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Abstract. We present new attacks on the Feistel network, where each
round function consists of a subkey XOR, S-boxes, and then a linear
transformation (i.e., an SP round function). Our techniques are based
largely on what they call the rebound attacks. As a result, our attacks
work most effectively when the S-boxes have a “good” differential prop-
erty (like the inverse function x 7→ x−1 in the finite field) and when the
linear transformation has an “optimal” branch number (i.e., a maximum
distance separable matrix). We first describe known-key distinguishers on
such Feistel block ciphers of up to 11 rounds, increasing significantly the
number of rounds from previous work. We then apply our distinguishers
to the Matyas-Meyer-Oseas and Miyaguchi-Preneel modes in which the
Feistel ciphers are used, obtaining collision and half-collision attacks on
these hash functions.
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1 Introduction

The security of block ciphers usually relies on the fact that the key value is kept
secret in its encryption and decryption process. However, recently cryptographers
have become interested in the security of block ciphers when the key value is
known to the attackers. That is, in the traditional secret-key setting, it is the
randomness and secrecy of a key that guarantees security of block ciphers. On the
other hand, in the known-key setting, the value of the key is revealed to attackers;
it becomes only the randomness of the key that retains (some) security of the
cipher.

In practical applications, block ciphers are indeed used in such a way as
their key values are known publicly. A typical example is the hash function con-
structed from block ciphers, including the Davies-Meyer (DM), Matyas-Meyer-
Oseas (MMO) and Miyaguchi-Preneel hashing modes. In particular, the latter
two modes make the known-key setting potentially relevant, because a known
and essentially random (at least not under the attacker’s full control) value is
fed into the key input of the block cipher.

Recently, many papers have been published in the context of known-key at-
tacks. In particular, there have been quite a few results on AES and Rijndael [13,



19, 17, 12, 24]. Among them is the work by Gilbert and Peyrin [12] of a known-key
distinguisher on AES, which is one of the few attacks that can break 8 rounds
of AES-128.1

On the other hand, there appear to be only a couple of results that analyzed
the known-key security of the Feistel network [13, 8]. Both pieces of work assume
that a round function consists of a key XOR followed by a mixing function. In
practice, the “mixing function” part is frequently realized by a combination of
S-boxes (Substitution boxes) and a linear transformation.

In this paper, we show new attacks on the Feistel network. We consider the
Feistel network which has SP round functions. That is, we assume that a round
function consists of an XOR with a subkey, S-boxes, and then a linear matrix P .
Our attacks work effectively up to 11 rounds, improving over the previous best 7
rounds.2 We first present known-key distinguishers on such Feistel block ciphers
and then translate them to collision and half-collision attacks on the MMO and
Miyaguchi-Preneel hashing modes using these ciphers.

Our techniques are based on the so-called rebound attacks. Consequently,
in our attacks we assume “attacker-unfriendly” properties of S-boxes and of P .
Though not mandatory, these properties make our attacks most effective to work
and simplest to describe. More specifically, we assume that the S-boxes have
low maximum differential probabilities (like the multiplicative inverse function
x 7→ x−1 in the finite field) and that the linear transformation P is an MDS
(maximum distance separable) matrix. These are believed to be “good” choices
of S-boxes and of P for designing a secure symmetric-key primitive.

Organization of the Paper. In Sect. 2 we review previous work, basic no-
tions, and the rebound attacks. We present our new distinguishers on the Feistel
network in Sect. 3 and apply them to the MMO and Miyaguchi-Preneel hashing
modes in Sect. 4. In Sect. 5 we discuss the generality and applicability of our
attack techniques. We conclude the paper in Sect. 6.

2 Preliminaries

2.1 Previous and Related Work

The concept of known-key distinguishers was introduced by Knudsen and Ri-
jmen [13]. They showed known-key attacks on AES reduced to 7-rounds and
on 7-round Feistel ciphers with a round function consisting of a round-key XOR
followed by an arbitrary key-independent transformation. Their attack on AES(-
128) leads to non-ideal behaviors of its MMO hashing mode. Their attack on
Feistel ciphers has an even stronger impact, as a pair of blocks colliding in half
of the output state can be found only with a complexity of two encryptions.

1 Another attack on the 8-round AES-128 is [5], which is a “chosen-key” distinguisher.
2 The 7-round attack [13] works for the Feistel network which has a round function

consisting of an XOR with a subkey followed by any function f rather than SP.
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Subsequently, Minier et al. [19] suggested a formalization of known-key at-
tacks. They also presented known-key distinguishers on Rijndael having large
blocks, which was further studied by [24].

As for AES, Mendel et al. [17] presented a new known-key distinguisher on
7-round AES-128 with a less attack complexity. Gilbert and Peyrin [12] attacked
AES-128 and increased the number of rounds to eight.

