
Zero Correlation Linear Cryptanalysis

with Reduced Data Complexity

Andrey Bogdanov1⋆ and Meiqin Wang1,2⋆

1 KU Leuven, ESAT/COSIC and IBBT, Belgium
2 Shandong University, Key Laboratory of Cryptologic Technology and Information

Security, Ministry of Education, Shandong University, Jinan 250100,China

Abstract. Zero correlation linear cryptanalysis is a novel key recovery
technique for block ciphers proposed in [5]. It is based on linear approx-
imations with probability of exactly 1/2 (which corresponds to the zero
correlation). Some block ciphers turn out to have multiple linear approx-
imations with correlation zero for each key over a considerable number
of rounds. Zero correlation linear cryptanalysis is the counterpart of im-
possible differential cryptanalysis in the domain of linear cryptanalysis,
though having many technical distinctions and sometimes resulting in
stronger attacks.
In this paper, we propose a statistical technique to significantly reduce
the data complexity using the high number of zero correlation linear
approximations available. We also identify zero correlation linear ap-
proximations for 14 and 15 rounds of TEA and XTEA. Those result in
key-recovery attacks for 21-round TEA and 25-round XTEA, while re-
quiring less data than the full code book. In the single secret key setting,
these are structural attacks breaking the highest number of rounds for
both ciphers.
The findings of this paper demonstrate that the prohibitive data com-
plexity requirements are not inherent in the zero correlation linear crypt-
analysis and can be overcome. Moreover, our results suggest that zero
correlation linear cryptanalysis can actually break more rounds than the
best known impossible differential cryptanalysis does for relevant block
ciphers. This might make a security re-evaluation of some ciphers neces-
sary in the view of the new attack.

Keywords: block ciphers, key recovery, linear cryptanalysis, zero corre-
lation linear cryptanalysis, data complexity, TEA, XTEA

1 Introduction

1.1 Motivation

Differential and linear cryptanalyses [3,31] are the two basic tools for evaluating
the security of block ciphers such as the former U.S. encryption standard DES as
well as its successor AES. While DES was developed at the time when differential
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and linear cryptanalyses were not publicly known, the design of AES provably
addresses these attacks.

Design strategies have been proposed such as the wide-trail design strategy
[14] or decorrelation theory [43] to make ciphers resistant to the basic flavours of
differential and linear cryptanalysis. However, a proof of resistance according to
these strategies does not necessarily imply resistance to the extensions of these
techniques such as impossible differential cryptanalysis [1, 7] and the recently
proposed zero correlation linear cryptanalysis [5].

Standard differential cryptanalysis uses differentials with probabilities sig-
nificantly higher than those expected for a randomly drawn permutation. Sim-
ilarly, basic linear cryptanalysis uses linear approximations whose probabilities
detectably deviate from 1/2. At the same time, impossible differential cryptanal-
ysis and zero correlation linear cryptanalysis are based on structural deviations
of another kind: Differentials with zero probability are targeted in impossible
differential cryptanalysis and linear approximations with probability of exactly
1/2 correlation are exploited in zero correlation linear cryptanalysis. Thus, zero
correlation linear cryptanalysis can be seen as the counterpart of impossible
differential cryptanalysis in the domain of linear cryptanalysis.

The name of the attack originated from the notion of correlation [12, 35]: If
1+c
2 is the probability for a linear approximation to hold, c is called the correla-

tion of this linear approximation. Clearly, putting c = 0 yields an unbiased linear
approximation of probability 1/2, or a zero correlation linear approximation.

Impossible differential cryptanalysis has been known to the cryptographic
community since over a decade now. It has turned out a highly useful tool of
attacking block ciphers [2, 16, 28–30,42]. In fact, among meet-in-the-middle [15]
and multiset-type attacks [19], it is the impossible differential cryptanalysis [29]
that breaks the highest numbers of rounds of AES-128 and AES-256 in the
classical single-key attack model as to date, the recent biclique cryptanalysis [4]
being the notable exception though.

Zero correlation linear cryptanalysis is a novel promising attack technique
that bears some technical similarities to impossible differential cryptanalysis
but has its theoretical foundation in a different mathematical theory. Despite
its newness, it has already been demonstrated to successfully apply to round-
reduced AES and CLEFIA even in its basic form [5], which is highly motivating
for further studies.

In this paper, we show how to remove the data requirement of the full code-
book which was the major limitation of basic zero correlation linear cryptanal-
ysis [5]. As an application of zero correlation linear cryptanalysis and this data
complexity reduction technique, we propose attacks against round-reduced TEA
and XTEA. For both ciphers, we can cryptanalyze more rounds than it was
previously possible using less than the full code book.

1.2 Contributions

The work at hand has two major contributions.



Data complexity reduction for zero correlation linear cryptanalysis.
The data requirements of the full codebook have been a crucial limitation for
the recent zero correlation linear cryptanalysis to become a major cryptanalytic
technique, though the length of the fundamental property (the length of the
zero correlation linear approximation) was demonstrated to be comparable to
that of impossible differentials for several cipher structures [5]. Overcoming this
annoying limitation, a statistical technique of data complexity reduction for zero
correlation linear cryptanalysis is the first contribution of this paper.

