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Abstract. GOST is a well known block cipher which was developed in
the Soviet Union during the 1970’s as an alternative to the US-developed
DES. In spite of considerable cryptanalytic effort, until very recently
there were no published single key attacks against its full 32-round ver-
sion which were faster than the 2256 time complexity of exhaustive search.
In February 2011, Isobe used the previously discovered reflection prop-
erty in order to develop the first such attack, which requires 232 data,
264 memory and 2224 time. In this paper we introduce a new fixed point
property and a better way to attack 8-round GOST in order to find im-
proved attacks on full GOST: Given 232 data we can reduce the memory
complexity from an impractical 264 to a practical 236 without chang-
ing the 2224 time complexity, and given 264 data we can simultaneously
reduce the time complexity to 2192 and the memory complexity to 236.
Keywords: Block cipher, cryptanalysis, GOST, reflection property, fixed
point property, 2D meet in the middle attack

1 Introduction

During the 1970’s, the US decided to publicly develop the Data Encryption Stan-
dard (DES), which was the first standardized block cipher intended for civilian
applications. At roughly the same time, the Soviet Union decided to secretly de-
velop GOST [14], which was supposed to be used in civilian applications as well
but in a more controlled way. The general design of GOST was finally published
in 1994, but even today some of the crucial elements (e.g., the choice of Sboxes)
do not appear in the public description, and a different choice can be made for
each application.

GOST is a Feistel structure over 64-bit blocks. The round function consists
of adding (modulo 232) a 32-bit round key to the right half of the block, and then
applying the function f described in Figure 1. This function has an Sbox layer
consisting of eight different 4 × 4 Sboxes, followed by a rotation of the 32-bit
result by 11 bits to the left using the little-endian format (i.e. the LSB of the
32-bit word enters the rightmost entry of the first Sbox).

The full GOST has 32 rounds, and its key schedule is extremely simple: the
256-bit key is divided into eight 32-bit words (K1,K2, ...,K8). Each round of
GOST uses one of these words as a round key in the following order: in the first
24 rounds, the keys are used in their cyclic order (i.e. K1 in rounds 1,9,17, K2

in rounds 2,10,18, and so forth). In the final 8 rounds (25–32), the round keys
are used in reverse order (K8 in round 25, K7 in round 26, and so forth).
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Fig. 1. One round of GOST

A major difference between the design philosophies of DES and GOST was
that the publicly available DES was intentionally chosen with marginal parame-
ters (16 rounds, 56-bit keys), whereas the secretive GOST used larger parameters
(32 rounds, 256-bit keys) which seemed to offer an extra margin of security. As a
result, DES was broken theoretically (by using differential and linear techniques)
and practically (by using special purpose hardware) about 20 years ago, whereas
in the case of GOST, all the single key attacks [1, 9, 17] published before 2011
were only applicable to reduced-round versions of the cipher.1

The first single key attack on the full 32-round version of GOST was published
by Isobe at FSE’11 [8]. It exploited a surprising reflection property which was
first pointed out by Kara [9] in 2008: Whenever the left and right halves of the
state after 24 rounds are equal (which happens with probability 2−32), the last
16 rounds become the identity mapping, and thus the effective number of rounds
is reduced from 32 to 16. Isobe developed a new key-extraction algorithm for the
remaining 16 rounds of GOST which required 2192 time and 264 memory, and
used it 232 times for different plaintext/ciphertext pairs in order to get the full
256-bit key using a total of 232 data, 264 memory, and 2224 time. This is much
faster than exhaustive search, but neither the time complexity nor the memory
complexity are even close to being practical.

Shortly afterwards, Courtois [4] published on ePrint a new attack on the full
GOST. It uses a very different algebraic approach, but had an inferior complexity
of 264 data, 264 memory, and 2248 time. Later, Courtois and Misztal [5] described
a differential attack which again used 264 data and memory, but reduced the time
complexity to 2226.

In this paper we improve several aspects of these previously published at-
tacks. We describe a new fixed point property, and show how to use either the
previous reflection property or the new fixed point property in order to reduce
the general cryptanalytic problem of attacking the full 32-round GOST into an
attack on 8-round GOST with two known input-output pairs. We then develop

1 Attacks on full GOST in the stronger related-key model are known for about a
decade, see [7, 10, 11, 16, 17].



a new way to extract all the 2128 possible values of the full 256-bit key given
only two known 64-bit input-output pairs of 8-round GOST, which requires 2128

time and 236 memory2 (all the previously published attacks on 8-round GOST
have an impractical memory complexity of at least 264). By combining these
improved elements, we can get the best known attacks on GOST for the two
previously considered data complexities of 232 and 264.

Our new results on GOST (including the fixed point based attack) use well
known and easy to analyze cryptanalytic techniques such as “Guess and Deter-
mine” and “meet-in-the-middle”. A month after this paper appeared on eprint [6]
(and more than four months after its results were publicly disclosed in a public
talk by Adi Shamir at MIT), Courtois posted to ePrint his independently dis-
covered attacks [3], which use several different algebraic techniques. Some of his
attacks are also based on the fixed point property, but all of them have higher
claimed complexities: Given 232 data, the best attack in [3] has a time complex-
ity of 2224 and a memory complexity of 2128, and given 264 data, the best attack
in [3] has a time complexity of 2216 and a negligible memory complexity. We
include the results of [3] in Table 1 (which summarizes all the previously known
single-key attacks on the full GOST, our new results, and Courtois’ subsequent
results) for the sake of completeness.