The work [8] by Bouillaguet et al. presented new attacks on the Feistel net-
work. This work is actually about analyzing certain hash functions (Lesamnta
and SHAvite-3) but can be regarded as known-key attacks on two types of (gen-
eralized) Feistel ciphers. See also [11, 20] for other attacks on SHAvite-3.

There is another type of attack in the open key scenario, namely, the “chosen-
key” distinguishers. In the chosen-key setting, attackers can control, rather than
know, the key value of block ciphers. For example, Biryukov et al. showed chosen-
key distinguishers on the full-round AES-256 in the “related-key” scenario [4].
Biryukov and Nikolić showed chosen-key distinguishers on the 8-round AES-
128 [5] and on several other block ciphers [6]. Lamberger et al. [14] presented a
chosen-key distinguisher on the full Whirlpool compression function. See also [21]
for other known-key and chosen-key distinguishers on several block ciphers.

2.2 Basic Notions

S-Boxes. An S-box
S : {0, 1}c → {0, 1}c

is a substitution table, being most of the time a non-compressing fixed function.
Popular choices are c = 4, 8. The main purpose of using S-boxes in block ciphers
is to introduce non-linearity over the finite field F(2c).

A typical example of an S-box is the multiplicative inverse function

S : x 7→ x−1

in the field F(2c). This is a popular choice for an S-box in block ciphers, is
believed to be a good choice for increasing the cipher’s resistance to differential [2]
and linear [16] cryptanalyses, and is indeed adopted by AES. With such an S-box
the maximum differential and linear probabilities become 2−c+2, being close to
the best possible bounds [22, 10].

Branch Numbers and MDS Matrices. Recall that the linear diffusion layer
P : {0, 1}n → {0, 1}n can be written in the form of an r × r constant matrix
over the field F(2c), where c is the number of bits in a byte (i.e., the size of an
S-box) and r is the number of bytes (i.e., the number of S-boxes) in the input
to the round function, so that we have n = r · c. Here we treat {0, 1}n as F(2c)r.
For an input X ∈ {0, 1}n = F(2c)r we can write

P · X =


p11 p12 · · · p1r

p21 p22 · · · p2r

...
...

. . .
...

pr1 pr2 · · · prr




x1

x2

...
xr

 ,
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where each of pij and xi is an element of the field F(2c).
The weight wt(X) (over the field F(2c)) of a vector X ∈ F(2c)r is the number

of non-zero components in X, so that we have 0 ≤ wt(X) ≤ r. The branch
number br(P ) of an r × r matrix P over the field F(2c) is defined as

br(P ) := min
X

{
wt(X) + wt(P · X)

}
,

where the minimum runs over all X ∈ F(2c)r such that X ̸= 0. For block ciphers
in the secret-key setting, it is desirable to use a linear transformation P having
a high branch number in order for the cipher to be resistant to differential and
linear cryptanalyses.

The Singleton bound [25] in coding theory implies that the highest branch
number possible is r + 1. An r × r matrix P having such a branch number is
called an MDS (Maximum Distance Separable) matrix and is frequently utilized
in cryptography. For example, the block cipher AES [26] uses a 4 × 4 MDS
matrix, whereas the hash function Whirlpool [1] uses an 8 × 8 MDS matrix.

Hashing Modes Using Block Ciphers. Matyas-Meyer-Oseas (MMO) and
Miyaguchi-Preneel modes provide efficient ways to construct a compression func-
tion from a block cipher. They are among the 12 secure schemes [7] of PGV
style [23].

Let E be a block cipher, and let EK denote its encryption algorithm with a
key K. The MMO compression function outputs Hi by computing

Hi = EHi−1(Mi−1) ⊕ Mi−1

for a message block Mi−1 and a previous chaining value Hi−1. Similarly, the
Miyaguchi-Preneel mode computes Hi by

Hi = EHi−1(Mi−1) ⊕ Mi−1 ⊕ Hi−1,

given Mi−1 and Hi−1.
In the above definitions, the Merkle-Damg̊ard construction is implicitly as-

sumed (by setting the initial chaining value to be a fixed constant IV and by
letting the final output be the hash value). We keep it implicit, as all attacks
presented in the current paper deal only with one-block input messages.

2.3 Rebound-Attack Technique

Here we briefly review a technique called rebound attacks, which was first intro-
duced by Mendel et al. in analyzing AES-based hash functions [18]. Mendel et
al. later applied it to a known-key attack on reduced-round AES [17], as already
mentioned in Section 2.1. The attacks presented in the current paper mainly
depend on this technique as well.

In rebound attacks, an attacker first builds a truncated differential path,
fixing byte positions which have a difference. At this stage, the attacker is not
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Fig. 1. Example of the inbound phase with 4-byte state (Gray bytes are active.)

interested in the exact differential value inside each byte. We call a byte position
with a difference an active byte. Then the attacker tries to find efficiently a pair
of values that follows the path.