The data complexity reduction technique is based on the fact that, like any
exploitable impossible differential, a typical zero correlation linear approxima-
tion is truncated : That is, once a zero correlation linear approximation has been
identified that holds for all keys, it will as a rule imply an entire class of similar
zero correlation linear approximations to exist. Those can be typically obtained
by just changing several bits of the input mask, output mask or both. In other
words, in most practical cases, there will be multiple zero correlation linear ap-
proximations available to the adversary which has been ignored by the previous
analysis.

However, unlike in impossible differential cryptanalysis, the actual value of
the correlation has to be estimated in zero correlation linear cryptanalysis and
it is not enough to just wait for the impossible event to occur. In fact, the
idea we use for zero correlation linear cryptanalysis is more similar to that of
multiple linear cryptanalysis: We estimate the correlation of each individual
linear approximation using a limited number of texts. Then, for a group of
zero correlation linear approximations (i.e. for the right key), we expect the
cumulative deviation of those estimations from 0 to be lower than that for a
group of randomly chosen linear approximations (i.e. for a wrong key). Given the
statistical behaviour of correlation for a randomly drawn permutation [13, 36],
this consideration results in a χ2 statistic and allows for a theoretical analysis
of the complexity and error probabilities of a zero correlation linear attack that
are confirmed by experiments.

Zero correlation linear cryptanalysis of round-reduced TEA and XTEA.
TEA (Tiny Encryption Algorithm) is one of the first lightweight block ciphers.
It is a 64-bit block cipher based on a balanced Feistel-type network with a sim-
ple ARX round function. TEA has 64 rounds and accepts a key of 128 bits.
It favours both efficient hardware [23] and software implementations. TEA was
designed by Wheeler and Needham and proposed at FSE’94 [44]. It was used
in Microsoft’s Xbox gaming console for checking software authenticity until its
weakness as a hash function was used [41] to compromise the chain of trust. The
block cipher XTEA [34] is the fixed version of TEA eliminating this property
(having the same number rounds, block size, and key size). TEA and XTEA
being rather popular ciphers, both are implemented in the Linux kernel.

Similarly to the complementation property of DES, TEA has an equivalent
key property and its effective key size is 126 bits (compared to 128 bits suggested
by the nominal key input size) [24]. Kelsey, Scheier and Wagner [25] proposed
a practical related-key attack on the full TEA. Using complementation crypt-



Table 1. Summary of cryptanalytic results on round-reduced TEA∗ and XTEA in the
single-key setting

attack #rounds data comp. compl. memory Pr[success] ref.
TEA

impossible differential 11 252.5 CP 284 NA NA [33]
truncated differential 17 1920 CP 2123.37 NA NA [21]
impossible differential 17 257 CP 2106.6 249 NA [9]

zero correlation linear 21 262.62 KP 2121.52 negligible 0.846 this paper

zero correlation linear 23 264 2119.64 negligible 1 this paper

XTEA

impossible differential 14 262.5 CP 285 NA NA [33]
truncated differential 23 220.55 CP 2120.65 NA 0.969 [21]

meet-in-the-middle 23 18 KP 2117 1 − 2−1025 [38]
impossible differential 23 262.3 CP 2114.9 294.3 NA [9]
impossible differential 23 263 2101 MA +2105.6 2103 NA [9]

zero correlation linear 25 262.62 KP 2124.53 230 0.846 this paper

zero correlation linear 27 264 2120.71 negligible 1 this paper

CP: Chosen Plaintexts, KP: Known Plaintexts.
Memory: the number of 32-bit words.
∗The effective key length for TEA is 126 bit

analysis [8], up to 36 rounds of XTEA can be attacked with related keys for
all keys. The work [8] also contains related-key attacks for up to 50 rounds of
XTEA working for a weak key class.

In the classical single-key setting, however, by far not all rounds of TEA
are broken by structural attacks (whereas the effective key size is 126 bits for
the full cipher). The truncated differential result on 17 rounds remains the best
cryptanalysis of TEA [21]. Impossible differential cryptanalysis [9] has yielded a
faster attack against 17 rounds of TEA. Similarly, 23 rounds of XTEA have been
cryptanalyzed so far using truncated differential [21], impossible differential [9]
and well as meet-in-the-middle attacks [38]. That is, for both TEA and XTEA,
there has been no progress in terms of the number of attacked rounds since 2003.

In this paper, using zero correlation linear cryptanalysis, we cryptanalyze 21
rounds of TEA and 25 rounds of XTEA with 262.62 known plaintexts (in con-
trast to chosen texts required in impossible differential cryptanalysis). Certainly,
zero correlation linear cryptanalysis for lower number of rounds yields a lower
data complexity for both TEA and XTEA. Moreover, unlike most impossible
differential attacks including those on TEA and XTEA [9], zero correlation lin-
ear cryptanalysis is able to profit from the full code available. If all 264 texts
are available to the adversary, we propose zero correlation linear cryptanalysis
for 23 rounds of TEA and 27 rounds of XTEA. Our cryptanalytic results are
summarized and compared to previous cryptanalysis in Table 1.

As opposed to the initial intuition expressed in [5], both major contributions
of this work — the data complexity reduction and the new attacks on more
rounds of TEA and XTEA — demonstrate that zero correlation linear crypt-
analysis can actually perform better than impossible differential cryptanalysis.
Moreover, we expect the security of more ciphers to be reevaluated under the
consideration of zero correlation linear cryptanalysis.



