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Abstract. Camellia is one of the widely used block ciphers, which has
been selected as an international standard by ISO/IEC. In this paper,
by exploiting some interesting properties of the key-dependent layer,
we improve previous results on impossible differential cryptanalysis of
reduced-round Camellia and gain some new observations. First, we in-
troduce some new 7-round impossible differentials of Camellia for weak
keys. These weak keys that work for the impossible differential take 3/4
of the whole key space, therefore, we further get rid of the weak-key
assumption and leverage the attacks on reduced-round Camellia to all
keys by utilizing the multiplied method. Second, we build a set of dif-
ferentials which contains at least one 8-round impossible differential of
Camellia with two FL/FL−1 layers. Following this new result, we show
that the key-dependent transformations inserted in Camellia cannot re-
sist impossible differential cryptanalysis effectively. Based on this set of
differentials, we present a new cryptanalytic strategy to mount impossi-
ble differential attacks on reduced-round Camellia.

Key words: Block Cipher, Camellia, Impossible Differential Cryptanal-
ysis

1 Introduction

The block cipher Camellia was jointly proposed by NTT and Mitsubishi in 2000
[1]. It was selected as one of the CRYPTREC e-government recommended ciphers
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in 2002 [4] and as a member of the NESSIE block cipher portfolio in 2003 [20].
In 2005, it was adopted as the international standard by ISO/IEC [6]. Camellia
is a 128-bit block cipher. It supports variable key sizes and the number of the
rounds depends on the key size, i.e., 18 rounds for a 128-bit key size and 24
rounds for 192/256-bit key sizes. For simplicity, they can be usually denoted as
Camellia-128, Camellia-192 and Camellia-256, respectively. Camellia adopts the
basic Feistel structure with some key-dependent functions FL/FL−1 inserted
every six rounds, where these key-dependent transformations must be linear
and reversible for any fixed key. The goals for such a design are to provide
non-regularity across rounds and to thwart future unknown attacks.

Up to now, many cryptanalytic methods were used to evaluate the security of
reduced-round Camellia such as linear cryptanalysis, differential cryptanalysis,
higher order differential attack, truncated differential attack, collision attack,
square attack and impossible differential attack. Before 2011, most attacks fo-
cused on the security of simplified versions of Camellia, which did not take the
FL/FL−1 and whitening layers into account [9–11, 16, 19, 21–24]. Recently, some
attacks involved in the study of the original structure of Camellia. For instance,
Chen et al. constructed a 6-round impossible differential with the FL/FL−1 lay-
er to attack 10-round Camellia-192 and 11-round Camellia-256 [3], Lu, Liu and
Li independently improved Chen’s results to attack on reduced-round Camel-
lia [12, 14, 17], Lu et al. proposed higher order meet-in-the-middle attacks on
10-round Camellia-128, 11-round Camellia-192 and 12-round Camellia-256 [18].

Impossible differential cryptanalysis was independently proposed by Knudsen
[7] and Biham [2]. Its main idea is to use impossible differentials that hold with
probability zero to discard the wrong keys until only one key is left. So far,
impossible differential cryptanalysis has received much attention and been used
to attack a variety of well-known block ciphers such as AES, ARIA, CLEFIA,
MISTY1 and so on.

In this paper, we reevaluate the security of reduced-round Camellia with
FL/FL−1 and whitening layers against impossible differential cryptanalysis
from two aspects. On the one hand, we construct some new 7-round impossible
differentials of Camellia for weak keys, which work for 75% of the keys. Based on
one of them, we mount impossible differential attacks on reduced-round Camel-
lia in the weak-key setting. Then we further propose a multiplied method to
extend our attacks for the whole key space. The basic idea is that if the correct
key belongs to the set of weak keys, then it will never satisfy the impossible
differential. While if the correct key is not a weak key, we get 2-bit conditions
about the key. In fact, for the whole key space, we attack 10-round Camellia-
128 with about 2113.8 chosen plaintexts and 2120 10-round encryptions, 11-round
Camellia-192 with about 2114.64 chosen plaintexts and 2184 11-round encryptions
as well as 12-round Camellia-256 with about 2116.17 chosen plaintexts or chosen
ciphertexts and 2240 12-round encryptions, respectively. Meanwhile, we can also
extend these attacks to 12-round Camellia-192 and 14-round Camellia-256 with
two FL/FL−1 layers. On the other hand, by studying some properties of key-
dependent functions FL/FL−1, we build a set of differentials which contains at



least one 8-round impossible differential of Camellia with two FL/FL−1 layers.
The length of this impossible differential with two FL/FL−1 layers is the same
as the length of the longest known impossible differential of Camellia without
the FL/FL−1 layer given by Wu and Zhang [24]. Consequently, we show that
the key-dependent transformations inserted in Camellia cannot resist impossible
differential cryptanalysis effectively. Based on this set of differentials, we propose
a new cryptanalytic strategy to attack 11-round Camellia-128 with about 2122

chosen plaintexts and 2122 11-round encryptions, 12-round Camellia-192 with
approximately 2123 chosen plaintexts and 2187.2 12-round encryptions as well as
13-round Camellia-256 with about 2123 chosen plaintexts and 2251.1 13-round
encryptions (not from the first round but with the whitening layers), respective-
ly. All attacks adopt the early abort technique [15]. In table 1, we summarize
our results along with the former known ones on reduced-round Camellia.

Table 1. Summary of the attacks on Reduced-Round Camellia

Key Size Rounds Attack Type Data Time(Enc) Memory Source

128 bits 9† Square 248CP 2122 253Bytes [10]
10† Impossible DC 2118CP 2118 293 Bytes [17]
10† HO-MitM 293CP 2118.6 2109 Bytes [18]
10† Impossible DC 2118.5CP 2123.5 2127Bytes [12]

10(WK) Impossible DC 2111.8CP 2111.8 284.8Bytes Section 3.2
10 Impossible DC 2113.8CP 2120 284.8 Bytes Section 3.2
11 Impossible DC 2122CP 2122 2102 Bytes Section 4.4

192 bits 10 Impossible DC 2121CP 2175.3 2155.2Bytes [3]
10 Impossible DC 2118.7CP 2130.4 2135Bytes [12]
11† Impossible DC 2118CP 2163.1 2141Bytes [17]
11† HO-MitM 294CP 2180.2 2174Bytes [18]

