. Pick a random bit from the set.
3. Impose a zero-difference (-) on unrestricted bits (?), or randomly

choose a sign (u or n) for unsigned differences (x).
4. Check how the new conditions propagate.
5. If an inconsistency occurs, remember the last bit and jump back until

this bit can be restricted without leading to a contradiction.
6. Repeat from step 2 until all bits from the set have been restricted.

We use the same strategy to find conforming input pairs for a given
differential characteristic. Instead of picking an unrestricted bit (?) we
pick an undetermined bit without difference (-) and assign randomly a
value (0 or 1) until a solution is found:

1. Define a set of undetermined bits without difference (-).
2. Pick a random bit from the set.
3. Randomly choose the value of the bit (0 or 1).
4. Check how the new conditions propagate.
5. If an inconsistency occurs, remember the last bit and jump back until

this bit can be restricted without leading to a contradiction.

7

6. Repeat from step 2 until all bits from the set have been restricted.

Note that the efficiency of finding a conforming message pair can be
increased if the undetermined bits without difference (-) are picked in a
specific order. The order strongly depends on the specific hash function.
In general, fully determining word after word turns out to be a good
approach for word-wise defined ARX-based hash functions. Using this
approach, we can instantly (milliseconds) find solutions for the first round
of dual-stream hash functions without the need for hand-tuned advanced
message modification techniques.

3 Description of RIPEMD-128

RIPEMD-128 was designed by Dobbertin, Bosselaers and Preneel in [6]
as a replacement for RIPEMD. It is an iterative hash functions based on
the Merkle-Damg̊ard design principle [3, 12] and processes 512-bit input
message blocks and produces a 128-bit hash value. To guarantee that the
message length is a multiple of 512 bits, an unambiguous padding method
is applied. For the description of the padding method we refer to [6].

S
tr
ea
m

1

S
tr
ea
m

2

Mj+1 Mj+1

≪ 64 ≪ 32 ≪ 96

Hj

Hj+1

Fig. 1. Structure of the RIPEMD-128 compression function.

Like its predecessor, the function of RIPEMD-128 consists of two par-
allel streams. In each stream the state variables are updated correspond-
ing to the message block and combined with the previous chaining value
after the last step, depicted in Figure 1. While RIPEMD consists of two
parallel streams of MD4, the two streams are designed differently in the

8

case of RIPEMD-128. In the following, we describe the compression func-
tion in detail.

Each stream of the compression function of RIPEMD-128 basically
consists of two parts: the state update transformation and the message
expansion. Furthermore, RIPEMD-128 consists of a feed-forward where
the input and output state words are added in a different order. For a
detailed description we refer to [6].

State Update Transformation. The state update transformation of
each stream starts from a (fixed) initial value IV of four 32-bit words
B−4, B−3, B−2, B−1. and updates them in 4 rounds of 16 steps each. In
each step one message word is used to update the four state variables.
Figure 2 shows one step of the state update transformation of each stream
of RIPEMD-128.

Bi−3

Bi−4

Bi

Bi−1

Bi−1

Bi−2

Bi−2

Bi−3

Ki

Wi

f

≪ s

Fig. 2. The step update transformation of RIPEMD-128.

The function f is different in each round. fr is used for the r-th round
in the left stream, and f5−r is used for the r-th round in the right stream
(r = 1, . . . , 4):

f1(x, y, z) = x⊕ y ⊕ z,
f2(x, y, z) = (x ∧ y) ∨ (¬x ∧ z),
f3(x, y, z) = (x ∨ ¬y)⊕ z,
f4(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z).

A step constant Kr is added in every step; the constant is different for
each round and for each stream. For the actual values of the constants we

9

refer to [6], since we do not need them in the analysis. For both streams
the following rotation values s given in Table 3 are used.

Table 3. The rotation values s for each step and each stream of RIPEMD-128.