An important observation about Isobe’s attack is that it uses in an essential
way the assumption that the Sboxes are invertible. Since the GOST standard
does not specify the Sboxes, and there is no need to make them invertible in
a Feistel structure, Isobe’s attack might not be applicable to some valid incar-
nations of this standard. A similar problem occurs in most of Courtois’ attacks
[3–5], as their complexities are only estimated for one particular choice of Sboxes
described in [15] which is used in the Russian banking system, and it is possi-
ble that for other choices of Sboxes the complexities will be different. Our new
attacks do not suffer from these limitations, since they can be applied with the
same complexity to any given set of Sboxes.

2 Overview of Our New Attacks on the Full GOST

The 32 rounds of GOST can be described using only two closely related 8-
round encryption functions. Let GKi1

,...,Kij
be j rounds of GOST under the

subkeys Ki1 , ...,Kij (where i1, ..., ij ∈ {1, 2, ..., 8}), and let (PL, PR) be a 64-bit
plaintext, such its right half, PR, enters the first round. Then GOSTK(PL, PR) =
GK8,...,K1(GK1,...,K8(GK1,...,K8(GK1,...,K8(PL, PR)))).

Our new attacks on the full GOST exploit its high degree of self-similarity
using a general framework which is shared by other attacks: the algorithm of
each attack consists of an outer loop which iterates over the given 32-round

2 We can reduce the memory complexity by an additional factor of 217 (to 219) if we
are willing to increase the time by a factor of 212 (to 2140). This may seem like an
unattractive tradeoff since the 236 memory complexity is already practical, but one
can argue that 219 words fit into the cache whereas 236 do not, which may result in
a big performance penalty.



Reference Data Memory Time Self-Similarity 8-Round Attack Sboxes

(KP)†† Property

[8] 232 264 2224 Reflection - Bijective

[4] 264 264 2248 Other (unnamed) Algebraic Russian
Banks [15]

[5] 264 264 2226 None (differential - Russian
attack) Banks [15]

[3]††† 232 2128 2224 Reflection - any

[3]††† 264 Negligible 2216 fixed point Algebraic Russian
Banks [15]

This paper 264 236 2192† fixed point 2DMITM any

This paper 264 219 2204† fixed point low-memory any

This paper 232 236 2224† Reflection 2DMITM any

This paper 232 219 2236† Reflection low-memory any
† The time complexity can be slightly reduced by exploiting GOST’s comple-

mentation properties (as described in the full version of the paper [6])
†† Known plaintext
††† Published on ePrint after the original version of this paper [6].

Table 1. Single-key Attacks on the Full GOST

plaintext-ciphertext pairs, and uses each one of them to obtain suggestions for
two input-output pairs for GK1,...,K8 . For each suggestion of the 8-round input-
output pairs, we apply an 8-round attack which gives suggestions for the 256-
bit GOST key. We then verify the key suggestions by using some of the other
plaintext-ciphertext pairs. The self-similarity properties of GOST ensure that the
8-round attack needs to be applied a relatively small number of times, leading
to attacks which are much faster than exhaustive search.

We describe several attacks on the full GOST which belong to this common
framework but differ according to the property and the type of 8-round attack
we use. The two self-similarity properties are:

1. The reflection property which was first described in [9], where it was used
to attack 30 rounds of GOST (and 2224 weak keys of the full GOST). This
property was later exploited in [8] to attack the full GOST for all keys. We
describe this property again in Section 3.1 for the sake of completeness.

2. A new fixed point property which is described in Section 3.2.

The two properties differ according to the amount of data required to satisfy
them, and thus offer different points on a time/data tradeoff curve.

Given two 8-round input-output pairs, we describe in this paper several pos-
sible attacks of increasing sophistication:

1. A very basic meet-in-the-middle (MITM) attack [2], which is described in
Section 4.1.



2. An improved MITM attack, described in Section 4.2, which uses the idea of
equivalent keys (first described by Isobe in [8]).

3. A low-memory attack, described in Section 5, which requires 219 memory
and 2140 time.

4. A new 2-dimensional meet-in-the-middle (2DMITM) attack, described in
Section 6, which requires 236 memory and 2128 time.

In order to attack the full GOST, we first select one of the two self-similarity
properties to use in the outer loop of the attack according to the number of
plaintext-ciphertext pairs available: in case we have 264 pairs available, we select
the fixed point property, and if we only have 232 pairs, we select the reflec-
tion property. We then select one of last two 8-round attacks according to the
amount of available memory: in case we have 236 memory available, we select
the 2DMITM attack, and if we only have 219 memory, we select the low-memory
attack. The outcome of this selection is an attack algorithm of the form:

1. For each plaintext-ciphertext pair (P,C):

(a) Assuming that (P,C) satisfies the conditions of the self-similarity prop-
erty, derive suggestions for two 8-round input-output pairs (I,O) and
(I∗, O∗).

(b) For each suggestion for (I,O) and (I∗, O∗):

i. Execute the 8-round attack on (I,O) and (I∗, O∗) in order to derive
suggestions for the key, and test each suggestion by performing trial
encryptions on the remaining plaintext-ciphertext pairs.

