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Abstract. In this invited talk, a brief survey on the developments of
countermeasures against differential and linear cryptanalysis methods is
presented.

1 Nonlinearity of S-boxes

Throughout the eighties the unpublished design criteria of the DES had inspired
various authors to invent formal nonlinearity criteria for S-boxes such as the
strict avalanche criterion [30] and the propagation criterion [27]. At the same
time, correlation attacks on combination generators inspired definitions of corre-
lation immunity [29] and perfect nonlinearity [21] of Boolean functions. W. Meier
and O. Staffelbach realized that perfect nonlinear Boolean functions had been
invented before under the name bent functions [28,12]. Then the discovery of
the differential cryptanalysis method [4] lead to the notion of perfect nonlinear
S-boxes [22], with the property that for any non-zero input difference the output
differences are uniformly distributed. In particular, the output difference zero
would occur with the same probability as the non-zero output differences and
would significantly improve the probability of the two-round iterative character-
istic for a Feistel cipher as pointed out to the author by E. Biham at Eurocrypt
1991. It also means that perfect nonlinear S-boxes cannot be bijective, even
worse, the number of input bits must be at least twice the number of output
bits [22].

It was clear that the requirement of perfect nonlinearity must be relaxed.
But it was not sufficient to take care that the output bits were highly nonlinear
Boolean functions as in [26], but also all non-zero linear combinations of the
output bits should be highly nonlinear as noted in [23], where the definition of
nonlinearity of a vector Boolean function was formulated. The importance of
nonlinearity as a cryptographic criterion was highlighted even more as the linear
cryptanalysis method was presented by M. Matsui in 1993 [20]. The relationship
between nonlinearity (resistance against linear cryptanalysis) and differential
uniformity (resistance against differential cryptanalysis) was established in [8].
Since then H. Dobbertin and C. Carlet followed by many other authors have
contributed with combinatorial designs and constructions that are almost perfect
nonlinear (APN) or satisfy other nonlinearity criteria of S-boxes.



2 CRADIC

We observed that if the differential probabilities of a round function of a Feistel
cipher are bounded from above, then also the differential probabilities over four
rounds of the cipher are bounded by a significantly smaller bound. There is a
penalty of allowing zero output difference as noted by E. Biham, but it takes
only one more round to achieve the same security level. In [25] we formulated
and proved the following theorem.

Theorem 1. (KN Theorem) It is assumed that in a DES-like cipher with f :
Fm2 → Fn2 the round keys are independent and uniformly random. Then the
probability of an s-round differential, s ≥ 4, is less than or equal to 2p2max.

Here

pmax = max
β

max
αR 6=0

Pr[αL + f(E(X + αR)) +K) + f(E(X) +K) = βR]

≤ pf = max
b

max
a 6=0

Pr[f(Y + a) + f(Y ) = b]

If f bijective, then the claim of the KN Theorem holds for s ≥ 3, in which case
the multiplier 2 can be removed [1].

The high nonlinearity of the Cube function f(x) = x3 in F2n had been
observed already in [26]. It is bijective for odd n only, so we made one-bit ad-
justments to it, so that it was possible to fit it into a balanced 2(n − 1)-bit
Feistel cipher as a round function. We called this cipher CRADIC, as Cipher
Resistant Against DIfferential Cryptanalysis, but in public it became known as
KN Cipher. The cipher was later broken using algebraic cryptanalysis making
use of the low degree of the Cube monomial.

Since then, designers of block ciphers continue using small nonlinear S-boxes
in the spirit of C. Shannon. Would it be possible to use a monolithic algebraic
construction? Recently, the Discrete Logarithm function was proved to achieve
optimum algebraic immunity [7]. Let α generator of the multiplicative group F∗2n
and set

f(x) =

{
logα(x), for x 6= 0
(1, 1, . . . , 1, ) for x = 0.

Then f gives an n-bit S-box. Previously, it is known that any single output
bit of f exhibits asymptotically low correlation with linear functions [6]. The
correlations are bounded from above by

O(n 2−n/2).

But no useful general upper bound is known to the linearity of combinations of
output bits. The known bounds increase exponentially as the length of the linear
mask grows [7,14]. Later we managed to establish a smaller bound where the
increase is exponential with respect to the number of output bits involved, that
is, the Hamming weight of the mask. In experiments, however, it seems that the
linearity does not grow exponentially but essentially slower. It remains an open
question, whether CRADIC would be secure if the Cube function were replaced
by the Discrete Logarithm function.