The truncated differential path is divided into two phases: The inbound phase
and the outbound phase. The inbound phase consists of a linear layer, a non-linear
layer, and another linear layer in this order. The inbound phase corresponds to
a low probability part of the truncated differential path. The attacker gener-
ates sufficiently many paired values that satisfy the truncated differential path
of the inbound phase. This can be done with a small complexity on average.
These paired values are called starting points. Then, the attacker computes the
outbound phase with the generated starting points and checks whether or not
any of the starting points satisfies the truncated differential path of the out-
bound phase. The attacker succeeds if he finds a starting point conforming to
the truncated differential path of the outbound phase.

Let us explain the basic procedure of the inbound phase by using a 4-byte
(1 byte = 8 bits) state with an 8-bit S-box as an example. In this example, the
goal of an attacker is to find a pair of values (M, M ′) that satisfies the truncated
differential path 1 → 4 → 1 (one active byte diverging to four active bytes and
then converging to one active byte again) which is illustrated in Fig. 1.

A naive method to obtain such a pair is to generate many pairs with a 1-
byte difference at state #0 and then to compute the corresponding difference at
state #3. After trying 224 pairs, the attacker should be able to find a desired
pair.

The rebound attack can generate such pairs more efficiently. It generates
approximately 28 pairs satisfying the differential path with a complexity of ap-
proximately 28—in other words, each pair is generated with a complexity of 1
on average. The detailed attack procedure is as follows:

0. Prepare the differential distribution table (DDT) for the 8-bit S-box.
1. For all 28 (more precisely, 28 − 1) possible differences of state #0, compute

the corresponding 4-byte differences of state #1 and store them in a table T .
Note that we can determine differential propagation irrespective of the byte
values owing to the linearity of computation.

2. Choose a difference of state #3 and compute the corresponding 4-byte dif-
ference of state #2. For each 4-byte difference in T , check whether or not the
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Table 1. Our attack results for practical parameters of Feistel network

Block Word Byte #Bytes
2c

?

≥ r
Cipher MMO Hash

N n c r Known-key Collision Half-collision

128 64
8 8 X 11R 9R 11R

4 16 11R 9R 11R

64 32
8 4 X 9R 7R 9R†

4 8 X 11R 9R 11R
† This 9R attack generates (N − c)-bit collisions rather than half-collisions.

computed 4-byte difference of state #2 can be output through the S-boxes
by looking up the DDT. If the differences match, output such paired values.

In the case of the AES S-box (i.e., the multiplicative inverse function in the
finite field), for a pair of randomly determined input difference ∆Sin and output
difference ∆Sout, an equation S(x)⊕S(x⊕∆Sin) = ∆Sout has approximately one
solution with a probability of approximately 2−1. If we find a solution x, then
we will automatically obtain two paired values (x, x ⊕ ∆Sin) and (x ⊕ ∆Sin, x)
that satisfy the differential propagation through the S-box. In this example there
are four S-boxes between state #1 and state #2. Therefore, if we have 24 pairs
of ∆#1 and ∆#2, then one of these pairs can be expected to have a solution
for each of the four S-boxes. Hence we obtain 24 paired values that satisfy the
truncated differential path of the inbound phase.

Consequently, for a difference of state #3 in the above procedure, there are
28 ·2−4 = 24 differences in T that have approximately one solution for each of the
four S-boxes. So we obtain 24 · 24 = 28 paired values that satisfy the truncated
differential path (starting points). In other words, we can obtain one starting
point with a complexity of 1 on average (Note that the average complexity to
obtain one starting point is always 1 for any S-box).

We also need to count the number of starting points obtained. The above
procedure can be iterated for all 28 differences of state #3 in Step 2. As a result,
we obtain 28 · 28 = 216 starting points at maximum.

3 New Known-Key Attacks on Feistel Ciphers

Now we present known-key attacks on Feistel ciphers of the SP structure. Table 1
summarizes our attack results (R stands for rounds), where we use the following
variables (which are fixed henceforward):

N : The block length of the cipher (in bits),
n: The word size in bits, equal to the size of the input and output of the round

function, so that n = N/2,
c: The byte size in bits (In this paper the byte size is not fixed), equal to the

size of an S-box,
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Fig. 2. Left: Detailed description of the SP round function Right: Simplified one

r: The number of bytes in a word, so that r = n/c.

Recall that many of the block ciphers designed in practice are equipped with
128-bit or 64-bit blocks and use 8-bit or 4-bit S-boxes. Table 1 includes these
practical parameters.

For the sake of simplicity, we assume 2c ≥ r at the moment. Even with this
restriction, our attacks cover most of the block ciphers that are used today:
128-bit block with 8-bit S-box, 64-bit with 8-bit, and 64-bit with 4-bit.