The total time complexity of our attacks is calculated by multiplying the
complexity of the 8-round attack by the expected number of times it needs
to be applied according to the self-similarity property: An arbitrary (P,C) pair
satisfies the fixed point property with probability of about 2−64. Thus, it requires
about 264 known (P,C) pairs to succeed with high probability, and since we do
not know in advance which pair satisfies the property, we need to repeat step 1 of
the attack 264 times. For each (P,C) pair, the fixed point property immediately
suggests two 8-round input-output pairs (which are correct if the pair indeed
satisfies the property). Hence, we need to perform step 1.(b) of the attack only
once per (P,C) pair. In total, we need to execute the 8-round attack about 264

times. On the other hand, an arbitrary (P,C) pair satisfies the reflection property
with a much higher probability of about 2−32. Thus, it requires about 232 known
(P,C) pairs, and we need to repeat the attack only 232 times. However, for each
(P,C) pair, the reflection property suggests a large number of 264 values for
(I,O) and (I∗, O∗) (out of which only one is correct if the pair indeed satisfies
the property). Hence, we need to perform step 1.(b) of the attack 264 times per
(P,C) pair. In total, we need to execute the 8-round attack about 232+64 = 296

times.
Altogether, we obtain four new attacks on the full GOST. In three out of the

four cases, we obtain better combinations of complexities than in all the previ-
ously published attacks. In the remaining case, we use the reflection property



and the low-memory 8-round attack to significantly reduce the memory require-
ments of Isobe’s attack [8], at the expense of a small time complexity penalty.
We note that the computation required by each one of our attacks can be easily
parallelized, and thus using x CPUs reduces the expected running time of the
attack by a factor of x.

As described in the full version of this paper [6], the time complexity of all
these attacks can be slightly reduced by exploiting GOST’s complementation
properties. However, in some of these improved attacks we have to use chosen
rather than known plaintexts, which reduces their attractiveness.

3 Obtaining Two 8-Round Input-Output Pairs for GOST

In this section, we describe the two self-similarity properties of GOST which we
exploit in order to obtain two 8-round input-output pairs.

3.1 The Reflection Property [8, 9]

Assume that the encryption of a plaintext P after 24 rounds of GOST results in
a 64-bit value Y , such that the 32-bit right and left halves of Y are equal (i.e.
YR = YL). Thus, exchanging the two halves of Y at the end of round 24 does
not change the intermediate encryption value. In rounds 25–32, the round keys
K1–K8 are applied in the reverse order, and Y undergoes the same operations as
in rounds 17–24, but in the reverse order. As a result, the encryption of P after
32 rounds, which is the ciphertext C, is equal to its encryption after 16 rounds
(see Figure 2). By guessing the state of the encryption of P after 8 rounds,
denoted by the 64-bit value X, we obtain two 8-round input-output pairs (P,X)
and (X,C). For an arbitrary key, the probability that a random plaintext gives
such a symmetric value Y after 24 rounds is 2−32, implying that we have to
try about 232 known plaintexts (in addition to guessing X) in order to obtain
the two pairs. Note that the reflection property actually gives us another “half
pair” (Ĉ, Y ), where the 64-bit word Ĉ is obtained from C by exchanging the
right and left 32-bit halves of C, and the 32-bit right and left halves of Y are
equal.3 However, it is not clear how to exploit this additional knowledge in order
to significantly improve the running time of our attacks on the full GOST which
are based on the reflection property.

3 In our attacks, we use 8-round input-output pairs whose encryption starts with K1

and thus need to apply the Feistel structure in the reverse order (starting from round
32) for input-output pairs obtained for rounds 25–32. Since in Feistel structures the
right and left halves of the block are exchanged at the end (rather than at the
beginning) of the round function, we exchange the right and left sides of the input

and the output of the input-output pairs obtained for rounds 25–32. We call (Ĉ, Y )
a “half pair” since we have to guess only 32 additional bits in order to find it, once
(P,C) is known.
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Fig. 2. The Reflection Property of GOST

3.2 The Fixed Point Property

Assume that for a plaintext P , GK8,...,K1
(P ) = P . Since rounds 9–16 and 17–

24 are identical to rounds 1–8, we obtain P after 16 and 24 rounds as well. In
rounds 25–32, the round keys K1–K8 are applied in the reverse order, and we
obtain some arbitrary ciphertext C (see Figure 3). The knowledge of P and C

immediately gives us the 8-round input-output pairs (P, P ) and (Ĉ, P̂ ) (in which
the right and left 32-bit halves of P and C are exchanged).

For an arbitrary key, the probability that a random plaintext is a fixed point
is about 2−64, implying that we need about 264 known plaintexts to have a
single fixed point, from which we obtain the two input-output pairs needed in
our attack. If we have only c ·264 known plaintexts for some fraction c, we expect
this fixed point to occur among the given plaintexts with probability c, and thus
the time complexity, the data complexity, and the success probability are all
reduced by the same linear factor c. Consequently, it makes sense to try the
fixed point based attack even when we are given only a small fraction of the
entire code book of GOST. Such a graceful degradation when we are given fewer
plaintexts (which also occurs for the reflection property) should be contrasted
with other attacks such as slide attacks, in which we have to wait for some
random birthday phenomenon to occur among the given data points. Since the
existence of birthdays has a much sharper threshold, the probability of finding
an appropriate pair of points goes down quadratically rather than linearly in c,
and thus they are much more likely to fail in such situations.

We note that our fixed point property is closely related to a previously pub-
lished property which (in addition to the assumption the P is an 8-round fixed
point) also assumes that the right and left halves of P are equal. Such a plain-
text exists for an arbitrary key with probability 2−32 and thus was used in [9] to
attack 2224 weak keys of the full GOST. The same property was also used later
in [13] in cryptanalysis of the GOST hash function.
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Fig. 3. The fixed point property of GOST



4 Simple Meet-in-the-middle Attacks on 8 Rounds of
GOST

Meet-in-the-middle (MITM) attacks can be efficiently applied to block ciphers
in which some intermediate encryption variables (bits, or combinations of bits)
depend only on a subset of key bits from the encryption side and on another
subset of key bits from the decryption side: the attacker guesses the relevant
key bits from the encryption and the decryption sides independently, and tries
only keys in which the values suggested by the computed intermediate variables
match. While the full 32-round GOST resists such attacks, 8-round GOST uses
completely independent round keys. Thus, the full 64-bit value after 4 encryption
rounds depends only on round keys K1–K4 from the encryption side and on
round keys K5–K8 from the decryption side.