1.3 Outline

We start with a review of the basic zero correlation linear cryptanalysis for
block ciphers in Section 2. In Section 3, we introduce a χ2 statistical technique
for reducing the data requirements of zero correlation linear cryptanalysis and
thoroughly investigate its complexity. In Section 4, the 14- and 15-round zero
correlation linear approximations are demonstrated for block ciphers TEA and
XTEA. Section 5 gives several zero correlation key recoveries for round-reduced
TEA and XTEA. The full version [6] of this paper is available online and contains
proofs of some technical statements as well as further zero correlation linear
attacks on round-reduced TEA and XTEA.

2 Basic zero correlation linear cryptanalysis

Zero correlation linear cryptanalysis has been introduced in [5]. Below we briefly
review its basic ideas and methods.

2.1 Linear approximations with correlation zero

Consider an n-bit block cipher fK with key K. Let P denote a plaintext which
is mapped to ciphertext C under key K, C = fK(P ). If ΓP and ΓC are nonzero
plaintext and ciphertext linear masks of n bit each, we denote by ΓP → ΓC the
linear approximation

Γ T
P P ⊕ Γ T

CC = 0.

Here, Γ T
AA denotes the multiplication of the transposed bit vector ΓA (linear

mask for A) by a column bit vector A over F2. The linear approximation ΓP →
ΓC has probability

pΓP ,ΓC
= Pr

P∈F
n
2

{Γ T
P P ⊕ Γ T

CC = 0}. (1)

The value
cΓP ,ΓC

= 2pΓP ,ΓC
− 1 (2)

is called the correlation (or bias) of linear approximation ΓP → ΓC . Note that
pΓP ,ΓC

= 1/2 is equivalent to zero correlation cΓP ,ΓC
= 0:

pΓP ,ΓC
= Pr

P∈F
n
2

{Γ T
P P ⊕ Γ T

CC = 0} = 1/2. (3)

In fact, for a randomly drawn permutation of sufficiently large bit size n, zero
is the most frequent single value of correlation for a nontrivial linear approxi-
mation. Correlation goes to small values for increasing n, the probability to get
exactly zero decreases as a function of n though. More precisely, the probability
of the linear approximation ΓP → ΓC with ΓP , ΓC 6= 0 to have zero correlation
has been shown [5, Proposition 2] to be approximated by

1√
2π

2
4−n
2 . (4)



2.2 Two examples

Given a randomly chosen permutation, however, it is hard to tell a priori which
of its nontrivial linear approximations in particular has zero correlation. At the
same time, it is often possible to identify groups of zero correlation linear approx-
imations for a block cipher fK once it has compact description with a distinct
structure. Moreover, in many interesting cases, these linear approximations will
have zero correlation for any key K. Here are two examples provided in [5]:

– AES: The data transform of AES has a set of zero correlation linear approx-
imations over 4 rounds (3 full rounds appended by 1 incomplete rounds with
MixColumns omitted). If Γ and Γ ′ are 4-byte column linear masks with ex-
actly one nonzero byte, then each of the linear approximations (Γ, 0, 0, 0) →
(Γ ′, 0, 0, 0) over 4 AES rounds has zero correlation [5, Theorem 2].

– CLEFIA-type GFNs: CLEFIA-type generalized Feistel networks [40] (also
known as type-2 GFNs with 4 lines [45]) have zero correlation linear approx-
imations over 9 rounds, if the underlying F-functions of the Feistel con-
struction are invertible. For a 6= 0, the linear approximations (a, 0, 0, 0) →
(0, 0, 0, a) and (0, 0, a, 0) → (0, a, 0, 0) over 9 rounds have zero correlation [5,
Theorem 1].

D

E

rounds covered by
zero correlation

linear approximation

plaintext P

ciphertext C

partial encryption

partial decryption

check for zero correlation

Fig. 1. High-level view of key recovery in zero correlation linear cryptanalysis



2.3 Key recovery with zero correlation linear approximations

Based on linear approximations of correlation zero, a technique similar to Mat-
sui’s Algorithm 2 [31] can be used for key recovery. Let the adversary have
N known plaintext-ciphertexts and ℓ zero correlation linear approximations
{ΓE → ΓD} for a part of the cipher, with ℓ = |{ΓE → ΓD}|. The linear ap-
proximations {ΓE → ΓD} are placed in the middle of the attacked cipher. Let E
and D be the partial intermediate states of the data transform at the boundaries
of the linear approximations.

Then the key can be recovered using the following approach (see also Fig-
ure 1):

1. Guess the bits of the key needed to compute E and D. For each guess:

(a) Partially encrypt the plaintexts and partially decrypt the ciphertexts up
to the boundaries of the zero correlation linear approximation ΓE → ΓD.

(b) Estimate the correlations {ĉΓE ,ΓD
} of all linear approximations in {ΓE →

ΓD} for the key guess using the partially encrypted and decrypted values
E and D by counting how many times Γ T

EE ⊕ Γ T
DD is zero over N

input/output pairs, see (1) and (2).

(c) Perform a test on the estimated correlations {ĉΓE,ΓD
} for {ΓE → ΓD}

to tell of the estimated values of {ĉΓE ,ΓD
} are compatible with the hy-

pothesis that all of the actual values of {cΓE ,ΓD
} are zero.

2. Test the surviving key candidates against a necessary number of plaintext-
ciphertext pairs according to the unicity distance for the attacked cipher.