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

left
Round 1 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8

stream
Round 2 7 6 8 13 11 9 7 15 7 12 15 9 11 7 13 12
Round 3 11 13 6 7 14 9 13 15 14 8 13 6 5 12 7 5
Round 4 11 12 14 15 14 15 9 8 9 14 5 6 8 6 5 12

right
Round 1 8 9 9 11 13 15 15 5 7 7 8 11 14 14 12 6

stream
Round 2 9 13 15 7 12 8 9 11 7 7 12 7 6 15 13 11
Round 3 9 7 15 11 8 6 6 14 12 13 5 14 13 13 7 5
Round 4 15 5 8 11 14 14 6 14 6 9 12 9 12 5 15 8

Message Expansion. The message expansion of RIPEMD-128 is a per-
mutation of the 16 message words in each round. Different permutations
are used for the left and the right stream. For both streams the message
words are permuted according to Table 4.

Table 4. The index of the message words mi which are used as the expanded message
words Wi in each step and each stream of RIPEMD-128.

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

left
Round 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

stream
Round 2 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8
Round 3 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12
Round 4 1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2

right
Round 1 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12

stream
Round 2 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2
Round 3 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13
Round 4 8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14

Feed-Forward. After the last step of the state update transformation,
the initial values B−4, . . . , B−1 and the output values of the last step of the
left stream B63, . . . , B60 and the last step of the right stream B′63, . . . , B

′
60

are combined, resulting in the final value of one iteration (feed-forward).
The result is the final hash value or the initial value for the next message

10

block:

B−1 �B62 �B′61
B−4 �B63 �B′62
B−3 �B60 �B′63
B−2 �B61 �B′60

4 Collision Attacks on RIPEMD-128

To find collisions in reduced RIPEMD-128 we use the strategy proposed
in Sect. 2.2. The attack consists of 3 major parts given as follows:

1. Starting Point: Find a good start setting, i.e. differences in only a
few specific message words that may lead in a differential character-
istic with high probability after step 15.

2. Differential Characteristic: Search for a high-probability differ-
ential characteristic for the whole hash function where at most one
stream has a low probability in step 0-15.

3. Message Pair: Find a colliding message pair using automated mes-
sage modification and random trials.

4.1 Finding a Starting Point

In MD4-like hash functions, differences are introduced and canceled using
differences in the expanded message words. Since RIPEMD-128 has two
streams with different permutation of message words, the first step in the
attack is to determine those message words which may contain differences.
We have several constraints such that the whole attack can be carried out
efficiently.

First of all, we aim for a high probability differential characteristics
after step 15 in both streams. Such high probability differential charac-
teristics can be constructed if the differences introduced by the message
words are canceled immediately using local collisions spanning over only
a few steps. The shortest local collision in the MD4 step update goes
over 4 steps. However, due to the different message permutation used in
each stream, it is difficult to achieve short local collisions in both streams
simultaneously.

Another possibility is to cancel all differences in each stream as early
as possible in round 2 and find message words, such that new differences
are introduced late in round 3. A further constraint is to have a short

11

local collision and hence sparse differential characteristic in one stream
between step 0-15 such that the message modification part can be carried
out more efficiently (see Sect. 2.2).

A single message word which seems to be a good choice is m13. In
this case, we get one short local collision between round 1 and round 2
in the left stream and one slightly longer local collision between round 1
and round 2 in the right stream. Both local collisions end in the first few
steps of round 2. Furthermore, the message word m13 introduces differ-
ences very late in the last few steps of round 3 (see Fig. 3). Note that a
similar approach was used by Dobbertin in the attack on RIPEMD [5].
Unfortunately, no local collision spanning over 5 steps in the left stream
between round 1 and 2 can be constructed which renders the attack im-
possible.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12

5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13

left

right

impossible

Fig. 3. Using only message word m13.

A better choice is to use differences in two message words, like it was
done by Wang et al. in the attack on RIPEMD [17]. If we choose differ-
ences in m0 and m6 then we get for the left stream one local collision over
6 steps in round 1, and another local collision over 4 steps in round 2. Note
that in the right stream a short local collision over 4 steps (step 16-20) is
actually impossible. This is due to the fact that for f3 (ONX-function),
a local collision over 4 steps with differences in only two message does
not exist. Hence, we combine in the right stream the two local collisions
resulting in one long local collision between step 3 and 20. In round 3,
the first difference is added in step 38. Hence, using this starting point
we can get a collision for 38 steps of RIPEMD-128.