For the sake of completeness, in Sect. 5.3 we shall explain a simple extension
of our attacks to treat the case 2c < r. This case includes the remaining parame-
ter of 128-bit block with 4-bit S-box, which is probably most unlikely to be used
in practice among the 4 parameters listed in Table 1. This is because this case
requires an MDS matrix acting on 16-byte state, where today such a large MDS
matrix is still considered to be too costly to be implemented in systems.

Description of the SP Round Function. Before we proceed to describing
our attacks, we specify the SP round function of the Feistel network to be ana-
lyzed. The round function is depicted in Fig. 2, consisting of the following three
operations:

Key XOR: This layer computes the XOR of a round-function input and a
round key Ki.

S-box layer: This layer substitutes each byte value by using one or several
S-boxes; the S-boxes S1, S2, . . . , Sr may differ from each other. We assume
that all S-boxes are designed to be resistant to differential and linear crypt-
analyses, like the ones used in AES [9, 26]. Hence, given a pair of randomly
chosen input and output differences, there exist paired values following the
given input/output differences with a probability of approximately 2−1. If
exist, then the number of such paired values is approximately two.

Permutation layer: This layer mixes values by multiplying the word value
and an r × r matrix P over F(2c) together. We make the assumption that
P is an MDS matrix, so that the total number of active bytes in the input
and output of P is always greater than or equal to r + 1, as long as there is
at least one active byte.
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Table 2. Attack strategy

Input:†

– Subkeys generated from a random master key via a key schedule function
– S-boxes secure against differential and linear cryptanalyses
– A linear transformation with a branch number r + 1 (i.e., an MDS)

Procedure:

1. Prepare DDTs for all S-boxes in use.
2. Find a pair of values that satisfies the truncated differential path of the in-

bound phase.
3. Verify that the pair found in Step 2 also follows the truncated differential path

of the outbound phase.
4. Confirm that the above procedure requires a less complexity than finding such

a pair for a random permutation.
† In Sect. 5 we discuss the case where S or P does not satisfy these conditions.

The assumptions that we make about S and P are not quite mandatory. In
Sect. 5 we discuss the feasibility of our attacks when S or P does not have these
properties.

Overview of Our Attacks. Our attack procedure is summarized in Table 2.
We shall explain the details of Steps 2 and 3 in the following sections; in Sect. 3.1
we first explain a basic version of our attacks which is effective up to 9 rounds,
and then extend it to 11 rounds in Sect. 3.2.

Hereafter, we fix a system of notations as follows:

Xj : The j-th byte of a word X, where 1 ≤ j ≤ r and the size of Xj is c bits,
0: A word where all bytes are non-active,
1: A word where only one byte of the predetermined (j-th) position is active,
F: A word where all bytes are active.

Our attacks amount to finding a pair of values whose input difference is of the
form

(
P (1),F

)
and whose output difference is also

(
P (1),F

)
. The point is that

our attacks can find such a pair for the Feistel ciphers more efficiently than one
could for a random permutation.

So let us mention in advance the time and memory complexities of the above
procedure. The cost of Step 1 is r · 22c in time and r · 22c in memory for both
9R and 11R attacks. The cost of Step 2 is r · 2c in time and r · 22 in memory for
9R attacks and r · 22c in time and r · 22c in memory for 11R attacks. Step 3 can
be done at a cost of 1. Overall, our attacks can find a pair of values following
the truncated differential path with a complexity of r · 22c in time and r · 22c in
memory.

This means that our known-key attacks work effectively, because for a ran-
dom permutation such a pair cannot be found with that complexity. Namely,
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Fig. 3. Basic 9R attack

let us consider the complexity to find a pair of values that has the differential
form of

(
P (1),F

)
for both of the input and output states in a random permu-

tation. Attackers have an access to both encryption and decryption oracles. For
such attackers, this problem is regarded as finding a 2n−c-bit collision. Because
enough freedom degrees are available to mount the birthday attack, this requires
a complexity of 2(n−c)/2.

Note that we make use of the property of MDS and DDTs generated at Step 1
in performing Step 2 (the inbound phase) efficiently. Also, the outbound phase
works for any S-box and any linear transformation.

3.1 Basic 9R Attack on the Feistel Ciphers

Entire Truncated Differential Path. Recall that in rebound attacks, an
attacker needs to construct a differential path and divide it into inbound and
outbound phases. Here the truncated differential path that we use is

(F,F) 1stR−−−→ (1,F) 2ndR−−−→ (0,1) 3rdR−−−→ (1,0)

(1,0) 4thR−−−→ (F,1) 5thR−−−→ (1,F) 6thR−−−→ (0,1)

(0,1) 7thR−−−→ (1,0) 8thR−−−→ (F,1) 9thR−−−→ (F,F),

which is shown in Fig. 3.
In the basic 9R attack, we use a 3-round differential path for the inbound

phase. The difference propagates from (1,0) to (0,1) through the three rounds
(4thR – 6thR).