Step 1(c) of the technique above relies on an efficient test distinguishing
between the hypothesis that {cΓE ,ΓD

} are all zero and the alternative hypothesis.
The work [5] requires the exact evaluation of the correlation value (defined by the
probability of a linear approximation) and the data complexity is restricted to
N = 2n in [5]. Thus, a small number ℓ of linear approximations is usually enough
in [5] and ĉΓE ,ΓD

= cΓE ,ΓD
, though the data complexity of the full codebook is

too restrictive.

For most ciphers (including the examples of Subsection 2.2), however, a large
number ℓ of zero correlation linear approximations is available. This freedom
is not used in [5]. At the same time, it has been shown in the experimental
work [10] that any value of correlation can be used for key recovery in a linear
attack with reduced data complexity, once enough linear approximations are
available. Despite its convincing experimental evidence, [10] gives no theoretical
data complexity estimations and does not provide any ways of constructing linear
approximations with certain properties.

In the next section of this paper, we provide a framework for reducing the
data complexity N if many zero correlation linear approximations are known.



3 Reduction of data complexity with many
approximations

3.1 Distinguishing between two normal distributions

Consider two normal distributions: N (µ0, σ0) with mean µ0 and standard devi-
ation σ0, and N (µ1, σ1) with mean µ1 and standard deviation σ1. A sample s is
drawn from either N (µ0, σ0) or N (µ1, σ1). It has to be decided if this sample is
from N (µ0, σ0) or from N (µ1, σ1). The test is performed by comparing the value
s to some threshold value t. Without loss of generality, assume that µ0 < µ1.
If s ≤ t, the test returns ”s ∈ N (µ0, σ0)”. Otherwise, if s > t, the test returns
”s ∈ N (µ1, σ1)”. There will be error probabilities of two types:

β0 = Pr{”s ∈ N (µ1, σ1)”|s ∈ N (µ0, σ0)},
β1 = Pr{”s ∈ N (µ0, σ0)”|s ∈ N (µ1, σ1)}.

Here a condition is given on µ0, µ1, σ0, and σ1 such that the error probabilities
are β0 and β1. The proof immediately follows from the basics of probability
theory (see e.g. [18, 20]) and is given in the full version [6] of the paper for
completeness.

Proposition 1. For the test to have error probabilities of at most β0 and β1, the
parameters of the normal distributions N (µ0, σ0) and N (µ1, σ1) with µ0 6= µ1

have to be such that
z1−β1

σ1 + z1−β0
σ0

|µ1 − µ0|
= 1,

where z1−β1
and z1−β0

are the quantiles of the standard normal distribution.

3.2 A known plaintext distinguisher with many zero correlation
linear approximations

Let the adversary be given N known plaintext-ciphertext pairs and ℓ zero cor-
relation linear approximations for an n-bit block cipher. The adversary aims to
distinguish between this cipher and a randomly drawn permutation.

The procedure is as follows. For each of the ℓ given linear approximations,
the adversary computes the number Ti of times the linear approximations are
fulfilled on N plaintexts, i ∈ {1, . . . , ℓ}. Each Ti suggests an empirical correlation
value ĉi = 2Ti

N − 1. Then, the adversary evaluates the statistic:

ℓ
∑

i=1

ĉ2i =

ℓ
∑

i=1

(

2
Ti

N
− 1

)2

. (5)

It is expected that for the cipher with ℓ known zero correlation linear approxima-
tions, the value of statistic (5) will be lower than that for ℓ linear approximations
of a randomly drawn permutation. In a key-recovery setting, the right key will
result in statistic (5) being among the lowest values for all candidate keys if ℓ is
high enough. In the sequel, we treat this more formally.



3.3 Correlation under right and wrong keys

Consider the key recovery procedure outlined in Subsection 2.3 given N known
plaintext-ciphertext pairs. There will be two cases:

– Right key guess: Each of the values ĉi in (5) approximately follows the nor-
mal distribution with zero mean and standard deviation 1/

√
N with good

precision (c.f. e.g. [22, 39]) for sufficiently large N :

ĉi ∼ N (0, 1/
√
N).

– Wrong key guess: Each of the values ĉi in (5) approximately follows the nor-
mal distribution with mean ci and standard deviation 1/

√
N for sufficiently

large N :
ĉi ∼ N (ci, 1/

√
N) with ci ∼ N (0, 2−n/2),

where ci is the exact value of the correlation which is itself distributed as
N (0, 2−n/2) over random permutations with n ≥ 5 — a result due to [13,36].
Thus, our wrong key hypothesis is that for each wrong key, the adversary
obtains a permutation with linear properties close to those of a randomly
chosen permutation.

3.4 Distribution of the statistic

Based on these distributions of ĉi, we now derive the distributions of statistic (5)
in these two cases.

Right key guess. In this case, we deal with ℓ zero correlation linear approxi-
mations:

ℓ
∑

i=1

ĉ2i ∼
ℓ
∑

i=1

N 2
(

0, 1/
√
N
)

=
1

N

ℓ
∑

i=1

N 2(0, 1) =
1

N
χ2
ℓ ,

where χ2
ℓ is the χ2-distribution with ℓ degrees of freedom which has mean ℓ and

standard deviation
√
2ℓ, assuming the independency of underlying distributions.