4.2 Finding a Differential Characteristic

Once we have fixed the starting point, i.e. the message words which may
contain differences, we use an automated tool to find high-probability
differential characteristics. Note that we do not fix the message difference
prior to the search to allow the tool to find an optimal solution.

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12

5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13

left

right

Fig. 4. Using message words m0 and m6.

In order to get a differential characteristics resulting in a low attack
complexity, we aim for a low Hamming weight difference in state word
B21. The best we could find is a differential characteristic with 2 differ-
ences in B21 (see Table 8). Furthermore, the Boolean function XOR in
the first round of the left stream provides less freedom in constructing
local collisions than the non-linear functions. Hence, we first search for a
differential characteristic in the left stream.

Once the characteristic in the left stream is fixed, we use an arbitrary
first message block to fulfill the conditions on the chaining value. Since
we have 14 conditions on the chaining value (see Table 8), finding the 1st
block has a complexity of about 214.

Next, we search for a differential characteristic in the right stream.
To get a low complexity for the message search in round 2, we search for
characteristics with only a few differences in state words B′14 and B′15.
Using our search tool, we can find many differential characteristic for the
left and right stream within only a few minutes on an ordinary PC. A
colliding differential characteristic for 38 steps of RIPEMD-128 is given
in Table 8.

4.3 Finding a Confirming Message Pair

To fulfill all conditions imposed by the differential characteristic in the
first round, we need to apply message modification techniques. Since we
have many conditions in the first 6 steps of the left stream and the first
15 steps of the right stream this may not be an easy task. However, us-
ing our tool and generalized conditions, we can do message modification
for the first 16 steps efficiently and immediately within milliseconds on a
PC. Of course, by hand-tuning basic message modification the complexity
might be improved, but using our tool this phase of the message search
can be fully automated. Furthermore, the cost of message modification is
fully amortized by randomizing e.g. message word m12 to find a solution
also for the high-probability characteristic in round 2 (and 3). Using the
approximately 230 possible value for m12, we can find a solution for the

13

differential characteristic (complexity 214 after round 1) including mes-
sage modification in less than a second on our PC. The resulting message
pair for a collision on 38 steps of RIPEMD-128 is given in Table 5.

Table 5. Collision for 38 steps of RIPEMD-128.

M1
9431bddf 7b9827d6 f54a64a9 df41a58a fd707a50 dad10eb6 48b0cc76 be66cb8c

ab3b7afa 084ba98e ab0a4798 2a4b0d06 a79bf8b7 3fd6008a 4da2112d 849c5b9c

M2
952bc70f d0840848 eafffa57 0ca3c38a 45383ffb ddc6a9a1 796f1e20 0b9ff55f

ddb80113 f0ffe1b5 b7d75dc0 82c7298f f2c442f4 96cbf293 c441d662 06e9eec2

M∗2
952bc50e d0840848 eafffa57 0ca3c38a 45383ffb ddc6a9a1 79ef1e21 0b9ff55f

ddb80113 f0ffe1b5 b7d75dc0 82c7298f f2c442f4 96cbf293 c441d662 06e9eec2

∆M2
00000201 00000000 00000000 00000000 00000000 00000000 00800001 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H2 a0a00507 fd4c7274 ba230d53 87a0d10a

H∗2 a0a00507 fd4c7274 ba230d53 87a0d10a

∆H2 00000000 00000000 00000000 00000000

5 Extending the Attack to More Steps

In this section, we will show how the collision attack on 38 steps can be
extended to more steps of the hash function by using a weaker attack
setting, i.e. near-collisions and subspace distinguisher. Furthermore, we
present a free-start collision for 48 steps of RIPEMD-128 compression
function.