11(WK) Impossible DC 2112.64CP 2146.54 2141.64Bytes Section 3.3
11 Impossible DC 2114.64CP 2184 2141.64Bytes Section 3.3
12 Impossible DC 2123CP 2187.2 2160Bytes Section 4.3
12† Impossible DC 2120.1CP 2184 2124.1Bytes Section 3.5

256 bits 11 High Order DC 293CP 2255.6 298Bytes [5]
11 Impossible DC 2121CP 2206.8 2166Bytes [3]
11 Impossible DC 2119.6CP 2194.5 2135Bytes [12]
12† HO-MitM 294CP 2237.3 2174Bytes [18]

12(WK) Impossible DC 2121.12CP 2202.55 2142.12Bytes Section 3.4
12 Impossible DC 2116.17CP/CC 2240 2150.17Bytes Section 3.4
13 Impossible DC 2123CP 2251.1 2208Bytes Section 4.2
14† Impossible DC 2120CC 2250.5 2125Bytes Section 3.5

DC: Differential Cryptanalysis; CP/CC: Chosen Plaintexts/Chosen Ciphertexts; Enc:
Encryptions; †: The attack doesn’t include the whitening layers; WK: Weak Key;
HO-MitM: Higher Order Meet-in-the-Middle Attack.

The remainder of this paper is organized as follows. Section 2 gives some no-
tations and a brief introduction of Camellia. Section 3 presents several 7-round



impossible differentials of Camellia for weak keys. Based on one of them, impos-
sible differential attacks on 10-round Camellia-128, 11-round Camellia-192 and
12-round Camellia-256 are elaborated. Section 4 first constructs a set of differ-
entials which contains at least one 8-round impossible differential of Camellia
with two FL/FL−1 layers, and then proposes impossible differential attacks
on 11-round Camellia-128, 12-round Camellia-192 and 13-round Camellia-256,
respectively. Section 5 summarizes this paper.

2 Preliminaries

2.1 Some Notations

– P,C: the plaintext and the ciphertext;
– Li−1, Ri−1: the left half and the right half of the i-th round input;
– ∆Li−1, ∆Ri−1: the left half and the right half of the input difference in the

i-th round;
– X | Y : the concatenation of X and Y ;
– kw1|kw2, kw3|kw4: the pre-whitening key and the post-whitening key;
– ki: the subkey used in the i-th round;
– kli(1 ≤ i ≤ 6): 64-bit keys used in the functions FL/FL−1;
– Sr, ∆Sr: the output and the output difference of the S-boxes in the r-th

round;
– X ≪ j: left rotation of X by j bits;
– XL(n

2
), XR(n

2
): the left half and the right half of a n-bit word X ;

– Xi, X{i,j}, X{i∼j}: the i-th byte, the i-th and j-th bytes and the i-th to the
j-th bytes of X ;

– X i, X(i,j), X(i∼j): the i-th bit, the i-th and j-th bits and the i-th to j-th bits
of X ;

– ⊕,∩,∪: bitwise exclusive-OR (XOR), AND, and OR operations, respectively;
– 0(i), 1(i): consecutive i bits are zero or one.

2.2 Overview of Camellia

Camellia [1] is a 128-bit block cipher. It adopts the basic Feistel structure with
keyed functions FL/FL−1 inserted every 6 rounds. Camellia uses variable key
sizes and the number of rounds depends on the key size, i.e., 18 rounds for a
128-bit key size and 24 rounds for 192/256-bit key sizes. Its round function uses
a SPN structure, including the XOR operation with the round subkey, the non-
linear transformation S and the linear permutation P . Please refer to [1] for
detailed information.

The key schedule algorithm of Camellia applies a 6-round Feistel structure
to derive two 128-bit intermediate variables KA and KB from KL and KR, and
then all round subkeys can be generated by KL,KR,KA and KB. For Camellia-
128, the 128-bit key K is used as KL and KR is 0. For Camellia-192, the left
128-bit of the key K is used as KL, and the concatenation of the right 64-bit of
the key K and the complement of the right 64-bit of the key K is used as KR.
For Camellia-256, the main key K is separated into two 128-bit variables KL

and KR, i.e., K = KL | KR.



3 7-Round Impossible Differentials of Camellia for Weak

Keys and Their Applications 1

In this section, we construct some 7-round impossible differentials of Camellia in
weak-key setting. Based on one of them, we present impossible differential attack-
s on 10-round Camellia-128, 11-round Camellia-192 and 12-round Camellia-256
which start from the first round. In addition, we also extend these attacks to
12-round Camellia-192 and 14-round Camellia-256 with two FL/FL−1 layers.

3.1 7-Round Impossible Differentials of Camellia for Weak Keys

This section introduces 7-round impossible differentials of Camellia in weak-key
setting, which is based on the following lemmas and propositions.

Lemma 1 ([8]). Let X, X ′, K be l-bit values, and ∆X = X ⊕ X ′, then the
differential properties of AND and OR operations are:
(X ∩K)⊕ (X ′ ∩K) = (X ⊕X ′) ∩K = ∆X ∩K,
(X∪K)⊕(X ′∪K) = (X⊕K⊕(X∩K))⊕(X ′⊕K⊕(X ′∩K)) = ∆X⊕(∆X∩K).

Lemma 2 ([3]). Let ∆X and ∆Y be the input and output differences of FL.
Then ∆YR = ((∆XL ∩ klL) ≪ 1)⊕∆XR, ∆YL = ∆XL ⊕∆YR ⊕ (∆YR ∩ klR);
∆XL = ∆YL ⊕∆YR ⊕ (∆YR ∩ klR), ∆XR = ((∆XL ∩ klL) ≪ 1)⊕∆YR.

Proposition 1. If the output difference of FL is ∆Y = (0|0|0|0|d|0|0|0), where
d 6= 0 and d(1) = 0, then the input difference of FL should satisfy ∆X{2,3,4,6,7,8} =
0.

Proposition 2. If the output difference of FL−1 is ∆X = (0|e|e|e|0|e|e|e), and

the subkeys of FL−1 satisfy that KL
(9)
L is 0 or KL

(8)
R is 1, then the first byte of

input difference ∆Y should be zero, where e is a non-zero byte.