For sufficiently large ℓ, χ2
ℓ converges to the normal distribution. That is, χ2

ℓ

approximately follows N (ℓ,
√
2ℓ), and:

ℓ
∑

i=1

ĉ2i ∼ 1

N
χ2
ℓ ≈ 1

N
N
(

ℓ,
√
2ℓ
)

= N
(

ℓ

N
,

√
2ℓ

N

)

. (6)

Proposition 2. Consider ℓ nontrivial zero correlation linear approximations for
a block cipher with a fixed key. If N is the number of known plaintext-ciphertext
pairs, Ti is the number of times such a linear approximation is fulfilled for i ∈
{1, . . . , ℓ}, and ℓ is high enough, then, assuming the counters Ti are independent,
the following approximate distribution holds for sufficiently large N and n:

ℓ
∑

i=1

(

2
Ti

N
− 1

)2

∼ N
(

ℓ

N
,

√
2ℓ

N

)

.



Wrong key guess. The wrong key hypothesis is that we deal with pick a per-
mutation at random for each wrong key. Therefore, the ℓ given linear approxi-
mations will have randomly drawn correlations, under this hypothesis. Thus, as
mentioned above:

ℓ
∑

i=1

ĉ2i ∼
ℓ
∑

i=1

N 2
(

ci, 1/
√
N
)

, where ci ∼ N
(

0, 2−n/2
)

.

First, we show that the underlying distribution of ĉi is actually normal with
mean 0. Then we show that the sum approximately follows χ2-distribution as-
suming the independency of underlying distributions, and can be approximated
by another normal distribution.

Since

N
(

ci, 1/
√
N
)

= ci +N
(

0, 1/
√
N
)

= N
(

0, 1/
√
2n
)

+N
(

0, 1/
√
N
)

= N
(

0,
√

1/N + 1/2n
)

,

the distribution above is a χ2-distribution with ℓ degrees of freedom up to a
factor, under the independency assumption:

∑ℓ
i=1 N 2

(

ci, 1/
√
N
)

=
∑ℓ

i=1 N 2
(

0,
√

1
N + 1

2n

)

=
(

1
N + 1

2n

)
∑ℓ

i=1 N 2 (0, 1)
=
(

1
N + 1

2n

)

χ2
ℓ .

As for the right keys, for sufficiently large ℓ, χ2
ℓ can be approximated by the

normal distribution with mean ℓ and standard deviation
√
2ℓ. Thus:

∑ℓ
i=1 ĉ

2
i ∼

(

1
N + 1

2n

)

χ2
ℓ ≈

(

1
N + 1

2n

)

N
(

ℓ,
√
2ℓ
)

= N
(

ℓ
N + ℓ

2n ,
√
2ℓ
N +

√
2ℓ

2n

)

.

Proposition 3. Consider ℓ nontrivial linear approximations for a randomly
drawn permutation. If N is the number of known plaintext-ciphertext pairs, Ti is
the number of times a linear approximation is fulfilled for i ∈ {1, . . . , ℓ}, and ℓ is
high enough, then, assuming the independency of Ti, the following approximate
distribution holds for sufficiently large N and n:

ℓ
∑

i=1

(

2
Ti

N
− 1

)2

∼ N
(

ℓ

N
+

ℓ

2n
,

√
2ℓ

N
+

√
2ℓ

2n

)

.

3.5 Data complexity of the distinguisher

Combining Propositions 2 and 3 with Proposition 1, one obtains the condition:

z1−β1

(√
2ℓ
N

+
√

2ℓ
2n

)

+z1−β0

√
2ℓ

N

( ℓ
N

+ ℓ
2n )−

ℓ
N

= 1.



The left part of this equation can be simplified to

2n+0.5

N
√
ℓ
(z1−β0

+ z1−β1
) +

z1−β1

√
2√

ℓ
,

which yields

Theorem 1. With the assumptions of Propositions 1 to 3, using ℓ nontrivial
zero correlation linear approximations, to distinguish between a wrong key and a
right key with probability β1 of false positives and probability β0 of false negatives,
a number N of known plaintext-ciphertext pairs is sufficient if the following
condition is fulfilled:

2n+0.5

N
√
ℓ
(z1−β0

+ z1−β1
) +

z1−β1

√
2√

ℓ
= 1.

The success probability of an attack is defined by the probability β0 of false neg-
atives. The probability β1 of false positives determines the number of surviving
key candidates and, thus, influences the computational complexity of the key
recovery.

4 Linear approximations with correlation zero for TEA
and XTEA

In [5], a sufficient condition is given for a linear approximation to have a corre-
lation of zero. Namely, if for a linear approximation there exist no linear char-
acteristics with non-zero correlation contributions, then the correlation of the
linear approximation is exactly zero.

4.1 The block ciphers TEA and XTEA

TEA is a 64-round iterated block cipher with 64-bit block size and 128-bit key
which consist of four 32-bit words K[0],K[1],K[2] and K[3]. TEA does not have
any iterative key schedule algorithm. Instead, the key words are used directly in
round functions. The round constant is derived from the constant δ = 9e3779b9x
and the round number. We denote the input and the output of the r-th round
for 1 ≤ r ≤ 64 by (Lr, Rr) and (Lr+1, Rr+1), respectively. Lr+1 = Rr and Rr+1

is computed as follows:

Rr+1 =
{

Lr + (((Rr ≪ 4) + K[0])⊕ (Rr + i · δ) ⊕ (Rr ≫ 5 + K[1])) r = 2i − 1,

Lr + (((Rr ≪ 4) + K[2])⊕ (Rr + i · δ) ⊕ (Rr ≫ 5 + K[3])) r = 2i, 1 ≤ i ≤ 32.