5.1 Near-Collisions for the Hash Function

It is easy to see that by appending 6 steps to the characteristic for 38
steps one gets a near-collision for 44 steps of the hash function with only
6 differences in the hash value. However, note that while in the collision
attack one can always append a message block with the correct padding
this can not be done for a near-collision. Hence, in order to construct
a near-collision for the hash function the padding has to be fixed on
beforehand. Luckily, we have such a high amount of freedom in our attack
the we can easily fix m15,m14 and parts of m13 in the attack to guarantee
that the padding is correct. The result is a practical near-collision (see
Table 6) for 44 steps of RIPEMD-128 with complexity of 232. Note that
the generic attack to find a near-collision with only 6 differences in the
hash value has a complexity of about 247.8.

14

Table 6. Near-collision for 44 steps of RIPEMD-128.

M1
2ca95052 425a8f73 08be4537 c790e019 0dcc7d4e 29075123 75327262 8d0d4803

1e57a6a4 73550688 59263eb1 98c6f6ce f03b8b4b 62d3fdf7 638db196 68c0b7b3

M2
aa1437ef f3646663 c339343a 52c43a1a 779995d5 7b6bd784 e927bb74 5e7cb217

7af2ac15 93392ccf 07e847cf 86318b70 d9d33105 809693dd 000003b8 00000000

M∗2
aa1435ee f3646663 c339343a 52c43a1a 779995d5 7b6bd784 e9a7bb75 5e7cb217

7af2ac15 93392ccf 07e847cf 86318b70 d9d33105 809693dd 000003b8 00000000

∆M2
00000201 00000000 00000000 00000000 00000000 00000000 00800001 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H2 92dd7ef7 b1f15ee4 b3e6a250 9db2131b

H∗2 929d5ef7 b1f15ee4 b3e6a250 bdb21b5f

∆H2 00402000 00000000 00000000 20000844

5.2 Non-Randomness for the Hash Function

In this section, we show non-random properties for 48 steps (3 rounds)
of the hash function. It is based on the differential q-multicollision distin-
guisher and the differential characteristic for 44 steps which is extended
to 48 steps.

Differential q-multicollisions were introduced by Biryukov et al. in the
cryptanalysis of the block cipher AES-256 [1]. Note that in [1] the attack
is described for a block cipher. However, it can be easily adapted for a
hash function. Below we repeat the basic definition and lemma, we need
for the attack on RIPEMD-128.

Definition 1. A set of one difference and q inputs

{∆M ; (M1), (M2), · · · , (M q)}

is called a differential q-multicollision for h(·) if

h(M1)� h(M1 �∆M) = h(M2)� h(M2 �∆M)

= · · · = h(M q)� h(M q �∆M).

The complexity of the generic attack is measured in the number of queries.

Lemma 1. To construct a differential q-multicollision for an ideal has
function with an n-bit output an adversary needs at least

O(q · 2
q−1
q+1 ·n)

queries on the average for small q.

The proof for Lemma 1 works similar as in [1] for an ideal cipher. Finally,
we construct a differential q-multicollision to show non-random properties
for RIPEMD-128 reduced to 48 steps. The attack has a complexity of
about 4 · 268 while the generic attack has a complexity of about 276.

15

5.3 Collisions for the Compression Function

When attacking the compression function an adversary has additional
the possibility to inject difference in the chaining input. Using this ad-
ditional freedom and the same techniques as for the collision attack on
the RIPEMD-128 hash function (see Section 4), we can construct a col-
lision for the compression function of RIPEMD-128 reduced to 48 steps.
In Table 9 the differential characteristic is shown, resulting in a practical
collision for 48 steps of the compression function with a complexity of
240. The example is given in Table 7.

Table 7. Free-start collision for 48 steps of RIPEMD-128.