The outbound phase consists of three rounds in backward direction (3rdR –
1stR) and three rounds in forward direction (7thR – 9thR), in total six rounds.
In both directions, the differences propagate to (F,F). Here the patterns in F
are limited in a certain way (Not all patterns are formed).

Given any paired value satisfying the truncated differential path of the in-
bound phase, the truncated differential path of the outbound phase is satisfied
with a probability of 1. Hence, we need only one starting point from the inbound
phase.
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Three-Round Inbound Phase. In this phase, our goal is to find a pair of

values whose difference will propagate as (1,0) 4thR−−−→ (F,1) 5thR−−−→ (1,F) 6thR−−−→
(0,1). We use the differential path depicted in the middle of Fig. 3.

We start by choosing differences of the form 1 in words #A and #B in Fig. 3.
We propagate these differences through the linear operations with actual word
values undetermined. We then search for a matched set of differences at the
S-box operation in the 5th round and finally find word values that follow the
desired differential path of the 3R inbound phase. More specifically, our attack
procedure is as follows:

0. Prepare DDTs for all S-boxes. Choose a byte-position j (1 ≤ j ≤ r) in a
word to be activated in the differential form of 1.

1. For all 2c possible differences in word #A, compute the corresponding full-
byte differences after applying the permutation layer and store the results
in a table T . Note that the difference in word #C must be the same as that
in #A, which of course takes the differential form of 1.

2. For each of the 2c possible differences in word #B, compute the correspond-
ing full-byte difference after applying the inverse permutation. For S-boxes
in the 5th round, check whether or not we can match the full-byte difference
evolved from ∆#B with any of the 2c differences stored in T . This can be
done by looking up the DDTs.

3. Assuming that we find such a matched set of differences, choose one of
them and fix word values in accordance with the chosen differences. Now
the difference in word #A is fixed. Also, the word values on the bold lines
drawn in Fig. 3 are all fixed.

4. For each of the 2c possible values of #Aj , compute the corresponding differ-
ence in #Cj and check whether or not the difference becomes equal to ∆#Aj .
This computation is denoted by the broken lines in Fig 3. Namely, compute
and check the following:

∆
[
Sj

(
S−1

j (#Aj) ⊕ Kj
4 ⊕ #Bj ⊕ Kj

6

)]
?= ∆#Aj . (1)

5. A solution for (1) is the value we want for the active byte. Make an arbitrary
choice for values of the remaining non-active bytes. Now all the values within
the inbound phase are determined. In other words, we obtain a starting point.

Let us estimate the time and memory complexities necessary for each of the
above steps. We also verify that the success probability of the inbound phase is
sufficiently high.

– In Step 0 we need 22c computations and 22c memory to prepare the DDT
for each c-bit S-box. When S-boxes are all different, Step 0 requires r · 22c

computations and r · 22c memory.
– Step 1 requires 2c computations and 2c memory.
– In Step 2, with a complexity of 2c, we can check the match of 22c pairs at

maximum. Because each match succeeds with a probability of 2−r, we can
expect to find one or more matched pairs as long as 2c ≥ r.
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– Step 3 requires negligible computations and memory.
– Step 4 requires 2c 3-round computations and negligible memory. Note that

this step needs to examine only one byte, and thus the actual complexity is
lower than 2c 3-round computations.

– In Step 5 we expect to find a solution for (1), because we can carry out a
match check as many times as the number of possible patterns of ∆#Cj ,
which is 2c.

– Therefore, the total complexity for Step 0 through Step 5 is r · 22c compu-
tations and r · 22c memory.

Outbound Phase. We explain the outbound phase for the last 3 rounds, which
is shown in the right part of Fig. 3. As a result of the inbound phase, we obtain

the difference (0,1) as an input to the 7th round. This propagates as (0,1) 7thR−−−→
(1,0) 8thR−−−→ (F,1) 9thR−−−→ (F,F) with a probability of 1. Because the input to the
8th round has a difference of the form 1, the corresponding output differences
are of the form P (1), which is emphasized by a circled F in Fig. 3. Hence, the
number of possible differences in the output word is limited to 2c. Therefore,
although all bytes are active in ciphertexts (Recall that P is an MDS), only
2c · 2n = 2c+n differential patterns are formed in the ciphertexts.

The same applies to the differential propagation in backward direction for
the first 3 rounds. The differential path reaches (F,F) after the 3 rounds with
a probability of 1. Since differential patterns in the left half of the plaintext are
limited to 2c variations, only 2c+n differential patterns appear in the plaintext
pairs.