Like TEA, XTEA is also a 64-round Feistel cipher with 64-bit block and 128-bit
key. Its 128-bit secret key K is represented by four 32-bit words K[0],K[1],K[2]
and K[3] as well. The derivation of the subkey word number is slightly more
complex though. The input of the r-th round is (Lr, Rr) and the output is
(Lr+1, Rr+1). Again, Lr+1 = Rr and Rr+1 is derived as:

Rr+1 =
{

Lr + (((Rr ≪ 4 ⊕ Rr ≫ 5) + Rr) ⊕ ((i− 1) · δ + K[((i− 1) · δ ≪ 11)&3])) r = 2i− 1,

Lr + (((Rr ≪ 4 ⊕ Rr ≫ 5) + Rr) ⊕ (i · δ + K[(i · δ ≪ 11)&3])) r = 2i, 1 ≤ i ≤ 32.

These round functions of TEA and XTEA are illustrated in Figure 2.
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Fig. 2. Round function for TEA(left) and XTEA(right)

4.2 Notations

To demonstrate zero correlation linear approximations for TEA and XTEA, we
will need the following notations (the least significant bit of a word has number
0):

– ei,∼ is a 32-bit word that has zeros in bits (i + 1) to 31, one in bit i and
undefined values in bits 0 to (i− 1),

– ei∼j is a 32-bit word that has zeros in bits (i+1) to 31 and bits 0 to (j− 1),
a one in bit i and undefined values in bits j to (i− 1) for j < i,

– ēi,∼ is a 32-bit word that has zeros in bits (i+ 1) to 31, undefined values in
bits 0 to i,

– ? is an undefined value,
– X i∼j is bits from j to i of the value X , j < i, and
– X i is the value of bit i of X .

4.3 Linear approximation of modular addition

Here, we first demonstrate the properties of linear approximations with non-zero
correlation over the modular addition, which is the only nonlinear part of the
TEA and XTEA transformation (summarized as Property 1). Then we use it
to show a condition for linear approximation with non-zero correlation for one
round of TEA and XTEA (stated as Property 2).

For the modular addition of two n-bit inputs x and y, the output z can be
computed as:

z = (x+ y) mod 2n.

We denote the mask values for x, y and z as Γx, Γy and Γz, respectively
(x, y, z, Γx, Γy, and Γz ∈ F

n
2 ). The linear approximation for the modular addi-

tion is then ΓxT · x⊕ ΓyT · y = ΓzT · z and is referred to as

+ : (Γx|Γy) → Γz.



Property 1 (Modular addition). In any linear approximation (Γx|Γy) → Γz of
the modular addition with a non-zero correlation, the most significant non-zero
mask bit for Γx, Γy and Γz is the same.

Property 1 is proven in the full version [6] of the paper.

4.4 Linear approximation of one TEA/XTEA round

Using Property 1 for modular addition, as all other operations in TEA and
XTEA are linear, we can derive conditions on a special class of approximations
with non-zero correlation for the round function of TEA and XTEA. See Fig-
ures 4 and 3 for an illustration.

As in Subsection 4.1, the input and output of round r in TEA and XTEA are
(Lr|Rr) and (Lr+1|Rr+1), respectively. Correspondingly, (Γ

L
r |ΓR

r ) and (ΓL
r+1|ΓR

r+1)
are input and output linear masks of the round. So the linear approximation over
the round is

(X)TEA round r : (ΓL
r |ΓR

r ) → (ΓL
r+1|ΓR

r+1)

and has the following

Property 2 (One round). If ΓL
r = ei,∼ and ΓR

r = ej,∼, (j < i), then one needs
ΓR
r+1 = ei,∼ and ΓL

r+1 = ei,∼ ⊕ ei+5∼5 for the approximation to have a non-
zero correlation. Similarly, for the decryption round function of TEA, if the
input mask and the output mask for round r are (ΓL

r |ΓR
r ) and (ΓL

r+1|ΓR
r+1),

respectively. If ΓR
r = ei,∼ and ΓL

r = ej,∼, (j < i), then we have ΓL
r+1 = ei,∼ and

ΓR
r+1 = ei,∼ ⊕ ei+5∼5.

4.5 Zero correlation approximations for 14 and 15 rounds of
TEA/XTEA

With the one-round property of linear approximation in TEA and XTEA derived
in the previous subsection, we can identify zero correlation approximations over
14 and 15 rounds of both TEA and XTEA.

Proposition 4. Over 15 rounds of TEA and XTEA, any linear approximation
with input mask (ΓR

1 |ΓL
1 ) = (1|0) and output mask (ΓR

15|ΓL
15) = (0|e1,∼) has

a correlation of exactly zero. Moreover, over 14 rounds of TEA and XTEA,
any linear approximation with input mask (ΓR

1 |ΓL
1 ) = (1|0) and output mask

(ΓR
14|ΓL

14) = (e1,∼|ē5,∼) has zero correlation.