H0 5a1d2fbd cd6d40c7 128dd546 900e0e65

H∗0 5a1927bd edad5cc7 128dd542 900e0e65

∆H0 00040800 20c01c00 00000004 00000000

M1
06083719 9ae0b19b 7ffae1ec 637041ad 28d722d7 fa0082c3 5e78f84e 416ee5e7

faf2b4fc 56738a9f 363c6155 cc7d7ae3 0cb5fc95 b362a16f 6cac81a9 cc11fedd

M∗1
06083719 9ae0b19b 7ffae1ec 637041ad 28d722d7 fa0082c3 5e78f84e 416ee5e7

faf2b4fc 56738a9f 363c6155 cc7d7ae3 0cb5fc95 b362a16f 6cac81a9 cc11fedd

∆M1
00000200 00000000 00000000 00000000 00000000 00000000 00000001 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H1 e6428c57 a9f1f589 fc045baf a9cdbc1f

H∗1 e6428c57 a9f1f589 fc045baf a9cdbc1f

∆H1 00000000 00000000 00000000 00000000

6 Conclusions and Future Work

In this work, we have presented new results on the ISO/IEC standard
RIPEMD-128, a dual-stream hash function where the message permuta-
tion and rotation values are different in the two streams. More specifically,
we have presented a collision attack on reduced RIPEMD-128 and get
practical collisions for 38 steps of the hash function with a complexity of
about 214. Furthermore, our attack can be extended to near-collisions on
44 steps with complexity 232 and a theoretical distinguisher on the hash
function for 48 steps (3 out of 4 rounds) with complexity 270. Further-
more, we present practical collisions for the RIPEMD-128 compression
function, also reduced to 48 steps with complexity 240.

Apart from these new results, we have outlined a strategy to analyze
ARX-based dual-stream hash functions more efficiently. More precisely,
we have shown how to automate the most difficult parts of an attack
involving more than one stream: finding a differential characteristic and

16

performing message modification in the first round. In particular, message
modification had to be hand-tuned or was omitted in previous attacks on
ARX-based hash functions. What remains for an attacker is to determine
a good starting point (possibly using tools from coding theory) and to
assist the tools in the order of guessing words or parts of the state, to
improve the overall complexity.

Ideally, these tools can immediately be applied to more complicated
hash functions. However, the obtained results depend mainly on the choice
of the starting point for the nonlinear tool. If no good starting point can be
found or the search space is too large, no attack can be obtained. Future
work is to analyze also other, stronger dual-stream hash functions like
RIPEMD-160. Furthermore, the tools and techniques used in this paper
can also be applied to other ARX-based hash functions, where more than
one state word is updated using a single message word. Examples are
SHA-2 or the SHA-3 candidates Blake and Skein.

Acknowledgments

This work was supported in part by the Research Council KU Leuven:
GOA TENSE (GOA/11/007), by the IAP Programme P6/26 BCRYPT
of the Belgian State (Belgian Science Policy) and by the European Com-
mission through the ICT programme under contract ICT-2007-216676
ECRYPT II. In addition, this work was supported by the Research Fund
KU Leuven, OT/08/027 and by the Austrian Science Fund (FWF, project
P21936).

References

1. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and Related-Key Attack
on the Full AES-256. In: Halevi, S. (ed.) CRYPTO. LNCS, vol. 5677, pp. 231–249.
Springer (2009)

2. Brier, E., Khazaei, S., Meier, W., Peyrin, T.: Linearization Framework for Collision
Attacks: Application to CubeHash and MD6. In: Matsui, M. (ed.) ASIACRYPT.
LNCS, vol. 5912, pp. 560–577. Springer (2009)

3. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO. LNCS, vol. 435, pp. 416–427. Springer (1989)

4. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT. LNCS, vol. 4284, pp.
1–20. Springer (2006)

5. Dobbertin, H.: RIPEMD with Two-Round Compress Function is Not Collision-
Free. J. Cryptology 10(1), 51–70 (1997)

6. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A Strengthened Version
of RIPEMD. In: Gollmann, D. (ed.) FSE. LNCS, vol. 1039, pp. 71–82. Springer
(1996)

17

7. Indesteege, S., Preneel, B.: Practical Collisions for EnRUPT. In: Dunkelman, O.
(ed.) FSE. LNCS, vol. 5665, pp. 246–259. Springer (2009)

8. Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack. In:
Menezes, A. (ed.) CRYPTO. LNCS, vol. 4622, pp. 244–263. Springer (2007)

9. Kĺıma, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. IACR
Cryptology ePrint Archive 2006, 105 (2006)

10. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 Characteristics: Searching
through a Minefield of Contradictions. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT. LNCS, vol. 7073, pp. 288–307. Springer (2011)

11. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: On the Collision Re-
sistance of RIPEMD-160. In: Katsikas, S.K., Lopez, J., Backes, M., Gritzalis, S.,
Preneel, B. (eds.) ISC. LNCS, vol. 4176, pp. 101–116. Springer (2006)

12. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO.
LNCS, vol. 435, pp. 428–446. Springer (1989)

13. Ohtahara, C., Sasaki, Y., Shimoyama, T.: Preimage Attacks on Step-Reduced
RIPEMD-128 and RIPEMD-160. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt.
LNCS, vol. 6584, pp. 169–186. Springer (2010)

14. Pramstaller, N., Rechberger, C., Rijmen, V.: Exploiting Coding Theory for Colli-
sion Attacks on SHA-1. In: Smart, N.P. (ed.) IMA Int. Conf. LNCS, vol. 3796, pp.
78–95. Springer (2005)

15. Sugita, M., Kawazoe, M., Imai, H.: Gröbner Basis Based Cryptanalysis of SHA-1.
IACR Cryptology ePrint Archive 2006, 98 (2006)

16. Wang, L., Sasaki, Y., Komatsubara, W., Ohta, K., Sakiyama, K.: (Second) Preim-
age Attacks on Step-Reduced RIPEMD/RIPEMD-128 with a New Local-Collision
Approach. In: Kiayias, A. (ed.) CT-RSA. LNCS, vol. 6558, pp. 197–212. Springer
(2011)

17. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT. LNCS, vol. 3494, pp. 1–
18. Springer (2005)

18. Wang, X., Yao, A., Yao, F.: New Collision Search for SHA-1. Presented at rump
session of CRYPTO (2005)

19. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO. LNCS, vol. 3621, pp. 17–36. Springer (2005)

20. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT. LNCS, vol. 3494, pp. 19–35. Springer (2005)

18

A Differential Characteristics and Conditions

Table 8. Characteristic for a collision on 38 steps of RIPEMD-128. Bits with gray
background have one additional conditions.

i ∇Bi ∇B′i ∇mi

-4 --------------------------------

-3 --------------------------------

-2 --------------------------------

-1 --------------------------------

0 -------unnnnunnnnnnnn----------- -------------------------------- ----------------------u--------u

1 ------n--------------nuuuunnnnnn -----------0--------0----------- --0-----------------------------

2 ------unnunnnnnnnnnnnnnnnnnnnnnn -----------0--------0----------- --------------------------------

3 -------------------------------- --0100-----u--------u----0110--- --------------------------------

4 -------------------------------- --1101----1-1-------1----1111--- ---0----------------------------

5 -------------------------------- --unnn00--1-1-------1----unnn-00 --------------------------------

6 -------------------------------- --000010--n-u---00--n----0111-10 --------n----------------------n

7 -------------------------------- 001nuuuu--0-----11111----1001-nu --------------------------------

8 -------------------------------- 110100----1-----un11n-------u--- --------------------------------

9 -------------------------------- un1n00----------1-unn---1---1--- --------------------------------

10 -------------------------------- --n0u1----------0-10000-----1--- --------------------------------

11 -------------------------------- --0nuu------------01n11-----n--- --------------------------------

12 -------------------------------- --110--------------nuuu--------- --------------------------------

13 -------------------------------- ---01--------------11-1--------- --------------------------------

14 -------------------------------- -------------------00-1--------0 --------------------------------

15 -------------------------------- ----------------------n--------n --------------------------------