Comparison with a Random Permutation. The inbound phase finds a
starting point with a time complexity of r · 22c using r · 22c memory. Given
any solution of the inbound phase, the outbound phase, with a probability of 1,
generates a pair of values that has a differential form of

(
P (1),F

)
for both

plaintext and ciphertext.
By comparing the above complexity with the generic birthday bound, we can

derive a condition of parameters with which our attacks work effectively. That
is, an inequality r · 22c < 2(n−c)/2 gives us a condition

c <
1
5
(n − 2 · log2 r), (2)

which needs to be satisfied in order for the above attack to be successful.
Let us consider parameters in practical use with which the condition is satis-

fied. We see that the condition is met by 128-bit block ciphers having 4- or 8-bit
S-boxes and by 64-bit block ciphers having 4-bit S-boxes. See Table 1. Unfor-
tunately, the condition is not met by 64-bit block ciphers having 8-bit S-boxes.
This case will be treated separately in Sect. 3.3.
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Fig. 4. 5-round inbound phase

3.2 Extended 11R Attack on the Feistel Ciphers

We extend the previous 9R attack to 11 rounds. We change the number of rounds
in the inbound phase from three to five. The outbound phase is exactly the same
as the basic 9R attack.

Five-Round Inbound Phase. The differential path of the new 5R inbound
phase is

(1,0) 4thR−−−→ (F,1) 5thR−−−→ (0,F) 6thR−−−→ (F,0) 7thR−−−→ (1,F) 8thR−−−→ (0,1), (3)

which is depicted in Fig. 4. We start with the same difference of the form 1
in words #A and #A′ and then try to find matched sets of differences at the
S-boxes in the 5th and 7th rounds, with the differences being expanded from
words #B and #B′, respectively. After finding matched sets, we determine the
value of #C and compute values indicated by broken lines. We finally check
the consistency of differences in words #A and that in #A′. A detailed attack
procedure is as follows:

0. Prepare DDTs for all S-boxes. Choose an active-byte position j for differen-
tial 1.
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1. For all 2c differences of the active byte in word #A, compute the correspond-
ing full-byte differences after applying the (forward) permutation layer and
store them in a table T . Set the difference in word #A′ to be the same as
that in #A. This guarantees that the difference in word #C is 0.

2. For each of the 2c differences in word #B, compute the corresponding full-
byte difference after applying the inverse permutation. For each difference
stored in T , check whether we can match it with the above difference by
looking up the DDTs. If a matched set of differences for #A and #B is
found, we can instantly obtain a matched set for #A′ and #B′ by setting
#B′ = #B.

3. Now that a matched set of differences is found, we can fix word values and
compute the value of word #C. Here the values drawn in broken lines in
Fig. 4 are fixed.
(a) Check whether or not the computed differences in #A and #A′ in Step 3

and the chosen difference in #A = #A′ at Step 1 are consistent. Namely,
compute and check the following:

∆

[
Sj

(
S−1

j

((
P−1(#C)

)j
)
⊕ Kj

6 ⊕ #Bj ⊕ Kj
4

)]
?= ∆#Aj , (4)

∆

[
Sj

(
S−1

j

((
P−1(#C)

)j
)
⊕ Kj

6 ⊕ #B′j ⊕ Kj
8

)]
?= ∆#A′j . (5)

(b) If we find a solution for the above two equations, then it means that we
have found a starting point of the inbound phase.

Let us evaluate the time and memory complexities necessary for the above pro-
cedure:

– Step 0 requires r · 22c computations and r · 22c memory to prepare r-many
DDTs.

– Step 1 requires 2c computations and 2c memory.
– In Step 2, we are expected to find 22c−r matches between #A and #B after

trying 2c differences in #B. Since 2r solutions are obtained from a match,
we obtain 22c solutions for #A and #B.

– Similarly, we obtain 22c solutions for #A′ and #B′.
– Step 3 requires just one computation for each solution and can be iterated

22c · 22c = 24c times at maximum.
– In Step 3a, each match succeeds with a probability of 2−c. Therefore, by

iterating Step 3a 22c times, we will find a match.

To sum up, we can find a starting point for the 5R inbound phase with a com-
plexity of r · 22c time and r · 22c memory.

Outbound Phase, Ideal Case, and Attackable Parameters. The out-
bound phase is exactly the same as the one used in the basic 9R attack. Any
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pair of values satisfying the differential path of the inbound phase, with a prob-
ability of 1, generates a pair of values that has a differential form of

(
P (1),F

)
for both of the input and output states.

The attack complexity for the ideal case is also the same as before, which
requires 2(n−c)/2. Therefore, (2) is also the condition that needs to be satisfied
for our 11R attack to be applicable.

Since the condition is the same as the one for the basic 9R attack, the same
parameters apply: (N, c) = (128, 8), (128, 4) and (64, 4). See Table 1.