4.1 The Basic Meet-in-the-middle Attack

We describe how to mount a simple meet-in-the-middle attack on 8 rounds of
GOST given two 8-round input-output pairs and several additional 32-round
plaintext-ciphertext pairs:

1. For each of the 2128 possible values of K1–K4, encrypt both inputs and obtain
two 64-bit intermediate encryption values after 4 rounds of GOST (i.e., 2128

intermediate values of 128 bits each). Store the intermediate values in a list,
sorted according to these 128 bits, along with the corresponding value of
K1–K4.

2. For each of the 2128 possible values of K5–K8, decrypt both outputs, obtain
two 64-bit intermediate values and search the sorted list for these two values.

3. For each match, obtain the corresponding value of K1–K4 from the sorted
list and derive a full 256-bit key by concatenating the value of value of K1–K4

with the value of K5–K8 of the previous step. Using the full key, perform
a trial encryption of several plaintexts and return the full key, i.e., the one
that remains after successfully testing the given 32-round pairs.

We expect to try about 2128+128−128 = 2128 full keys in step 3 of the attack,
out of which only the correct key is expected to pass the exhaustive search of
step 3. Including the 2128 8-round encryptions which are performed in each of the
first two steps of the attack, the total time complexity of the attack is slightly
more than 2128 GOST encryptions. The memory complexity of the attack is
about 2128 words of 256 bits.4

4 Note that it is possible obtain a time-memory tradeoff: we partition the 2128 possible
values of K1–K4 into 2x sets of size 2128−x (for 0 ≤ x ≤ 128), and run the second and
third steps of the attack independently for each set. Thus, the memory complexity
decreases by a factor 2x to 2128−x, and the time complexity increases by a factor of
2x to 2128+x.



4.2 An Improved Meet-in-the-middle Attack Using Equivalent Keys

In this section, we use a more general variant of Isobe’s equivalent keys idea
[8] to significantly improve the memory complexity of the attack. Both our and
Isobe’s MITM attacks are based on a 4-round attack that uses one 4-round input-
output pair to find all the 264 possible values of subkeys K1–K4 that yield this
pair. However, our MITM attack is more general since we can attack all possible
incarnations of the GOST standard, whereas Isobe’s attack works only on those
which use bijective Sboxes.5 An additional advantage of our MITM attack over
Isobe’s one, is that our attack can use any two input-output pairs for 8-round
GOST, regardless of how they are obtained. We can thus use the same algorithm
to exploit both the reflection and the fixed point properties. On the other hand,
Isobe’s attack is restricted to the case of a single input-output pair obtained for
the first 16 rounds of GOST (by guessing the intermediate values obtained after
4 and 12 rounds) and thus can be combined with the reflection property, but
cannot be directly applied to the two input-output pairs produced by the fixed
point property.

We now describe Isobe’s 4-round attack procedure: Denote the 4-round input
(divided into two 32-bit words) by (XL, XR) and the output by (YL, YR). Denote
the middle values (after the second round) by (ZL, ZR) (see Figure 4). Then:

ZL = XL ⊕ f(XR �K1)

ZR = YR ⊕ f(YL �K4)

YL ⊕ ZL = f(ZR �K3)

XR ⊕ ZR = f(ZL �K2)

Isobe’s attack assumes bijective Sboxes (making f invertible), and finds the
equivalent keys as follows:6 for each value of K1,K2, compute ZL from the first
equation and ZR from the fourth equation. From the second equation we have:
K4 = f−1(ZR⊕YR)�YL and from the third equation: K3 = f−1(ZL⊕YL)�YR.

Our 8-round attack is a variant of Isobe’s MITM attack, given two 8-round
input-output pairs (I,O) and (I∗, O∗):

1. For each possible value of the 64-bit word Y = (YL, YR) obtained after 4
encryption rounds of I:
(a) Apply the 4-round attack on (I, Y ) to obtain 264 candidates for K1–K4.
(b) Partially encrypt I∗ using the 264 candidates and store Y ∗ = (Y ∗L , Y

∗
R)

in a list with K1–K4.

5 The Feistel structure of GOST does not require bijective Sboxes and the published
standard does not discuss this issue, but all the known choices of Sboxes happen to
be bijective (perhaps due to the weakness of non-bijective Sboxes against differential
cryptanalysis).

6 In case f is not bijective, then for a random (XL, XR) and (YL, YR) there exist
an average of 264 equivalent keys which can be found using a simple preprocessing
MITM algorithm that requires about 264 time and memory.



(c) Apply the 4-round attack on (Y,O) to obtain 264 candidates for K5–K8.
(d) Partially decrypt O∗ using each one of the 264 candidates and obtain

Y ∗ = (Y ∗L , Y
∗
R).

(e) Search the list obtained in step (b) for Y ∗, and test the full 256-bit keys
for which there is a match.

The expected time complexity of steps (a–d) is about 264 (regardless of the
algorithm that is used to find the equivalent keys). The time complexity of step
(e) is also about 264 since we expect to try about 264+64−64 = 264 full keys. Steps
(a–e) are performed 264 times, hence the total time complexity of the attack is
about 2128 GOST encryptions, which is similar to the first attack. However, the
memory complexity is significantly reduced from 2128 to slightly more than 264

words of 64 bits.