3 Linear Hulls

The essential notion in the KN Theorem is differential first introduced in [18].
The approach taken in this work was to model an iterated block cipher as a
stochastic process and assume that the rounds are independent. This can be
achieved for a key-alternating cipher by selecting the round keys to be statisti-
cally independent and then taking the average over all keys. Under the hypothesis
of stochastic equivalence it is then possible to draw conclusions about the be-
haviour of the cipher for a fixed unknown key. We adopted the same stochastic
model and introduced in [24] the concept of linear hull and proved the following
result for the expected squared correlation.

Theorem 2. (Linear Hull Theorem) Let X, K and Y be random variables in
Fm2 , F`2, and Fn2 , resp. where Y = F (X,K) and X and K are independent. If K
is uniformly distributed, then for all a ∈ Fm2 and b ∈ Fn2 ,

ExpKcorr(a ·X + b · Y )2 =
∑
c∈F`2

corr(a ·X + b · Y + c ·K)2.

Here, for random variable Z in Z (binary strings) we defined

corr(u · Z) =
1

|Z|
∑
z∈Z

Pr[z](−1)u·z. (1)

Then the linear hull (originally called as approximate linear hull) was defined as
the set of all linear approximations

ALH(a, b) = {a ·X + b · Y + c ·K | c ∈ F`2}

of plaintext, ciphertext and key, with fixed input and output masks a and b, but
letting the key mask vary. Thus taking squares of the correlations and summing
over c gives the average correlation over the cipher with plaintext mask a and
ciphertext mask b.

J. Daemen abandoned the Markov cipher model and took the fixed key ap-
proach [11]. He investigated correlations of linear approximations over a key
alternating block cipher E, with round functions x 7→ fi(x + Ki), and fixed
set of round keys K0, . . . ,Kr. Given vector Boolean function: f : Fn2 7→ Fm2
with f = (f1, . . . , fm),, where b · f are Boolean functions, for all b ∈ Fm2 , the
correlation between b · f(x) and a · x is defined by

cf (a, b) =
1

2n
(#{x ∈ Fn2 | b · f(x) = a · x} −#{x ∈ Fn2 | b · f(x) 6= a · x})

Then the correlation of a composed function computed as the matrix product

cf◦g(a, b) =
∑
u

cg(a, u)cf (u, b),

from where we obtain



cE(u0, ur) =
∑

u1,...,ur−1

(−1)u0·K0+...+ur·Kr
r∏
i=1

cfi(ui−1, ui),

where u0 and ur are the linear masks of data after 0 and r rounds of encryp-
tion, respectively. This result holds for all fixed keys. By taking the squares and
averaging over uniformly distributed and independent keys we get as a corollary

AverageK0,...,KrcE(u0, ur)
2 =

∑
u1,...,ur−1

r∏
i=1

cfi(ui−1, ui)
2.

This result was given in [24] for the special case of DES. Related to this, let
us also observe that the correlation of a single trail of a linear hull, taken over
plaintext, ciphertext and key, gives another presentation of the piling-up lemma

corr(a ·X + b · Y + c ·K) =

r∏
i=1

cfi(ui−1, ui),

where a = u0, b = ur, and c is in unique correspondence with the trail masks
u1, . . . , ur−1.

Finally let us make an observation of the effect of key scheduling, which
should be designed in such a way that the magnitudes of the correlations

cE(u0, ur) =
∑

u1,...,ur−1

(−1)u0·K0+...+ur·Kr
r∏
i=1

cfi(ui−1, ui)

do not vary too much with the key. This can be achieved if all dominating trail
correlations are of about equal magnitude and the map:

(u1, . . . , ur−1) 7→ sign

(
r∏
i=1

cfi(ui−1, ui)

)

is highly nonlinear. Then the correlations |cE(u0, ur)| are bounded by the small
linearity bound. Known examples of mappings with highly nonlinear correlation
sign functions are bent functions and the Cube function. For bent functions the
sign function is also bent. For the Cube function, correlations are zero in a half
space while restricted in the other half space the sign function is bent.