3.3 “Shrunken” 9R Attack: Case (N, c) = (64, 8)

Our attacks in previous sections cannot be applied to 64-bit block ciphers having
8-bit S-boxes. However, by reducing the number of outbound rounds of the
11R attack, we can attack up to 9 rounds of such ciphers. Namely, we let the
differential path consist of

– 2-round backward outbound phase,
– 5-round inbound phase, and
– 2-round forward outbound phase.

Now the differences in plaintext and ciphertext are both
(
1, P (1)

)
. The cost

for finding a pair of values satisfying this differential form with a random per-
mutation is equal to the one for finding a collision of 2(n − c) bits, which is
22(n−c)/2 = 2n−c. Hence, the condition on the parameters becomes r ·22c < 2n−c,
which is converted as

c <
1
3
(n − log2 r),

and thus, 64-bit block ciphers with 8-bit S-boxes can be attacked up to 9 rounds.

4 Application to MMO and Miyaguchi-Preneel Modes

We apply the known-key distinguishers to attacking the MMO and Miyaguchi-
Preneel hashing modes using these Feistel ciphers. The attacks we present in this
section can generate either full N -bit collisions or half n-bit collisions depending
on the parameters.

We consider this aspect of our known-key attacks quite important, as it shows
that the attacks endangers real-world security of these hash functions. Sometimes
known-key attacks tend to become fairly complex. People may wonder what
practical implications such results have, which is certainly not the case for our
attacks.

Here we only describe our attacks on the MMO mode, but all the attacks
can be trivially extended to the Miyaguchi-Preneel mode. This is because the
key (randomly given constant) addition to the hash output state used by the
Miyaguchi-Preneel mode does not make any impact upon the output value dif-
ferences.
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When we apply the distinguishers to collision attacks on the MMO mode, we
iterate Step 2 of Table 2 in order to generate more paired values satisfying the
inbound phase. We perform Step 3 of Table 2 and then check whether ciphertext
differences cancel out plaintext differences. If they do, then we obtain a collision
of the compression function (due to the feedforward used in the MMO mode).

We also present half-collision attacks. Generally, half-state collisions possibly
become full collisions if more than half of the bits are truncated; systems in
practice often truncate hash values to their desired length (e.g., SHA-224 and
SHA-384). Due to the nature of the Feistel network, in our half-collision attacks
it is important which (left or right) half is chopped—our attacks work effectively
on odd numbers (9 and 11) of rounds, whereas Feistel ciphers in practice usually
have even number of rounds.

4.1 Eleven-Round Half-Collision Attack

We start with the parameters where the extended 11R attack applies. Recall
that in our 11-round attack the differential forms of input and of output are
both

(
P (1),F

)
. Therefore, a feed-forward operation (due to the MMO mode)

makes the difference in the left half of the output state zero (cancellation) with
a probability of 2−c, which yields a half-state collision. Recall that our 11-round
attack can generate up to x starting points with a complexity of x · r · 22c and
with r · 22c memory, where x ≤ 22c. So by choosing x := 2c, we can generate
a half-state collision with a total complexity of r · 23c. Note that it requires
a complexity of 2N/4 to find a left-half-state collision of an N -bit ideal hash
function due to the birthday attack. We can verify that for all the parameters
in consideration the complexity r · 23c is faster than the birthday bound 2N/4.

4.2 Nine-Round Full-Collision Attack

Our attack can generate 9-round full collisions by using the outbound phase
reduced to 2-rounds and using the 5-round inbound phase as described in Sec-
tion 3.3 (but here we are treating the cases (N, c) = (128, 8), (128, 4) and (64, 4),
not the case (N, c) = (64, 8)). Now the differential forms of input and output are
both

(
1, (P (1)

)
, and after a feed-forward operation, the xored values cancel each

other with a probability of 2−2c. Hence, setting x := 22c allows us to generate
a full collision. Of course to find a full collision of an N -bit ideal hash function
should require a 2N/2 complexity, so our attack beats this birthday bound for
all the parameters in consideration.

One may doubt that there is an adequate degree of freedom available. How-
ever, we can vary the degree of freedom as follows. In Step 0 of the attack
procedure described in Section 3.2, we choose an active-byte position for 1. Be-
cause this can be chosen from r options, the degree of freedom becomes r times,
and this makes the attack success probability almost 1.
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4.3 Nine-Round Near-Collision Attack: Case (N, c) = (64, 8)

Now we discuss the remaining case of 64-bit blocks with 8-bit S-boxes. The
shrunken 9-round attack can generate up to x starting points with a complexity
of x·r ·22c and with r ·22c memory, where x ≤ 22c. The differential forms of input
and output are both

(
1, (P (1)

)
. Hence, by choosing x := 22c and by spending

a running time of r · 24c, a full collision could be generated. However, for this
specific parameter, the cost of finding a collision for a random permutation is 24c,
which is obviously faster than r · 24c.