Proof. First, we follow the linear approximation in the forward direction. From
ΓL
1 = 0 and ΓR

1 = 1, it is obtained that ΓL
2 = 0 and ΓR

2 = 1, then we get
ΓL
3 = 1⊕(1 << 5) and ΓR

3 = 1. From Property 2, ΓL
3 = 1⊕(1 << 5) and ΓR

3 = 1,
then we have ΓR

4 = e5,∼ and ΓL
4 = e5,∼ ⊕ e5+5∼5 ⊕ 1 = e10,∼. Similarly, we get

(ΓR
5 |ΓL

5 ) = (e10,∼|e15,∼), (ΓR
6 |ΓL

6 ) = (e15,∼|e20,∼), (ΓR
7 |ΓL

7 ) = (e20,∼|e25,∼),
(ΓR

8 |ΓL
8 ) = (e25,∼|e30,∼) and (ΓR

9 |ΓL
9 ) = (e30,∼|?).

Second, we follow the 7-round linear approximation in the backward direc-
tion. From ΓL

16 = e1,∼ and ΓR
16 = 0, we can derive that (ΓR

15|ΓL
15) = (e1,∼|0),
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Fig. 3. Zero correlation linear approxima-
tion for 14-round TEA and XTEA (grey –
undefined bits, black – bits set to 1)
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Fig. 4. Zero correlation linear approxima-
tion for 15-round TEA and XTEA (grey –
undefined bits, black – bits set to 1)

(ΓR
14|ΓL

14) = (e1,∼⊕e6∼5|e1,∼), (ΓR
13|ΓL

13) = (e11,∼|e6,∼), (ΓR
12|ΓL

12) = (e16,∼|e11,∼),
(ΓR

11|ΓL
11) = (e21,∼|e16,∼), (ΓR

10|ΓL
10) = (e26,∼|e21,∼) and (ΓR

9 |ΓL
9 ) = (e31,∼|e26,∼).

From the forward direction, the most significant bit of ΓR
9 has to be zero, and

from the backward direction, the most significant bit of ΓR
9 has to be one. This

yields a contradiction and shows that there are no characteristics for this linear
approximation. By the sufficient condition of [5] for constructing zero correlation
linear approximations, this is enough for the approximation to have correlation
zero. So the linear approximation for 15-round TEA and XTEA with the input
mask (1|0) and the output mask (0|e1,∼) has zero correlation. By restricting
this linear approximation to 14 rounds and adding several undefined bits to the
output mask, one gets all the claims of the proposition. �



There are only 2 zero correlation linear approximations of this form over
15 rounds. We note however that there are 27 different zero correlation linear
approximations over 14 rounds of both TEA and XTEA. They can be generated
by setting the undefined bits (depicted in gray in Figure 3 and Figure 4) to
different values.

5 Zero correlation linear cryptanalysis of round-reduced
(X)TEA

14-Round Zero-Correlation Linear Hull
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Fig. 5. Key recovery for 21 rounds of TEA.
For the estimation of correlation, grey and
black bits need to be computed and white
bits are irrelevant. Uses the zero correlation
approximation of Figure 3.
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Fig. 6. Key recovery for 25 rounds of
XTEA For the estimation of correlation,
grey and black bits need to be computed
and white bits are irrelevant. Uses the zero
correlation approximation of Figure 3.

5.1 Key recovery for 21 rounds of TEA

For the cryptanalysis of 21-round TEA, we use the 14-round zero correlation
approximations of the type depicted in Figure 3 of Subsection 4.5. The availabil-
ity of many such approximations allows us to use the data complexity reduction
technique of Section 3.



We place the 14-round zero correlation linear approximations in the middle
of the 21-round TEA. It covers rounds 5 to 18. Following the procedure outlined
in Subsection 2.3, up to the boundaries of the linear approximations, we partially
encrypt over the 4 first rounds 1 to 4 and partially decrypt over the 3 last rounds
19 to 21. The attack is illustrated in Figure 5.

The linear approximations involve 9 state bits: R0
5, R

1∼0
19 , and L5∼0

19 . In the
corresponding 9 bits of the input and output masks, only 7 can take on 0 and 1

values: ΓR
19

0
and ΓL

19
5∼0

. For the evaluation of the linear approximations from a
plaintext-ciphertext pair, we guess 54 key bitsK15∼0

0 ,K15∼0
1 ,K10∼0

2 , andK10∼0
3 .

The attack flow is as follows given N known plaintext-ciphertext pairs.

For each possible guess of the 54-bit subkey κ = (K15∼0
0 |K15∼0

1 |K10∼0
2 |K10∼0

3 ):

1. Allocate a 128-bit counter W and set it to zero. W will contain the χ2

statistic for the subkey guess κ.
2. Allocate a 64-bit counter V [x] for each of 29 possible values of

x = (R0
5|R1∼0

19 |L5∼0
19 )

and set it to 0. V [x] will contain the number of times the partial state value
x occurs for N texts.

3. For each of N plaintext-ciphertext pairs: partially encrypt 4 rounds and
partially decrypt 3 rounds, obtain the 9-bit value for x = (R0

5|R1∼0
19 |L5∼0

19 )
and add one to the counter V [x].

4. For each of 27 zero correlation linear approximations:

(a) Set the 64-bit counter U to zero.
(b) For 29 values of x, verify if the linear approximation holds. If so, add

V [x] to U .
(c) W = W + (2 · U/N − 1)2.