4 Provable Security in Practice

It would be easier to achieve security guarantees against differential and linear
attacks for round functions composed of a highly nonlinear monolithic design.
In case of substitution permutation networks and similar designs such as AES,
cryptographers must work harder. The basic approach is to design the diffusion
layer in such a way that the minimum number of active S-boxes involved in
the attack is large enough to make the linear trail correlations and differential



characteristic probabilities sufficiently small. To achive this goal, the designers
of the AES used MDS matrices for creating larger S-boxes and the Wide-Trail
Strategy for ensuring diffusion of trails over the entire width of the cipher [10].
Then obtaining any useful upper bounds to linear correlations and differential
probabilities becomes hard. The best known upperbounds for 4 and more rounds
are due to L. Keliher [16].

The block cipher PRESENT makes use of bit permutations between rounds
for optimal diffusion [5]. Its hardware optimized S-box exhibits, however, strong
linear correlations for single-bit masks. Consequently, fairly accurate estimates
of correlations can be obtained using single-bit linear approximation trails. As
demonstrated in [9], linear hull effect is significant and therefore linear attacks are
more powerful than initially estimated by the designers. The other side of the coin
is that now we have better estimates of resistance of PRESENT against linear
attacks. Can the linear hull effect for PRESENT be computed with sufficient
accuracy using single-bit trails only is an interesting question.

5 Linear Approximations and Distributions

The correspondence between correlations of linear projections and probability
distributions has been well-known for cryptographers since at least [2] but not
exploited in cryptanalysis until in the multidimensional linear cryptanalysis [15].
It allows to use a number of linear approximations simultaneously. More gener-
ally, let Z be a vector of (binary) random variables over domain Z. By applying
the inverse Walsh-Hadamard transform to (1) we get

pz = Pr[z] =
∑
u∈Z

corr(u · Z)(−1)u·z.

In cryptanalysis, Z is a random variable, which can be sampled from cipher
data, such as multidimensional linear approximation, difference, or ciphertext
from chosen biased plaintext, anything expected to have non-random behaviour.
In this sense, linear approximations, that is, linear projection z 7→ u · z gives a
universal tool for analyzing probability distributions. For example, G. Leander
used it to prove that the statistical saturation attack averaged over the fixations
and the multidimensional linear cryptanalysis attack are essentially the same
[19].

This approach is not restricted to binary variables but can be extended to
any finite group. For example, projections x 7→ ux mod p, for p prime, have been
used in cryptanalysis of block ciphers with non-binary diffusion layer [3]. This
leads to the following generalized notion of correlation

cf (u,w) =
1

q

∑
x∈Zq

e
2πi
p wf(x)e−

2πi
q ux

for a function f : Zq → Zp and positive integers p and q. The generalized
bent functions achieve the smallest linearity with respect to generalized cor-
relation [17]. The Discrete Logarithm function for integers is another example



with known asymptotic upper bound of linearity [13]. This upperbound is of the
same magnitude than the bound conjectured to the binary Discrete Logarithm
function.

Given such Z related to a cipher, how many samples of Z is needed to
distinguish it from a true random variable? If the distribution of Z is close to
uniform, then the answer can be given in terms of the capacity of the distribution
Z defined as follows:

C(Z) = M
∑
z∈Z

(pz −
1

M
)2,

where M = |Z|. Using the relationship between the distribution and correlations
we obtain

C(Z) =
∑
u 6=0

|corr(u · Z)|2.

Let us summarize the known upper bounds of data complexities for two
commonly used distinguishers.

The strongest distinguisher based on the log-likelihod ratio (LLR) requires
good knowlege of the probability distribution of Z. If it is available, then the
data requirement of the LLR distinguisher can be given as:

NLLR =
λ

C(Z)
,

where the constant λ depends only on the success probability.
In cryptanalysis, the variable Z and its probability distribution typically

depend on the unknown key. While the χ2 distinguisher is less optimal than the
LLR, it can be used also in this case, as it does not require knowledge of the
distribution of Z. Its data requirement is

Nχ2 =
λ′
√
M

C(Z)
, where

λ′ ≈ (
√

2 + 2)Φ−1(PS) ≈ λ.

Cryptanalysts aim at minimizing the data complexity. To be able to use the LLR
bound, they must make convincing arguments that LLR works. Else they are left
with the higher value given by the χ2 complexity bound. Cryptographers want
to work in the opposite direction and claim as high values as possible for the data
complexity. In general, provable security may be difficult to achieve given only
such upper bounds of average data complexities. It takes practical experiments
and other evidence to see what the actual distinguishing data complexities are
and how much they vary with the keys.
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