16 -------------------------------- ----------------------n--------n

17 -------------------------------- ----------------------0--------0

18 -------------------------------- --------------------------------

19 -------------------------------- --------------------------------

20 -------------------------------- --------------------------------

21 ----------------------n--------n --------------------------------

22 ----------------------0--------0 --------------------------------

23 ----------------------1--------1 --------------------------------

24 -------------------------------- --------------------------------

25 -------------------------------- --------------------------------

26 -------------------------------- --------------------------------

27 -------------------------------- --------------------------------

28 -------------------------------- --------------------------------

29 -------------------------------- --------------------------------

30 -------------------------------- --------------------------------

31 -------------------------------- --------------------------------

32 -------------------------------- --------------------------------

33 -------------------------------- --------------------------------

34 -------------------------------- --------------------------------

35 -------------------------------- --------------------------------

36 -------------------------------- --------------------------------

37 -------------------------------- --------------------------------

19

Table 9. Characteristic for a free-start collision for 48 steps of RIPEMD-128 compres-
sion function. Bits with gray background have one additional conditions.

i ∇Bi ∇B′i ∇mi

-4 -------------u------u-----------

-3 --0-----00---------011-------1--

-2 -00-00--10-011-----101---10--u--

-1 -1n-11--nu-011-----nnn---10--1-1

0 un1nnnnn00nu01---un101nuunnnn0n0 010-1u-----nuu--1-101101-010-1-1 -----------0----------u--------1

1 nnnnnnnnnnnnnnnnn--010---01--n-u 1nn-n1-----n00-01-110110-n11-00u -------------------100----------

2 --0-----10--unnnnnnnnnnnnnnnnnnn u1n--1000-1n10-0n-un-nnn-unu---1 -----------11--------0---1------

3 --1-----00---------110---10----0 0n0--n1111-01u-u---01uu--1---nu1 -------------------------------1

4 -------------------110---10----1 u11---unn0u11111---001---10--0nu ------------------------110--111

5 -------------------------------- u1----011uuun010-0-1nu----0-01u1 --------------------------------

6 -------------------------------- 0u----10u11uu0n--1-n----10u---0u -------------------------------n

7 -------------------------------- 00------n1n0101--n-0----111---11 -------------------0------------

8 -------------------------------- -1------0unnnnn0000u0000un1----0 --------------------------------

9 -------------------------------- --------110---n11u10111-10n00--- 0----------1---------0----------

10 -------------------------------- ---------01---0unnnnnnnn1u011--- --------------------------------

11 -------------------------------- --------------1011-----nuuuuu--- -------0------------------------

12 -------------------------------- ---------------100-----010------ --------------------------------

13 -------------------------------- -----------------------101------ ------------------------------11

14 -------------------------------- ----------------------0--------- --------------------------------

15 -------------------------------- ----------------------n--------- ------------------------1-------

16 -------------------------------- ----------------------n---------

17 -------------------------------- ----------------------0---------

18 -------------------------------- --------------------------------

19 -------------------------------- --------------------------------

20 -------------------------------- --------------------------------

21 ----------------------n--------- --------------------------------

22 ----------------------0--------- --------------------------------

23 ----------------------1--------- --------------------------------

24 -------------------------------- --------------------------------

25 -------------------------------- --------------------------------

26 -------------------------------- --------------------------------

27 -------------------------------- --------------------------------

28 -------------------------------- --------------------------------

29 -------------------------------- --------------------------------

30 -------------------------------- --------------------------------

31 -------------------------------- --------------------------------

32 -------------------------------- --------------------------------

33 -------------------------------- --------------------------------

34 -------------------------------- --------------------------------

35 -------------------------------- --------------------------------

36 -------------------------------- --------------------------------

37 -------------------------------- --------------------------------

38 -------------------------------- -------------------------n------

39 -------------------------------- -------------------------0------

40 -------------------------------- -------------------------1------

41 ---------0---------------------- --------------------------------

42 ---------u---------------0------ --------------------n-----------

43 ---------1---------------n--0--- --------------------0-----------

44 ---------1---------------1--10-- --------------------1-----------

45 --0---------------0--0---1--nu-- ---------u----------------------

46 --u---------------u--n------11-- ---------0---n------------------

47 -------------------nu----------- --------------------------------

20

	Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128