XL XR
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�
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Fig. 4. Four Rounds of GOST

5 A New Attack on 8 Rounds of GOST with Lower
Memory Complexity

Simple meet-in-the-middle attacks, such as the ones described in Sections 4.1 and
4.2 are much faster than exhaustive search for the entire 256-bit key. However,
they do not fully exploit the slow diffusion of the key bits in 4 rounds of GOST.
As a result, these MITM attacks use a large amount of memory to store the many
intermediate encryption values obtained for all the possible values of large sets of
key bits. In this section, we describe an improved 8-round attack which exploits
the slow diffusion properties of 4 rounds of GOST in order to reduce the memory
complexity from the impractical value of 264 to the very practical value of 219



words of memory, with a very small time complexity penalty. The main idea of
this attack is to guess the 4 round keys K5–K8 and apply an optimized “Guess
and Determine” attack on the remaining 4 rounds using two input-output pairs.
In the 4-round attacks we have 128-bits of unknown key and 128 bits of input-
output pairs. Thus, we expect that only one value for K1–K4 exists (although
there are likely to be input-output pairs for which the encryptions of the inputs
does not match the outputs for any of the keys, and input-output pairs for which
the encryptions of the inputs matches the outputs for several values of K1–K4).

In the rest of this section we describe the algorithm for deriving the 32 bits
of K1 and the 32 bits of K4. Afterwards, deriving the values of K2 and K3 is
immediate using the third and forth equations of Section 4.2 (ZL and ZR are
known from the first and second equations).

5.1 Overview of the “Guess and Determine” Attack on 4-Round
GOST

Now that we deal with 4-round GOST, we apply a typical “Guess and Deter-
mine” attack which traverses a tree of partial guesses for the round keys K1

and K4 and intermediate encryption values. The tree is composed of layers of
nodes `i for integral 0 ≤ i ≤ k, where each layer contains nodes that specify
the potential values (i.e. guesses) for a certain subset of key and intermediate
encryption values. In each layer we expand each node by guessing the values of
a small number of additional key bits and state bits that are needed to calculate
some intermediate encryption bits, both from the encryption and the decryp-
tion sides. We then calculate the bits by evaluating the Feistel structure from
both sides on a small number of bits, compare the values obtained, and discard
guesses in which the values do not match (i.e., we discard child nodes that do
not satisfy a predicate which checks the consistency of intermediate encryption
values).

We traverse the partial guess tree starting from the root using DFS (which
requires only a small amount of memory). In our attack, the nodes of the last
layer of the tree `k contain guesses for the full key, which can be verified using
trial encryptions.

The total number of operations performed during the traversal is proportional
to the total number of nodes in the tree. However, the operations performed when
expanding a single node work only on a few bits (rather than on full words). At
the same time, when expanding a full path of nodes in the tree from the root
to the last layer, we work on the full-size Feistel structure to obtain a guess
for the full key. Hence, we estimate the time complexity of expanding a full
path by a single Feistel structure evaluation on a full 64-bit input. Using this
estimation, we can upper bound the time complexity of the tree traversal (in
terms of Feistel structure evaluations) as the width of the tree, or the size of
the layer which contains the highest number of nodes. Note that when counting
the number of nodes in a layer for the time complexity analysis, we must also
include nodes that were expanded and discarded since they do not satisfy the
predicate of the previous layer.



5.2 Notations

Assume that we have two input-output pairs for 4 encryption rounds of GOST
under the subkeys K1,K2,K3,K4. Similarly to Section 4.2, denote the input,
output and middle values (after using K2) for the first pair by (XL, XR), (YL, YR)
and (ZL, ZR), respectively. For the second pair, denote these values by (X∗L, X

∗
R),

(Y ∗L , Y
∗
R) and (Z∗L, Z

∗
R) respectively.

Since our attack analyzes 4-bit words (which are outputs of single Sboxes),
we introduce additional notations: Define the functions f0, f1, ..., f7 where each
f i takes a 4-bit word as an input, and outputs a 4-bit word by applying Sbox i
to the input. Denote by W i the i’th bit of the 32-bit word W , and by W i,j the
(j − i + 1)-bit word composed of consecutive bits of W starting from bit i and
ending at bit j. We treat W as a cyclic word, and thus W 24,3 contains 12 bits
which are bits 24 to 31 and 0 to 3 of W .

5.3 An Attack on 4 Rounds of Simplified GOST

We start by describing an attack on 4 rounds of a simplified variant of GOST
(which we call S-GOST), in which the round-key addition is replaced by XOR,
and the 11-bit rotation is replaced by 12-bit rotation. The simplified variant is
easier to analyze since it provides much slower diffusion of the key bits compared
to full GOST: unlike addition, the XOR operation does not produce carries, and
since 12 is a multiple of 4, rotating by 12 bits implies that the output of any
Sbox effects the input of only a single Sbox in the next round.

We now describe the basic procedure preformed by a node in layer 0 of
our guess tree for S-GOST. The procedure requires the value of K0,3

1 (whose
value we guess before executing the procedure), and expands nodes in the next
layer, which suggest a value for the additional 4 bits of K20,23

4 . The steps of this
procedure can be easily verified using a variant of Figure 4 where the addition
is replaced by XOR.

1. Given K0,3
1 and X0,3

R , compute Z12,15
L ≡ f0(X0,3

R ⊕K0,3
1 ) for both pairs (i.e.,

given K0,3
1 and X∗0,3R , compute Z∗12,15L ≡ f0(X∗0,3R ⊕K0,3

1 )).

2. Obtain f0(Z0,3
R ⊕K0,3

3 ) ≡ Z12,15
L ⊕Y 12,15

L for both pairs. Then, invert7 f0 to

obtain Z0,3
R ⊕K0,3

3 and Z∗0,3R ⊕K0,3
3 .