Proposition 3. Given a 7-round Camellia encryption and a FL/FL−1 layer
inserted between the fifth and sixth round. If the input difference of the first round

is (0|0|0|0|0|0|0|0, a|0|0|0|c|0|0|0), and the subkeys of FL−1 satisfy KL
(9)
L = 0

or KL
(8)
R = 1, then the output difference (0|0|0|0|d|0|0|0, 0|0|0|0|0|0|0|0) with

d(1) = 0 is impossible, where a and d are non-zero bytes, c is an arbitrary value
(see Fig. 1).

We also obtain three other impossible differentials under different weak-key
assumptions:

– (0|0|0|0|0|0|0|0, 0|a|0|0|0|c|0|0)9 (0|0|0|0|0|d|0|0, 0|0|0|0|0|0|0|0) with condi-

tions KL
(17)
L = 0 or KL

(16)
R = 1, and d(1) = 0,

– (0|0|0|0|0|0|0|0, 0|0|a|0|0|0|c|0)9 (0|0|0|0|0|0|d|0, 0|0|0|0|0|0|0|0) with condi-

tions KL
(25)
L = 0 or KL

(24)
R = 1, and d(1) = 0,

1 By Leibo Li, Xiaoyun Wang and Jiazhe Chen. See [13] for more details.



Fig. 1. A 7-Round Impossible Differential for Weak Keys

– (0|0|0|0|0|0|0|0, 0|0|0|a|0|0|0|c)9 (0|0|0|0|0|0|0|d, 0|0|0|0|0|0|0|0) with condi-

tions KL
(1)
L = 0 or KL

(32)
R = 1, and d(1) = 0.

We denote this type of impossible differentials above as 5+2 WKID (weak-key
impossible differentials). Due to the feature of Feistel structure, we also deduce
another type of 7-round impossible differentials with the FL/FL−1 layer inserted
between the second and the third rounds. We call them 2+5 WKID, which are
depicted as follows.

– (0|0|0|0|0|0|0|0, 0|0|0|0|d|0|0|0)9 (a|0|0|0|c|0|0|0, 0|0|0|0|0|0|0|0) with condi-

tions KL′(9)
L = 0 or KL′(8)

R = 1, and d(1) = 0,

– (0|0|0|0|0|0|0|0, 0|0|0|0|0|d|0|0)9 (0|a|0|0|0|c|0|0, 0|0|0|0|0|0|0|0) with condi-

tions KL′(17)
L = 0 or KL′(16)

R = 1, and d(1) = 0,

– (0|0|0|0|0|0|0|0, 0|0|0|0|0|0|d|0)9 (0|0|a|0|0|0|c|0, 0|0|0|0|0|0|0|0) with condi-

tions KL′(25)
L = 0 or KL′(24)

R = 1, and d(1) = 0,

– (0|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|d)9 (0|0|0|a|0|0|0|c, 0|0|0|0|0|0|0|0) with condi-

tions KL′(1)
L = 0 or KL′(32)

R = 1, and d(1) = 0,

where KL′ represents the subkey used in FL-function.

3.2 Impossible Differential Attack on 10-Round Camellia-128

We first propose an attack that works for 3 × 2126(= 3
4 × 2128) keys, which is

mounted by adding one round on the top and two rounds on the bottom of the
5+2 WKID (See Fig. 2).



Fig. 2. Impossible Differential Attack on 10-Round Camellia-128 for Weak Keys

Data Collection.

1. Choose 2n structures of plaintexts, and each structure contains 232 plain-
texts (L0, R0) = (α1|x1|x2|x3|α2|x4|x5|x6, P (β1|y1|y2|y3|β2|y4|y5|y6)), where
xi and yi (i = 1, ..., 6) are fixed values in each structure, while αj and βj

(j = 1, 2) take all the possible values.
2. For each structure, ask for the encryption of the plaintexts and get 232

ciphertexts. Store them in a hash table H indexed by CR,{1,5}, the XOR
of CR,2 and CR,3, the XOR of CR,2 and CR,4, the XOR of CR,2 and CR,6,
the XOR of CR,2 and CR,7, the XOR of CR,2 and CR,8. Then by birthday
paradox, we get 2n+7 pairs of ciphertexts with the differences (∆CL, ∆CR) =
(g1|g2|g3|g4|g5|g6|g7|g8, 0|f |f |f |0|f |f |f), and the differences of corresponding
plaintext pairs satisfy (∆L0, ∆R0) = (a|0|0|0|c|0|0|0, P (b1|0|0|0|b2|0|0|0)),
where a, c, f and bi (i = 1, 2) are non-zero bytes, and gi are unknown
bytes. For every pair, compute P−1(∆CL) = P−1(g1|g2|g3|g4|g5|g6|g7|g8) =
(g′1|g

′
2|g

′
3|g

′
4|g

′
5|g

′
6|g

′
7|g

′
8). Keep only the pairs whose ciphertexts satisfy g′1 =

0. The probability of this event is 2−8, thus the expected number of remaining
pairs is 2n−1.

Key Recovery.

1. For each pair obtained in the data collection phase, guess the 16-bit value
K1,{1,5}, partially encrypt its plaintext (L0,{1,5}, L

′
0,{1,5}) to get the interme-

diate value (S1,{1,5}, S
′
1,{1,5}) and the difference ∆S1,{1,5}. Then discard the

pairs whose intermediate values do not satisfy ∆S1,1 = b1 and ∆S1,5 = b2.
The probability of a pair being kept is 2−16, so the expected number of
remaining pairs is 2n−17.

2. In this step, the ciphertext of every remaining pair is considered.
(a) Guess the 8-bit valueK10,8 for every remaining pair, partially decrypt the

ciphertext (CR,8, C
′
R,8) to get the intermediate value (S10,8, S

′
10,8) and



the difference ∆S10,8, and discard the pairs whose intermediate values
do not satisfy ∆S10,8 = g′8. The expected number of remaining pairs is
2n−25.

(b) For l = 2, 3, 4, 6, 7, guess the 8-bit value K10,l. For every remaining pair,
partially decrypt the ciphertext (CR,l, C

′
R,l) to get the intermediate value

(S10,l, S
′
10,l) and the difference ∆S10,l, and keep only the pairs whose

intermediate values satisfy ∆S10,l = g′l ⊕ g′5. Since each pair will remain
with probability 2−40, the expected number of remaining pairs is 2n−65.