Therefore, instead of generating a full collision, we consider only cancelling
the differences of the right half state. Such a cancellation occurs with a probabil-
ity of 2−c, and if this occurs, then we immediately obtain a collision of (2r−1) = 7
bytes out of 8 bytes because the left half state only has the difference in one byte.
Thus we can generate 7-byte collision with a complexity of r ·23c, which is faster
than the complexity for a random function, namely 23.5c.

4.4 Seven-Round Full-Collision Attack: Case (N, c) = (64, 8)

If one wants to generate a full collision with the parameter (N, c) = (64, 8), then
one would need to use the previous 3R inbound phase and two sets of the 2R
outbound phases. This can generate a full collision with a complexity of r · 23c,
which is faster than the birthday bound 24c.

5 Generality of Our Known-Key Distinguishers

So far our known-key distinguishers make the assumptions that a) S-boxes have
balanced differential probabilities, b) the linear transformation has the branch
number of r + 1, and c) the inequality 2c ≥ r holds. In this section, we discuss
possibilities of handling the situations where these conditions are not met.

5.1 When S-boxes Are Biased

We have made the assumption that the S-boxes have the least maximum differ-
ential probabilities like the inverse function x 7→ x−1, so that we can estimate
the matching probability roughly at 1/2. This is not an essential requirement,
and in fact S-boxes can be “suboptimal” in order for our attacks to work; one
just needs more refined estimate of success probabilities in that case.

It is true that our attacks become infeasible when S-boxes have “very” biased
differential distributions. However, block ciphers having such S-boxes are usually
vulnerable to differential cryptanalysis, and the attacks should let us construct
other types of distinguishers any way.
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5.2 When P Is Not an MDS Matrix

The attacks described in Section 3 are based on the assumption that an MDS
matrix is used in the P -layer. Again, this is not an absolute requirement. First
note that the MDS property is used only in the inbound phase; it is completely
irrelevant to the outbound phase. For example, in the inbound phase of the 9-
round attack described in Section 3.1, we have used the fact that the branch
number is r + 1 for satisfying the following three conditions:

1. Active-byte positions in ∆#A and ∆#B must be identical and should be
minimized as much as possible,

2. Active-byte positions in P (∆#A) and P−1(∆#B) must be identical, and
3. The degree of freedom for varying the differences in ∆#A and in ∆#B must

be sufficient to find a match over the substitution (S-box) layer.

We have used the fact that the branch number is r+1 to simplify the description
of our attacks and to minimize the attack complexity.

However, even if the branch number is smaller than r + 1, there is a fair
chance that the attack would work. If P is not an MDS matrix, then we search
for byte positions that satisfy the above three conditions. This can be done in
the pre-computation stage, because properties of a linear transformation P can
be analyzed independently of a key value (Recall that P is a constant matrix).

5.3 When 2c < r

The attacks described in Section 3 do not work if 2c < r, because the number
of pairs is insufficient to find a match of differences over the S-box layer (with
a probability about 1). This problem can be solved by increasing the number of
active bytes in a word. The essence of this generalization is to activate d ≥ 1
bytes in a word so that 2cd ≥ r. The minimum value of such a d is 1 for
(c, r) = (8, 8), (8, 4), (4, 8) and 2 for (c, r) = (4, 16). Hence, by activating two
bytes instead of using the differential form 1, we can attack, for example, Feistel
ciphers having a 128-bit block size and 4-bit S-boxes.

With this generalization the total complexity becomes r · 22cd computations
plus r ·2cd memory for both 9-round and 11-round attacks. So for example, when
N = 128, c = 4 and d = 2, these figures beat the birthday bound 2(n−cd)/2 for
an ideal permutation.

Here we need to be careful about the fact that activating more than one byte
may yield non-active bytes in the output of P or of P−1. If that occurs, then
most likely the match over S-boxes would fail (similarly to the case when P is
not an MDS matrix). If we activate more than one byte, then such a case is
inevitable even if P is an MDS matrix. However, the probability of output with
non-active byte should not be so high, and we presume that a match can be
found without a considerable increase in complexity even when we activate two
bytes in a word.
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6 Conclusion

We have presented new known-key distinguishers on block ciphers using the
Feistel network whose round function consists of a key XOR, byte-oriented S-
boxes, and an MDS matrix. We have considered most of the parameters used
in practice and shown that “weak” parameters include 128-bit block with 8-bit
S-box, where we can attack the cipher up to 11 rounds.

Our distinguishers can be extended to the MMO and Miyaguchi-Preneel
hashing modes. With the weak parameters attackers can find full collisions up
to 9 rounds and half-state collisions up to 11 rounds faster than the birthday
bounds. To the best of our knowledge, as a generic attack on Feistel-SP ciphers,
our attacks significantly increase the number of analyzable rounds from previous
results.
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reduced Grøstl compression function, ECHO permutation and AES block cipher.
In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol.
5867, pp. 16–35. Springer, Heidelberg (2009)
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