3. XOR the two expressions calculated in step 2, to eliminate K0,3
3 , and obtain

the value of Z0,3
R ⊕ Z∗0,3R .

4. XOR the 4-bit difference obtained in step 3 to the difference Y 0,3
R ⊕ Y ∗0,3R

and obtain the value of T = Z0,3
R ⊕ Y 0,3

R ⊕ Z∗0,3R ⊕ Y ∗0,3R ≡ (f(YL ⊕K4) ⊕
f(Y ∗L ⊕K4))0,3 (from the encryption side).

5. For each of the 24 possible values of K20,23
4 :

(a) Allocate a node in the next layer.

7 We expect one solution on average. However, in case the inversion has more than
one solution, we need to try each one. In case the inversion has no solution, we can
discard the node.



(b) Evaluate the expression f5(Y 20,23
L ⊕K20,23

4 )⊕ f5(Y ∗20,23L ⊕K20,23
4 ) from

the decryption side by plugging the current value of K20,23
4 into the

expression. Discard nodes which do not agree with the value T .

Note that given K0,3
1 , we expect the procedure above to process a single child

in the next layer: in step 5 we have a 4-bit condition on 4 bits of the key K20,23
4 ,

and thus we expect one node to satisfy the predicate. Moreover, step 5 can be
optimized by using a small amount of precomputation and memory in order to
calculate in advance the solutions to the 4-bit condition (as described in the full
version of this paper [6]).

We now generalize the procedure above in order to derive more key bits in a
similar way:

– Since encryption and decryption are completely symmetric (except the order
of the subkeys), steps 1–5 can also be performed from the decryption side:
in steps 1–5 we use the value of K0,3

1 in order to obtain the value of K20,23
4 ,

and thus we define the symmetric steps 6–10 which use the value of K20,23
4

in order to obtain the value of K20+20,23+20
1 , i.e. K8,11

1 .
– Given any integer 0 ≤ i ≤ 7, we can rotate the indices of all the 32-bit

words in steps 1–10 by 4i bits. Namely, given i, we define analogues steps
1–10 which use the value of K4i,4i+3

1 to obtain the value of K4i+20,4i+23
4 and

K4i+8,4i+11
1 .

In order to derive the full 32-bit values of K1 and K4, we define a tree which
contains 9 layers `0, `1, ..., `8 (and an additional root node). The nodes of each
layer are expanded using the generalized procedure which uses 4 bits of K1 in
order to derive 4 additional bits of K1 and 4 additional bits of K4. Since the 10
steps of the procedure for expanding the nodes of layers 0–7 are basically the
same, we call this procedure an iteration, and index it according to the value of
i (which determines the 4-bit chunks that we work on).

5.4 Extending the Attack to 4 Rounds of the Real GOST

In order to extend the iteration procedure from S-GOST to full GOST, we need
to make several adjustments. The most significant adjustments are given below:

– Since the round keys are added (and not XORed) to the state, we have to
guess the carry bits into the LSBs of several addition operations of 4-bit
words. For example, in the expression f5(Y 20,23

L � K20,23
4 ) ⊕ f5(Y ∗20,23L �

K20,23
4 ) evaluated in step 5, we have to guess two carry bits (one for Y 20,23

L

and one for Y ∗20,23L ).
– GOST uses 11-bit rotation (instead of 12-bit rotation), and thus the 4-bit

chunks that we work on in each iteration are not aligned. Consequently, we
have to guess additional state bits in order to compare the evaluation of the
4-bit predicates from both sides. For example, since 20 + 11 = 31, in step 5
of the iteration we actually calculate (f(YL⊕K4)⊕f(Y ∗L ⊕K4))31,2 from the
decryption side. Thus, we additionally guess bit 31 of this expression from
the encryption side.



These adjustment create strong dependencies between iterations with con-
secutive indexes (i.e., i and i + 1), namely:

– The carry bits required by iteration i + 1 are known after iteration i. For
example, iteration 1 requires the carry into bit 24 of the addition operation
YL �K4 (in order to calculate f6(Y 24,27

L �K24,27
4 )⊕ f6(Y ∗24,27L �K24,27

4 ) in
step 5). This bit can be calculated after step 5 of iteration 0, where the 4-bit
value of Y 20,23

L �K20,23
4 is calculated in order to evaluate the predicate.

– The state bits required by iteration i + 1 are known after iteration i. For
example, iteration 1 requires calculation of bit 3 of the expression f(YL �
K4) ⊕ f(Y ∗L � K4) from the encryption side. However, this bit is already
guessed in step 4 of iteration 0.

This suggests that we perform the iterations in their natural order, namely
assign layer `i iteration i for 0 ≤ i ≤ 7. As a result, we need to guess carry and
state bits only in the first iteration. Afterwards, the required carry and state bits
for each iteration can be calculated by the knowledge from the previous one. On
the other hand, we pay a (relatively small) penalty on key bit guesses since key
bits required by iteration i + 2 are derived in iteration i (and not in iteration
i+ 1). Since iteration i requires key bits K4i,4i+3

1 , we need to guess 4 key bits in
both iterations 0 and 1 (K0,3

1 and K4,7
1 ). For iterations i ≥ 2, the required key

bits are already derived in previous iterations (as shown in Table 2).
We note that since there is no carry into the LSBs of addition operations,

starting the process with iteration 0 has the advantage that we do not need to
guess the carries for all the addition operations (e.g., we do not need to guess
the carry into the addition f0(X0,3

R �K0,3
1 ) in step 1).