(c) Guess the 8-bit value K10,1, partially decrypt the ciphertext CR,1 of
every remaining pair to get the intermediate value S10,1, which is also
the value of S′

10,1.
(d) Partially decrypt (S10, S

′
10) to get the intermediate values (R9,5, R

′
9,5),

and discard the pairs whose intermediate values do not satisfy∆R
(1)
9,5 = 0.

As the probability of a pair being discarded is 0.5, the expected number
of remaining pairs is 2n−66.

3. For every remaining pair, guess the 8-bit value K9,5, partially decrypt the
output value (R9,5, R

′
9,5) to get the intermediate value (S9,5, S

′
9,5) and the

difference ∆S9,5. If there is a pair satisfying ∆S9,5 = ∆CR,2, we discard the
guessed key and try another one. Otherwise we exhaustively search for the
remaining 48 bits of the key under this guessed key, if the correct key is
obtained, we halt the attack; otherwise, another key guess should be tried.

Complexity. Since the probability of the event ∆S9,5 = ∆CR,2 in step 3 of
key recovery phase is 2−8, the expected number of remaining guesses for 72-bit
target subkeys is about ǫ = 280 × (1 − 2−8)2

n−66

. If we choose ǫ = 1, then n
is 79.8, and the proposed attack requires 2n+32 = 2111.8 chosen plaintexts. The
time and memory complexities are dominated by step 2 of data collection phase,
which are about 2111.8 10-round encryptions and 2n−1 × 4× 24 = 284.8 bytes.

Extending the Attack to the Whole Key Space. On the basis of the above
impossible differential attack for weak keys, we construct a multiplied attack on
10-Round Camellia-128.

– Phase 1. Perform an impossible differential attack by using the 5+2 WKID
(0|0|0|0|0|0|0|0, a|0|0|0|c|0|0|0)9 (0|0|0|0|d|0|0|0, 0|0|0|0|0|0|0|0). This phase
is extremely similar to the weak-key attack that is described above. Howev-
er, it is slightly different when the attack is finished. That is, if there is a
key kept, then the key is the correct key, and we halt the procedure of the
attack. Otherwise, we conclude that the correct key does not belong to this

set of weak keys, which means that kl
(9)
1 = 1 and kl

(8)
2 = 0. In this case, we

get 2-bit information of the key and perform the next phase.
– Phases 2 to 4. Perform an impossible differential attack by using each 5+2

WKID in the following:

(0|0|0|0|0|0|0|0, 0|a|0|0|0|c|0|0)9 (0|0|0|0|0|d|0|0, 0|0|0|0|0|0|0|0),

(0|0|0|0|0|0|0|0, 0|0|a|0|0|0|c|0)9 (0|0|0|0|0|0|d|0, 0|0|0|0|0|0|0|0),



(0|0|0|0|0|0|0|0, 0|0|0|a|0|0|0|c)9 (0|0|0|0|0|0|0|d, 0|0|0|0|0|0|0|0).

The procedure is similar to Phase 1, and either recover the correct key or
get another 2-bit information about the key and execute the next phase.

– Phase 5.Announce the intermediate keyK
(95,103,111,119)
A = 0 andK

(6,14,22,30)
A

= 1, then exhaustively search for the remaining 120-bit value of KA and re-
cover the key KL.

The upper bound of the time complexity is 2111.8 × 4 + 2120 ≈ 2120. The data
complexity is about 2113.8. The memory could be reused in different phase, so
the memory requirement is about 284.8 bytes.

3.3 Attack on 11-Round Camellia-192

We add one round on the bottom of 10-round attack and give an attack on
11-round Camellia-192.

Data Collection. Choose 280.64 structures of plaintexts. Each structure con-
tains 232 plaintexts satisfying (L0, R0) = (α1|x1|x2|x3|α2|x4|x5|x6, P (β1|y1|y2|y3|
β2|y4|y5|y6)), where xi and yi (i = 1, ..., 6) are fixed values in each struc-
ture, while αj and βj (j = 1, 2) take all the possible values. Ask for the en-
cryption of the corresponding ciphertext for each plaintext, compute P−1(CR)
and store the plaintext-ciphertext pairs (L0, R0, CL, CR) in a hash table in-
dexed by 8-bit value (P−1(CR))1. By birthday paradox, we get 2135.64 pairs
whose ciphertext differences satisfy P−1(∆CL) = (h′

1|h
′
2|h

′
3|h

′
4|h

′
5|h

′
6|h

′
7|h

′
8) and

P−1(∆CR) = (0|g′2|g
′
3|g

′
4|g

′
5|g

′
6|g

′
7|g

′
8), where h′

i and g′i are unknown values.

Key Recovery.

1. For l = 1, 5, guess the 8-bit value of K1,l, partially encrypt their plaintext
(L0,l, L

′
0,l) and discard the pairs whose intermediate value do not satisfy

∆S1,l = (P−1(∆R0))l. The expected number of remaining pairs is 2119.64.
2. In this step, we consider the ciphertext of each remaining pair.

(a) For l = 1, 2, 3, 4, 6, 7, 8, guess the 8-bit value of K11,l. Partially decrypt
the ciphertext (CR,l, C

′
R,l) and keep only the pairs which satisfy∆S11,l =

h′
l. The expected number of remaining pairs is 263.64.

(b) Guess the 8-bit valueK11,5. Partially decrypt the ciphertext (CR,5, C
′
R,5),

then compute the intermediate value (R10, R
′
10), where∆R10 = (0|f |f |f |

0|f |f |f) and f = ∆S11,5 ⊕ h′
5.

3. Application of the 10-round attack.
(a) Guess the 8-bit value K10,8, partially decrypt (R10,8, R

′
10,8) and discard

the pairs whose intermediate values do not satisfy ∆S10,8 = g′8. The
expected number of remaining pairs is 263.64 × 2−8 = 255.64.

(b) For l = 2, 3, 4, 6, 7, guess the 8-bit value K10,l. Partially decrypt the
intermediate value (R10,l, R

′
10,l) and keep only the pairs whose interme-

diate values satisfy ∆S10,l = g′l ⊕ g′5. The expected number of remaining
pairs is 215.64.