5. If W < t, then κ is a possible subkey candidate and all cipher keys it is
compatible with are tested exhaustively against a maximum of 3 plaintext-
ciphertext pairs.

The correct 54-bit subkey κ is likely to be among the candidates with the χ2

statistic W lower than the threshold t = σ0 · z1−β0
+ µ0 =

√
2l
N · z1−β0

+ l
N =

√
2·27
N ·z1−β0

+ 27

N , see Subsection 3.1 with its Proposition 1 as well as Theorem 1.
In this attack, we set β0 = 2−2.7, β1 = 2−4.49 and get z1−β0

= 1, z1−β1
= 1.7.

Note once again that n = 64 and ℓ = 27. Theorem 1 suggests the data complexity
of N = 262.62 known plaintext-ciphertexts with those parameters. The decision
threshold is t = 2−55.56.

The computational complexity is dominated by Steps 3 and 5. The computa-
tional complexity T3 of Step 3 is 254 times 7 half-round encryptions for each of N
texts. This gives T3 = 254 ·262.62 ·7 ·0.5/21 = 2114.03 21-round TEA encryptions.

One in 1/β1 = 24.49 keys is expected to survive the test against zero cor-
relation. The remaining key space is be covered by exhaustive search which
is performed in Step 5. The computational complexity T5 of Step 5 is about



T5 = 2126−4.49 = 2121.51 21-round encryptions using the equivalent key property.
T5 dominates the total computational complexity.

Summarizing the attack, its computational complexity is about 2121.51, data
complexity is about 262.62 known plaintext-ciphertext pairs, and the memory
complexity is negligible. The success probability is about 0.846.

5.2 Key recovery for 25-round XTEA

Similarly to the attack on 21 rounds of TEA provided in the previous subsection,
we use the 14-round zero correlation linear approximation depicted in Figure 3
to attack 25-round XTEA. Note that the attack covers rounds 8 to 32. It is
illustrated in Figure 6. The linear approximations are placed in rounds 14 to 27.
We partially encrypt 6 rounds (8 to 13) and partially decrypt 5 rounds (28 to
32) to evaluate the parity of approximations.

The linear approximations involve 9 bits and in the corresponding 9 bits of

the input and output masks, again only 7 can take on 0 and 1 values: ΓR
28

0

and ΓL
28

5∼0
. For the evaluation of the linear approximations from a plaintext-

ciphertext pair, we guess altogether 74 key bits K25∼0
0 , K10∼0

1 , K10∼0
2 , and

K25∼0
3 . The attack itself is similar to that on 21-round TEA.

For each possible 63-bit value of (K25∼0
0 |K10∼0

1 |K25∼0
3 ):

1. Allocate and set to zero the 32-bit counter V1[x] for each of 230 possible
values of

x = (R0
13|R5

13|L0
13|R10∼0

30 |L15∼0
30 ).

2. For each of N plaintext-ciphertext pairs: partially encrypt 5 rounds and
partially decrypt 3 rounds, obtain 30-bit x = (R0

13|R5
13|L0

13|R10∼0
30 |L15∼0

30 ),
and add one to V1[x].

3. For each possible 11 bits value of K10∼0
2 :

(a) Allocate and set to zero a 128-bit counter W .

(b) Allocate and set to zero a 64-bit counter V2[y] for each of 29 possible
values of

y = (R0
14|L5∼0

28 |R1∼0
28 ).

(c) Encrypt one round and decrypt two rounds for 230 values for x to get 9
bits of y and add V1[x] to V2[y].

(d) For each of 27 zero correlation linear approximations:

i. Set the 64-bit counter U to zero.
ii. For 29 values of y, verify if the linear approximation holds. If so, add

V2[y] to the counter U .
iii. W = W + (2 · U/N − 1)2.

(e) If W < t, then κ is a possible subkey candidate and all cipher keys
it is compatible with are tested exhaustively against a maximum of 3
plaintext-ciphertext pairs.



The correct 74-bit subkey is likely to be among the candidates with the
χ2 statistic W lower than the threshold t. As we again set β0 = 2−2.7 and
β1 = 2−4.49, we obtain N = 262.62 and t = 2−55.56.

The computational complexity is dominated by Step 2 and checking for false
positives in Step 3(e). T2 of Step 2 is constituted by 263N computations of 5
rounds of 25-round XTEA and by 263N increments in the memory of 230 32-bit
counters. Assuming that one increment of a memory cell costs one XTEA round,
we obtain T2 = 263 · 262.62 · (5/25 + 1/25) = 2123.56. In Step 3(e), the remaining
T3(e) = 2128−4.49 = 2123.51 keys can checked exhaustively by the same number
of 25-round XTEA encryptions. Thus, the overall computational complexity is
about T2 + T3(e) = 2123.56 + 2123.51 = 2124.53 25-round XTEA encryptions. The
memory complexity is 230 32-bit words. Again, the data complexity is about
262.62 known plaintext-ciphertext pairs, and the success probability is about
0.846.

5.3 Attacking more rounds with the full codebook

The attacks in the previous subsections use 14-round zero correlation linear
approximations to enable data complexity reduction. As we only identified 2 15-
round approximations, we cannot use this longer property to attack more rounds
and still get a non-negligible decrease in the number of texts required. By taking
advantage of the full codebook, we are however able to perform key recovery for
up to 23 rounds of TEA and up to 27 rounds of XTEA, see the full version [6]
of this paper.
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