The full details and analysis of the “Guess and Determine” attack are given
in the full version of this paper [6], most of which is not required in order to
understand the rest of this paper. It shows that the expected number of nodes
in the widest layer of the partial guess tree is 214, and it is obtained at iterations
1 to 5 (this was also verified using simulations performed on a PC). Basically,
the number 214 is obtained due to the 8 key-bit guesses (K0,3

1 and K4,7
1 ) and

6 additional carry and state bit guesses in iteration 0. This gives an expected
time complexity of about 214 4-round Feistel structure evaluations for two input-
output pairs, which is equivalent to about 212 full GOST evaluations. Since we
apply this 4-round attack 2128 times, the time complexity of the 8-round attack
is about 2128+12 = 2140 GOST evaluations. In terms of memory, the attack has
a completely practical complexity of 225 bits, which is equivalent to 219 64-bit
words.

6 A New 2-Dimensional Meet-in-the-middle Attack on 8
Rounds of GOST

In this section, we present a new attack on 8 rounds of GOST given two input-
output pairs, which combines the ideas of the “Guess and Determine” attack



Iteration 0 1 2 3 4 5 6 7

K1 bits derived 0–3 4-7 8–11 12–15 16–19 20–23 24–27 28–31
8–11 12–15 16–19 20–23 24–27 28–31 0–3 4–7

K4 bits derived 20–23 24–27 28–31 0–3 4–7 8–11 12–15 16–19
The key bits which are already known from previous iterations are underlined.

Table 2. The key bits derived in each iteration

(which progresses horizontally across the state) and the MITM attack (which
progresses vertically across the rounds). Unlike the attack of the previous section,
we do not guess the last 4 round keys in advance. Instead, we divide the 8-round
Feistel structure horizontally by splitting it into a top part, which uses round
keys K1–K4, and a bottom part, which uses round keys K5–K8.

Our main observation is that due to the slow diffusion of the data bits into
the state, we can run a substantial part of the “Guess and Determine” attack of
Section 5 with very partial knowledge of Y and Y ∗ (obtained after 4 rounds of
encryption). This allows us to split the “Guess and Determine” attack into two
partial 4-round attacks which we run a relatively small number of times (once for
each value of the bits of Y and Y ∗ that it requires). Our full 4-round attacks on
the top and bottom parts combine the suggestions of the partial attacks in order
to suggest values for the 4-round keys. Finally, we use an 8-round attack which
joins the suggestions of the two partial attacks in order to obtain suggestions for
the full 256-bit key.

Schematically, we split the top and bottom parts of the block cipher vertically
into two (potentially overlapping) cells, such that on each cell we execute an
independent partial attack to obtain suggestions for some subset of key bits. We
then join all the suggestions to obtain suggestions for the full key using three
MITM attacks. This can be visualized using a 2× 2 matrix (as shown in Figure
5), where the horizontal line separates the four initial and final rounds of the
8-round block cipher, and the dashed vertical line separates the left and right
cells in each one of the top and bottom parts.

After the MITM attacks on the top and bottom parts of the Feistel structure,
we obtain 2128 suggestions for K1–K4 and 2128 suggestions for K5–K8, each
accompanied by corresponding 128-bit values of Y and Y ∗. Note that so far
we did not filter out any possible keys, and thus the final MITM attack, which
compares the 128-bit values of Y and Y ∗ to obtain about 2128 suggestions for
the full key, is essentially the basic MITM attack of Section 4.1, which would
normally require 2128 memory.

To reduce the memory consumption, we guess many of the 128 bits of Y and
Y ∗ in advance (in the outer loop of the 8-round attack). For each possible value
of those bits, we execute the 2DMITM (2-dimensional MITM) attack described
above, but obtain fewer suggestions for the key which we have to store. This
increases the number of times that we execute the partial 4-round attacks and
could potentially increase the overall time complexity of the full 8-round attack.
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Fig. 5. The general framework of the 2-dimensional meet-in-the-middle attack

However, this is not the case, as the partial 4-round attacks are relatively efficient
(the time complexity of each one is at most 218) and is executed only 282 times.
Thus, the partial 4-round attacks are not the bottleneck of the time complexity
of the attack.8

6.1 Details of the 8-Round Attack

Formally, we define the following sets which contain bits of Y and Y ∗:

– S1 is the set of bits that we guess in the outer loop of the 8-round attack.
– S2 is chosen such that S1

⋂
S2 = ∅, and S1

⋃
S2 is the minimal set that

contains all the bits of Y and Y ∗ which are required by the partial 4-round
attack on the left cell of the top part.

– S3 is chosen such that S1

⋂
S3 = ∅, and S1

⋃
S3 is the minimal set of bits

which are required by the partial 4-round attack on the right cell of the top
part.

For the bottom MITM attack, we define S4 and S5 in a similar way to S2

and S3, respectively. Note that since the 4-round attacks on both the top and
bottom parts require all the 128 intermediate bits, S2

⋃
S3 = S4

⋃
S5.

The details of the 4-round attacks are given in the next section. We now refer
to them as black boxes, and give the algorithm of the full 8-round attack:

1. For each value of the bits of the set S1:
(a) Perform the 4-round attack on the top part of the Feistel structure, and

obtain a list with values of K1–K4, sorted according to the value of the
bits of S2

⋃
S3.

8 Note again that we expect about 2128 keys to fulfill the filtering conditions of the
two input-output pairs. Thus, the time required for the attack to list all of them
cannot be reduced below 2128 (without exploiting additional filtering conditions).



(b) Perform the 4-round attack on the bottom part of the Feistel structure.
For each value of S4

⋃
S5 = S2

⋃
S3 (given along with the value of K5–

K8), search the list obtained in the previous step of matches. For each
match test the full key K1–K8.