(c) Guess the 8-bit value K10,1, partially decrypt the intermediate value
R10,1 and calculate the intermediate values (R9,5, R

′
9,5). Discard the pairs

whose intermediate values do not satisfy ∆R
(1)
9,5 = 0. Then the expected

number of remaining pairs is 214.64.
(d) Guess the 8-bit value K9,5, partially decrypt the intermediate value

(R9,5, R
′
9,5) to get the difference ∆S9,5. If there is a pair satisfies ∆S9,5 =

∆R10,2, we discard the guessed key and try another one. Otherwise we
exhaustively search for the remaining 48 bits of KL and KR under this
key, if the correct key is obtained, we halt the attack; otherwise, another
key should be tried.

Complexity. The data complexity of the attack is 2112.64 chosen plaintexts.
The time complexity is dominated by step 3 (d) which requires about 2144×(1+

(1 − 2−8) + (1 − 2−8)2 + ...+ (1 − 2−8)2
13.7−1)× 2 × 1

11 × 1
8 ≈ 2146.54 11-round

encryptions. The memory complexity is about 2133.56 × 4× 24 = 2141.64 bytes.

Reduce the Time Complexity to 2138.54. Assume 16-bit value α2 and β2 are
fixed in data collection phase of above attack, then we can collect 2n+31×2−8 =
2n+23 pairs, where n represents the number of structures. Nevertheless, it is
unnecessary for us to guess 8-bit subkey K1,5 in this case. Then there are totally
136-bit values of subkey to be guessed in the attack, therefore, the expected
number of remaining guesses of target subkey is about ǫ = 2136 × (1− 2−8)2

n−90

after the attack. If we chose ǫ = 1, n is 104.56. Then the data complexity
increases to 2n+16 = 2120.56, but the time complexity reduces to 2138.54, the
memory requirement reduces to 2133.56 bytes.

Extending the Attack to the Whole Key Space. Similar to 10-round
attack on Camellia-128, we mount a multiplied attack on Camellia-192 for the

whole key space. The time complexity is about 4×2146.54+2192×(1− 3
4 )

4
= 2184

10-round encryptions. The data and memory complexities are approximately
2114.64 chosen plaintexts and 2141.64 bytes, respectively.

3.4 The Attack on 12-Round Camellia-256

We add one round on the bottom of 11-round attack, and present a 12-round
attack on Camellia-256. The attack procedure is similar to the 11-round attack.
First choose 281.17 structures and collect 2144.17 plaintext-ciphertext pairs in
data collection phase. After guessing the subkey K1,{1,5}, we guess the 64-bit
value K12 and compute the intermediate value (R11, R

′
11), then apply the 11-

round attack to perform the remaining steps. In summary, the proposed attack
requires 281.17+32 = 2113.17 chosen plaintexts. The time complexity is about
2210.55 12-round encryptions, and the memory requirement is about 2150.17 bytes.
Similar to the above subsection, the time complexity and memory requirement
can also reduce to 2202.55 and 2142.12, respectively, but data complexity increases
to 2121.12 in this case.



We also construct another type of impossible differential attack of Camellia-
256, which adds four rounds on the top and one round on the bottom of the 2+5
WKID (see section 3.1). The attack is performed under the chosen ciphertext
attack scenario. Similar to the attack based on the 5+2 WKID, the data and
time complexity are about 2113.17 and 2216.3, respectively.

Extending the Attack to the Whole Key Space. On the basis of two types
of impossible differential attacks for weak keys, we mount a multiplied attack on
12-round Camellia-256 for the whole key space as below.

– Phases 1 to 8. Preform impossible differential attacks by using of all con-
ditional impossible differentials 2+5 WKID list in section 3.1. For each
phase, if success, output the actual key, else perform the next phase.

– Phase 9. Announce 16-bit value of the master key K
(31,39,47,55,95,103,111,119)
R

= 0 and K
(6,14,22,30,70,78,86,94)
R = 1, then exhaustively search for the remain-

ing 240-bit value of KR, KL and recover the actual key.

The expected time of the attack is 2216.3 × 8 + 2256 × (14 )
8
≈ 2240 encryptions,

and the expected data complexity is about 2116.17.

3.5 The Attacks Including Two FL/FL−1 Layers

If we do not start from the first round, we can take the attacks that include two
FL/FL−1 layers into account. By exploiting some new properties of FL and
FL−1, we mount impossible differential attacks on variants of 14-round Camellia-
256 and 12-round Camellia-192. Specifically, we attack 14-round Camellia-256
from round 10 to round 23 with about 2120 chosen ciphertexts, 2250.5 14-round
encryptions and 2125 bytes of memory, and 12-round Camellia-192 from round
3 to round 14 with about 2120.1 chosen plaintexts, 2180.1 12-round encryptions
and 2124.1 bytes of memory. The detailed information can be found in [13].

4 8-Round Impossible Differentials of Camellia and Their

Applications 2

In this section, we first present a method to construct a set of differentials,
which contains at least one 8-round impossible differential of Camellia with two
FL/FL−1 layers for any fixed key. Based on this set of differentials, we pro-
pose a new strategy to attack on reduced-round Camellia-128/192/256 with the
whitening and FL/FL−1 layers.

4.1 The Construction of 8-Round Impossible Differentials of
Camellia

We first illustrate some properties of FL/FL−1.

2 By Ya Liu, Dawu Gu, Zhiqiang Liu and Wei Li.



Proposition 4. If the input difference of FL is (a|0|0|0|a′|0|0|0), where a(1) =
a′(8) = 0 and

a′(i) =

{

0, kl
(i+1)
L = 0;

a(i+1), kl
(i+1)
L = 1;

for 1 ≤ i ≤ 7,

then the output difference of FL is (a|0|0|0|0|0|0|0).

By Propositions 4, we construct an 8-round impossible differential of Camellia
with two FL/FL−1 layers for any fixed subkey.

Fig. 3. The Structure of 8-Round Impossible Differential of Camellia

Proposition 5. For an 8-round Camellia encryption with two FL/FL−1 layers
inserted after the first and seventh rounds, the input difference of the first round
is (0|0|0|0|0|0|0|0, a|0|0|0|a′|0|0|0) and the output difference of the eighth round
is (b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0) with a and b being nonzero bytes and a(1) =
b(1) = a′(8) = a′(8) = 0. Four subkeys kli(i = 1, · · · , 4) are used in two FL/FL−1

layers. If a′ and b′ satisfy the following equations:

a′(i) =

{

0, if kl
(i+1)
1 = 0;

a(i+1), if kl
(i+1)
1 = 1;

b′(i) =

{

0, if kl
(i+1)
4 = 0;

b(i+1), if kl
(i+1)
4 = 1;

for 1 ≤ i ≤ 7,

then (0|0|0|0|0|0|0|0, a|0|0|0|a′|0|0|0) 98 (b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0) is an 8-
round impossible differential of Camellia with two FL/FL−1 layers (See Fig.
3).



For any fixed subkey, an 8-round impossible differential with two FL/FL−1

layers can be constructed. Each possible value of kl
(2∼8)
1 | kl

(2∼8)
4 corresponds to

the existence of an 8-round impossible differential. All possible values of kl
(2∼8)
1 |

kl
(2∼8)
4 are from 0(14) to 1(14). Denote their corresponding impossible differentials

by ∆i for 0 ≤ i ≤ 214 − 1. Let A be a set including all differentials ∆i(0 ≤ i ≤
214 − 1), i.e., A = {∆i | 0 ≤ i ≤ 214 − 1}. According to Proposition 5, 8-round
differentials of A must have the form: ∆ = (0|0|0|0|0|0|0|0, a|0|0|0|a′|0|0|0) 98

(b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0) with a and b being nonzero bytes and a(1) =
b(1) = a′(8) = b′(8) = 0. Among them, a′ and b′ are either zero or nonzero bytes.
We divide all differentials of A into three cases: (1) a′ = b′ = 0, (2) a′ = 0 and
b′ 6= 0, or a′ 6= 0 and b′ = 0, (3) a′ 6= 0 and b′ 6= 0.

By proposition 5, we only know the existence of an 8-round impossible d-
ifferential of Camellia with two FL/FL−1 layers for any fixed key, but cannot
distinguish it from other differentials of A. Therefore, we require to propose a
new attack strategy to recover the correct key based on this set of differentials.

The Attack Strategy. Select a differential ∆i from A. Based on it, we mount
an impossible differential attack on reduced-round Camellia given enough plain-
text pairs.

1. If one subkey will be kept, we recover the secret key by the key schedule and
verify whether it is correct by some plaintext-ciphertext pairs. If success, halt
this attack. Otherwise, try another differential ∆j(j 6= i) of A and perform
a new impossible differential attack.

2. If no subkeys or more than one subkeys are left, select another differential
of A to execute a new impossible differential attack.

Our attack strategy can really recover the correct key. As a matter of fact, if
∆i is an impossible differential, we make sure the expected number of remain-
ing wrong keys will be almost zero given enough chosen plaintexts. Therefore,
we only consider those differentials which result in one subkey remaining. By
Proposition 5, we know the set A contains at least one impossible differential.
So we try each differential of A until the correct key is recovered. The worst
scenario is that the correct key is retrieved from the last try.

4.2 Impossible Differential Attack on 13-round Camellia-256

Based on three scenarios of differentials in A, we present an impossible differen-
tial attack on 13-round Camellia-256 with the FL/FL−1 and whitening layers
from rounds 4 to 16. Let ka , kw1 ⊕ k4, kb , kw2 ⊕ k5, kc , kw4 ⊕ k16, kd ,

kw3 ⊕ k15, ke , kw4 ⊕ k14. We use these equivalent subkeys ka, kb, kc, kd and ke
instead of the round subkeys k4, k5, k14, k15 and k16 so as to remove the whitening
layers. In the following, we will illustrate this attack.

Case 1 a′ = b′ = 0: The differential ∆ = (0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0) →8

(b|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|0),where a and b are nonzero bytes and a(1) = b(1) =
0 (See Fig. 4).



Fig. 4. Impossible Differential Attack on 13-round Camellia-256 for Case 1

Data Collection. Select a structure of plaintexts, which contains 255 plaintexts
with the following form:

(P (α1|x1|x2|x3|x4|x5|x6|x7), P (α2|α3|α4|α5|α6|x8|x9|α7)), (1)

where α
(1)
5 , xi(1 ≤ i ≤ 9) are fixed and αj(1 ≤ j ≤ 7, i 6= 5), α

(2∼8)
5 takes all

possible values. Clearly, each structure forms 2109 plaintext pairs, the differences
of which have the form: (P (g1|0|0|0|0|0|0|0), P (g2|g3⊕a|g4⊕a|a|g5⊕a|0|0|g6⊕a))
with a and gi(1 ≤ i ≤ 6) being nonzero bytes and a(1)=0. We take all possible

values of (α
(1)
5 , x4, x8, x9) and 243 different values of xi(1 ≤ i ≤ 7, i 6= 4) to

derive 268 special structures. In total, there are 2123 chosen plaintexts which form
2177 plaintext pairs. Encrypt these plaintext pairs to obtain the corresponding
ciphertext pairs. If the right halves of their ciphertexts differences have the form:
P (h1|h2⊕b|h3⊕b|b|h5⊕b|0|0|h8⊕b) with b(1) = 0, then these pairs will be kept.
The expected number of remaining pairs is about 2160.

Key Recovery.

1. Guess ka,1. For each remaining pair, check whether the equation ∆S4,1 =
(P−1(∆PR))1 holds. If ∆S4,1 6= (P−1(∆PR))1 for some pair, then this pair
will be discarded. Next guess each possible value of ka,l for l = 2, 3, 5, 8.
Keep only the pairs satisfying ∆S4,l = (P−1(∆PR))l ⊕ (P−1(∆PR))4. The
expected number of remaining pairs is about 2120. Finally, guess ka,{4,6,7}
and compute the inputs of the fifth round for each remaining pair.

2. Guess kb,1 and test whether ∆S5,1 is equal to (P−1(∆PL))1 for each re-
maining pair. If ∆S5,1 6= (P−1(∆PL))1 for one pair, then this pair will be
removed. Finally, about 2112 pairs will be kept.



3. Guess kc,l for 2 ≤ l ≤ 8. Verify whether ∆S16,l is equal to (P−1(∆CL))l for
every remaining pair. If ∆S16,l 6= (P−1(∆CL))l for some pair, then this pair
is discarded. The expected number of remaining pairs is about 256. Next
guess kc,1 and compute the outputs of the 15-th round for each remaining
pair.