6.2 Details of the 4-Round Attacks

We concentrate first on the top part of the 8-round Feistel structure: each one
of the two partial 4-round attacks on the top part sequentially executes a subset
of the iterations defined in Section 5, and is called an iteration batch. The first
(left) iteration batch executes iterations 0–3, and the second (right) executes
iterations 4–7.

After performing iteration batches 0–3 and 4–7 independently, we get sug-
gestions for the values of some key bits, along with some carry and state bits.
We then discard inconsistent suggestions by comparing the values of the com-
mon bits that are derived by batches. We partition these bits into three groups
(which are fully specified in the full version of this paper [6]):

– G1 contains 16 key bits which are derived by both of the left and right
batches.

– G2 contains 6 carry and state input bits that we guess in iteration 0. These
bits are also contained in the set of output bits of iteration 7 (of the right
batch), and can thus be used to discard inconsistent suggestions made by
the two batches.

– G3 contains 10 carry and state input bits that we guess in iteration 4. This
bits are also contained in the set of iteration output bits of iteration 3 (of the
left batch), and can thus be used to discard inconsistent suggestions made
by the two batches.

Assume that the values of all the bits of S1 are known. We now give the
algorithm of the MITM attack performed on the top part of the 8-round Feistel
structure:

1. For each value of the bits of S2, perform the left batch. Save all the nodes
of the final layer in a list. These nodes contain the values 40 bits of K1 and
K4 (including the values of the bits of G1), and also the values of the bits of
G3. In addition to the information obtained by each node, save the value of
the initial guess of the bits of G2, and the value of the bits of S2 per node.
Sort the list according to the values of G1,G2 and G3.

2. For each value of the bits of S3, perform the right batch. For each node in the
final layer obtain the value of the bits of G1,G2 and G3 and search the list
obtained in the first step for their value. For each match, save the value of
the full K1–K4 in a sorted list according to the value of the bits of S2

⋃
S3.

The iteration batches of the MITM attack on the bottom part of the Feistel
structure are performed from the decryption side and are completely analogous



to the iteration batches on the top part (i.e. in iteration 0, we start by guessing
K0,3

8 , and derive K20,23
5 and K8,11

8 ). We also define analogous sets to G1,G2 and
G3 for the bottom part.

The specific choices of S1–S5 are given in the full version of this paper [6].
This choice of sets satisfies |S1| = 92 and |S2| = |S3| = |S4| = |S5| = 18.

We now analyze the complexity of the MITM attack on the top part of the
Feistel structure: as specified in the full version of this paper [6], when starting
the iteration batch from iteration 0, the expected maximal size of the tree is 214.
It is obtained after iteration 1, and is maintained until the end of iteration 5
(even though we do not perform 5 consecutive iterations in this attack). The time
complexity of the first step of the attack is thus about 2|S2|+14 = 214+18 = 232,
and this is also the size of the sorted list at the end of the first step. The
maximal size of the tree of the iteration batch 4–7 is 214+4 = 218 (as described
in the full version of this paper [6], we have to guess 4 more carry bits compared
to iterations 0–3). Thus, the time complexity of expanding the tree in the second
step is 2|S3|+18 = 236. The time and memory complexities of the remainder of
step 2 (in which we match the batches) are 2|S2|+|S3|+14+18−(|G1|+|G2|+|G3|) =
2|S2|+|S3|+14+18−(16+6+10) = 2|S2|+|S3| = 236. Note that it is not surprising that
the time and memory complexities of the matching part of the attack reduce to
2|S2|+|S3|, since given the full 128-bit intermediate value, we expect that only one
key survives the filtering conditions. Altogether, the memory complexity of the
top MITM attack is about 236 64-bit words. The time complexity is dominated
by step 2 and is equivalent to about 236 4-round Feistel structure evaluations,
which is equivalent to about 233 evaluations of the full GOST cryptosystem. For
the bottom MITM attack, we obtain the same time and memory complexities,
since the sizes of S4 and S5 are equal to the sizes of S2 and S3, and the sets
corresponding to G1, G2 and G3 are completely symmetrical.

6.3 The Complexity of the 8-Round Attack on GOST

We can now analyze the complexity of the attack described in Section 6.1: The
time complexities of each of the MITM attacks on the bottom and top parts
in steps (a) and (b) are equivalent to about 236 4-round Feistel structure eval-
uations, as calculated above. The number of expected matches for which we
run the full cipher in step (b) is 236+36−36 = 236. Hence, the time complex-
ity of these steps is equivalent to a bit more than 236 full GOST evaluations.
Since |S1| = 92, the total time complexity of the attack is equivalent to about
292+36 = 2128 GOST evaluations. The total memory complexity of the attack is
about 236 64-bit words, and is dominated by the sorted list calculated in step
(a).

7 Conclusions and Open Problem

In this paper we introduced several new techniques such as the fixed point prop-
erty and two dimensional meet in the middle attacks, and used them to greatly



improve the best known attacks on the full 32-round GOST. In particular, we
reduced the memory complexity of the attacks from an impractical 264 to a prac-
tical 236 (and to an even more practical 219 complexity, which can fit into the
cache of modern microprocessors, with a small penalty in the running time). The
lowest time complexity of our attacks is 2192, which is 232 times better than pre-
viously published attacks but still very far from being practical. Consequently,
we are concerned about the demonstrated weaknesses in the design of GOST
(especially in its simplistic key schedule), but do not advocate that its current
users should stop using it right away.

The main open problems left in this paper are whether it is possible to find
faster attacks, and how to better exploit other amounts of available data (in
addition to the 232 and 264 complexities considered in this paper, which are the
natural thresholds for our techniques).
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