4. Guess kd,l for l = 1, 2, 3, 5, 8. For each remaining pair, verify whether the e-
quations∆S15,1 = (P−1(∆CR))1 and∆S15,j = (P−1(∆CR))j⊕(P−1(∆CR))4
(j = 2, 3, 5, 8) hold. The probability that to happen is about 2−40. Thus
about 216 pairs will be kept. Next guess other bytes of kd and calculate the
outputs of the 14-th round.

5. Guess ke,1 and compute the output difference of the S-Boxes in the 14-th
round. If ∆S14,1 is equal to (P−1(∆L14))1, then we remove this value of
ke,1 with (ka, kb,1, kc, kd). The probability of this event is about 2−8. After
trying all possible values of (ka, kb,1, kc, kd, ke,1), if only one joint subkey
remains, then ∆ is likely to be an impossible differential. At this time, we
recover the secret key by the key schedule and verify whether it is correct
by some plaintext-ciphertext pairs. If no subkeys or more than one subkeys
are left, then ∆ is possible to exist. At this time, try another differential
of A. As a matter of fact, if ∆ is an impossible differential, the expected
number of remaining wrong subkeys is about 2208 × (1 − 2−8)2

16

≈ 2−161.4.
We consider that all wrong subkeys are removed and only the correct subkey
is left. Therefore, we require to perform the following step only if one subkey
will be kept.

6. According to the key schedule of Camellia-256, we can recover the secret key
from this unique 208-bit subkey (ka, kb,1, kc, kd, ke,1). As a matter of fact,
we guess KB and KR, and then calculate KL and KA by property 4 of [18].
Finally, the number of remaining main keys is approximately 248. By about
248 trail encryptions, if some key is correct, stop the attack. Otherwise, try
another differential of A.

Case 2 a′ = 0 and b′ 6= 0, or a′ 6= 0 and b′ = 0: We only attack a special
scenario, i.e., a′ = 0 and b′(1∼7) = b(2∼8). Others can be attacked in the similar
way. At this time, the differential is ∆′ = (0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0) →8

(b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0), where a, b and b′ are non-zero bytes, b′(1∼7) =
b(2∼8) and a(1) = b(1) = b′(8) = 0.

Data Collection. We apply 268 special structures of above Case 1. Totally,
there are 2123 chosen plaintexts which form 2177 pairs.

Key Recovery.

1. Guess kc,l for 2 ≤ l ≤ 8 and l 6= 5. Verify whether the equation ∆S16,l =
(P−1(∆CL))l holds for every remaining pair. If ∆S16,l 6= (P−1(∆CL))l for
some pair, then this pair is discarded. The expected number of remaining
pairs is about 2129. Next guess kc,{1,5} and compute the outputs of the 15-th
round for each remaining pair.



2. We first guess kd,1 and check whether the equation ∆S15,1 = (P−1(∆CR))1
holds for each remaining pair. If ∆S15,1 6= (P−1(∆CR))1 for one pair, then
this pair will be removed. Next guess kd,8 and keep only the pairs satisfying

∆S
(1)
15,8 = (P−1(∆CR))

(1)
8 . Finally, guess kd,{2∼7}. Test whether ∆S15,l =

(P−1(∆CR))l ⊕ (((P−1(∆CR))8 ⊕∆S15,8)
(2∼8)|0) for l = 6, 7 and ∆S15,l =

(P−1(∆CR))l ⊕ (P−1(∆CR))8 ⊕ ∆S15,8 ⊕ (P−1(∆CR))7 ⊕ ∆S15,7 for l =
2, 3, 4, 5. The total probability of this step is about 2−57. So the expected
number of remaining pairs is approximately 272. Compute the outputs of the
14-th round for each remaining pair.

3. Guess ke,l for l = 1, 5. Verify whether the equation ∆S14,l = (P−1(∆L14))l
holds for each remaining pair. If this equation is correct for some pair, then
this pair will be kept. The probability of this event is about 2−16. About 256

pairs will be kept.
4. Guess each possible value of ka as like Case 1. The expected number of

remaining pairs is about 216. Calculate the inputs of the fifth round.
5. Guess kb,1. This step is similar to Step 5 of Case 1. If only one joint subkey

is left, then we consider ∆′ is an impossible differential and recover the
secret key by the key schedule. Otherwise try another differential of A. In
fact, the expected number of remaining wrong subkeys is approximately
2216 × (1− 2−8)2

16

≈ 2−153.4 if ∆′ is an impossible differential.
6. This step is similar to Step 6 of Case 1. Finally, about 240 keys will be

left. By about 240 trail encryptions, if some key is correct, stop the attack.
Otherwise, try another differential of A.

Case 3 a′ 6= 0 and b′ 6= 0: We only discuss an example, i.e., a′(1∼7) = a(2∼8)

and b′(1∼7) = b(2∼8). The differential is ∆′′ = (0|0|0|0|0|0|0|0, a|0|0|0|a′|0|0|0)
→8 (b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0), where a, b, a′ and b′ are nonzero bytes and
a(1) = b(1) = a′(8) = b′(8) = 0.

Data Collection. Continue to adopt 2123 chosen plaintexts of Case 1. Because

each structure of Case 1 takes all possible values of α
(1)
5 , x4, x8 and x9, 2

123 chosen
plaintexts of Case 1 are equivalent to 243 structures, each of which contains 280

plaintexts with the form: (P (β1|y1|y2|y3|β2|y4| y5|y6), β3|β4|β5|β6|β7|β8|β9|β10),
where yi(1 ≤ i ≤ 6) are fixed and βj(1 ≤ j ≤ 10) takes all possible values. It is
obvious that one structure generates 2159 pairs. Totally, there are approximately
2202 plaintext pairs satisfying the input differences.

Key Recovery.

1. Guess each byte of kc, kd, ke,{1,5}. This step is similar to above Case 2. After
this step, about 281 pairs will be kept.

2. Guess ka,1, ka,8, ka,{6,7}, ka,{2∼5} and kb,5 in turn. The expected number of
remaining pairs is about 216. Compute the inputs of the 5-th round for each
remaining pair.

3. Guess kb,1 and test whether ∆S5,1 is equal to (P−1(∆PL))1 for each remain-
ing pair. If ∆S5,1 = (P−1(∆PL))1 for some pair, then this guessed key are



removed. After guessing all possible subkeys, if only one joint subkey is left,
then we consider ∆′′ is an impossible differential. At this moment, we exe-
cute the following step. Otherwise try another differential of A. As a matter
of fact, the expected number of remaining wrong subkeys is approximately
2224 × (1− 2−8)2

16

≈ 2−145.4 if ∆′′ is an impossible differential.
4. Similarly, we recover the secret key from this subkey. The number of remain-

ing main keys is approximately 232. By about 232 trail encryptions, if some
key is correct, stop the attack. Otherwise, try another differential of A.

Complexity We calculate that the total time complexities of Cases 1 to 3
are about 2216 1-round encryptions, 2224 1-round encryptions and 2240.8 1-round
encryptions, respectively. Thus the total time complexity is at most 214×2240.8×
1
13 ≈ 2251.1 13-round encryptions. Furthermore, the total data and memory
complexities are 2123 chosen plaintexts and 2208 bytes, respectively.

4.3 Impossible Differential Attack on 12-round Camellia-192

In this section, we attack 12-round Camellia-192 from rounds 4 to 15 with the
8-round differentials inserted rounds 6 to 13. Some equivalent subkeys ka and kb
are defined as before. In addition, let k′d = kw4 ⊕ k15 and k′e = kw3 ⊕ k14.

Case 1 a′ = b′ = 0: The differential is ∆.
We select the same plaintexts of Case 1 mentioned in section 4.2, i.e., 2123 cho-

sen plaintexts and 2177 pairs. Encrypt them and keep those pairs whose cipher-
text differences have the form: (P (h2|h3⊕b|h4⊕b|b|h5⊕b|0|0|h6⊕b), P (h1|0|0|0|0|
0|0|0)), where b and hi(1 ≤ i ≤ 6) are nonzero bytes and b(1) = 0. The expected
number of remaining pairs is about 2104.

Guess all possible values (ka, kb,1, k
′
d, k

′
e,1) and discard those subkeys which

acquire the input and output differences of ∆. This step is similar to section
4.2. If ∆ is an impossible differential, about 2144 × (1− 2−8)2

16

≈ 2−225.4 wrong
subkeys are expected to remain. Therefore, we will recover the secret key by the
key schedule of Camellia-192 only if one subkey is left. Otherwise, try another
differential of A. By the key schedule of Camellia-192, we derive 248 candidates
of the secret key from the 144-bit subkey (ka, kb,1, k

′
d, k

′
e,1). By about 248 trail

encryptions, if the correct key is retrieved, halt the attack. Otherwise, try another
differential of A.

Case 2 a′ = 0, b′ 6= 0 or a′ 6= 0, b′ = 0: For simplicity, we consider a special
differential ∆′.

We still select 2123 plaintexts of above Case 1. In total, there are 268 special
structures, each of which contains 255 plaintexts. Encrypt these plaintext pairs. If
the right halves of their ciphertexts differences have the form: P (h|0|0|0|h′|0|0|0)
with h and h′ being nonzero bytes, then these pairs will be kept. Consequently,
the expected number of remaining pairs is about 2129. Similarly, we can remove
some subkeys (ka, kb,1, k

′
d, k

′
e,{1,5}) which obtain the input and output differences

of∆′ for some pair. If only one subkey is left, we recover the secret key by the key



schedule. Otherwise, try another differential of A. In fact, if ∆′ is an impossible
differential, about 2−217.4(≈ 2152 × (1− 2−8)2

16

) wrong subkeys will be left.

Case 3 a′ 6= 0, b′ 6= 0: A special differential ∆′′ will be considered.
The similar attacking procedure can be performed as before. We select 243

structure, each of which contains 280 plaintexts. Totally, they can form 2202

pairs. After filtering some pairs by the ciphertext differences, about 2154 pairs
are expected to remain. The following steps can be preformed in the similar way.

We found that the time complexity of Case 3 is maximal. Therefore, the total
time complexity is at most 214 × 2173.2 ≈ 2187.2 12-round encryptions. The data
and memory complexities are 2123 chosen plaintexts and 2160 bytes, respectively.

4.4 Impossible Differential Attack on 11-round Camellia-128

For Camellia-128, we put two additional rounds on the top and one additional
round on the bottom of 8-round differentials. Based on it, we attack 11-round
Camellia-128 from rounds 4 to 14. Similarly, we divide all possible differential-
s into three different cases as before. For Case 1, we take 267 special struc-
tures (1). Totally, the data complexity is 2122 chosen plaintexts which form
2176 pairs. Encrypt these pairs to acquire the corresponding ciphertext pairs.
Then we discard some pairs whose ciphertext differences don’t satisfy this for-
m: (P (h|0|0|0|0|0|0|0), b|0|0|0|0|0|0|0) with b and h being non-zero bytes and
b(1) = 0. The number of remaining pairs after this test is about 263. Guess
ke,1, ka and kb,1 in turn and operate the similar steps. If only one subkey is left,
we retrieve the secret key by the key schedule. Otherwise, try anther differential
of A. As a matter of fact, if ∆ is an impossible differential, the expected number
of remaining pairs is about 280 × (1− 2−8)15 ≈ 2−104.7. For other two cases, we
execute the similar attack procedure.

We find that the dominant time complexity of all steps in three cases is the
data collection. Therefore, the total data, time and memory complexities are
2122 chosen plaintexts, 2122 11-round encryptions and 2102 bytes, respectively.

5 Conclusion

In this paper, we have presented new insight on impossible differential crypt-
analysis of reduced-round Camellia with the FL/FL−1 and whitening layers.
First, we propose impossible differential attacks on reduced-round Camellia for
75% of the keys, which are then extended to attacks that work for the whole key
space. As a matter of fact, we attack 10-round Camellia-128, 11-round Camellia-
192 and 12-round Camellia-256 which start from the first round and include
the whitening layers. Meanwhile, we also attack 12-round Camellia-192 and 14-
round Camellia-256 with two FL/FL−1 layers. Second, we construct a set of
differentials including at least one 8-round impossible differential of Camellia
with two layers FL/FL−1. This impossible differential has the same length as
the best known impossible differential of Camellia without the FL/FL−1 layer.



Therefore, our result shows that the keyed functions cannot thwart impossible
differential attack effectively. On the basis of this set of differentials, we propose
a new strategy to derive an effective attack on 11-round Camellia-128, 12-round
Camellia-192 and 13-round Camellia-256, which do not start the first round but
include the whitening and FL/FL−1 layers.
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