Meet-in-the-Middle Preimage Attacks on AES
Hashing Modes and an Application to Whirlpool

Yu Sasaki

NTT Information Sharing Platform Laboratories, NTT Corporation
3-9-11 Midoricho, Musashino-shi, Tokyo 180-8585 Japan
sasaki.yu@lab.ntt.co.jp

Abstract. We study the security of AES in the open-key setting by
showing an analysis on hash function modes instantiating AES includ-
ing Davies-Meyer, Matyas-Meyer-Oseas, and Miyaguchi-Preneel modes.
In particular, we propose preimage attacks on these constructions, while
most of previous work focused their attention on collision attacks or dis-
tinguishers using non-ideal differential properties. This research is based
on the motivation that we should evaluate classical and important secu-
rity notions for hash functions and avoid complicated attack models that
seem to have little relevance in practice. We apply a recently developed
meet-in-the-middle preimage approach. As a result, we obtain a preim-
age attack on 7 rounds of Davies-Meyer AES and a second preimage
attack on 7 rounds of Matyas-Meyer-Oseas and Miyaguchi-Preneel AES.
Considering that the previous best collision attack only can work up to
6 rounds, the number of attacked rounds reaches the best in terms of the
classical security notions. In our attacks, the key is regarded as a known
constant, and the attacks thus can work for any key length in common.

Keywords: AES, hash function, Davies-Meyer, Matyas-Meyer-Oseas,
Miyaguchi-Preneel, PGV, preimage, meet-in-the-middle, Whirlpool

1 Introduction

Block ciphers are taking important roles in various aspects of our life. Currently,
one of the most widely used block-ciphers all over the world is AES [12, 34].

Since 2009, great progress in the cryptanalysis on AES has been made.
Related-key attacks against full-round AES-256 [6,7], full-round AES-192 [6],
7-round AES-128 [9], and 10-round AES-256 with a practical complexity [5] have
been proposed. Regarding AES-128, besides the above related-key boomerang
attack [9] several non-marginal single-key attacks have been proposed; an im-
possible differential attack [25] and a single-key attack [15] based on a collision
attack [16]. In any attack, the maximum number of attacked rounds is 7.

On the other hand, block ciphers are sometimes used as hash functions
through mode-of-operations. For example, if one needs both a block-cipher and
a hash function in a resource-restricted environment such as RFID Tag, only a

block-cipher is implemented and a hash function is built using it. Besides, many
Tag-based applications, such as authentication or anonymity/privacy, do not
need the collision resistance [10]. Hence, building a 128-bit hash function with
AES is a possible candidate. In fact, [10] proposed 80-bit and 64-bit hash func-
tions using block-cipher PRESENT. Another concern is that many hash func-
tions, even in the SHA-3 competition [35], are designed based on block-ciphers.
Hence, block-ciphers’ security in hashing modes is an interesting research object.

The known-key attack proposed by Knudsen and Rijmen [21] is the frame-
work for this context. In this model, a secret key is randomly chosen and given
to attackers. Then, attackers aim to efficiently detect a certain property of a
random instance of the block cipher, where the same property cannot be ob-
served for a random permutation with the same complexity. The attack can be
extended to the chosen-key model. e.g. [7]. In the known-key model, the key size
is irrelevant to the attack. In other words, all key sizes are simultaneously at-
tacked. While, in the chosen-key model, the attack depends on the key-schedule
algorithm. Hence, different strategies is necessary for different key sizes.

The first known-key attack was presented by Knudsen and Rijmen [21], which
found a non-ideal property of 7-round AES. Then, Mendel et al. presented the
known-key attack on 7-round AES [26] based on the rebound attack proposed
by Mendel et al. [27]. Finally, Gilbert and Peyrin [17] and Lamberger et al.
[22] independently applied Super-Sbox analysis to the rebound attack. Gilbert
and Peyrin [17] showed that 8-round AES was not ideal in the known-key set-
ting. Regarding the chosen-key attack, Biryukov et al. [7] presented a chosen-key
distinguisher on full-round AES-256, which is converted to a g-pseudo-collision
attack on AES-256 based compression functions. Biryukov and Nikolié¢ also dis-
covered a chosen-key distinguisher on 8-round AES-128 [8].

Although the above results led to significant progress for theoretical crypt-
analysis in the secret-, known-, and chosen-key settings, one major drawback is
the use of complicated attack models, which are sometimes too theoretic such as
related-subkey attacks on block ciphers and distinguishers on block-cipher based
compression functions. From this background, several researchers recently have
attempted to analyze AES in a simple attack model. For example, Dunkelman et
al. [15] and Wei et al. [36] avoided the related-key model and proposed attacks
on 8 round AES-256 or AES-192 in the single-key model.

In this paper, we follow the similar principle as Dunkelman et al. [15] and
Wei et al. [36]. That is to say, we analyze the security of hashing modes instanti-
ating AES in terms of the classical security notions of hash functions, which are
actually important for their applications. In particular, we study the preimage
resistance of hash functions rather than compression functions.

For hash functions, three security notions are classically considered to be
important; collision resistance, second-preimage resistance, and preimage resis-
tance. Among these three, the collision resistance of reduced-round AES can be
attacked by applying the techniques used in the rebound attack [27]. In fact,
Lamberger et al. [23, Section 5.3] describe a collision attack on an AES-based
hash function Whirlpool [30] reduced to 5.5 rounds, which is trivially converted

Table 1. Comparison of attacks. 0.5 round of collision and near-collision attacks on
Whirlpool by [23] is omitted.

Attack Rounds Key-size Mode Comp. Func. Hash Ref.
(Time, Mem.) (Time, Mem.)

Attacks on AES Hasing modes
Collision 6 128/192/256 MMO,MP (2°5,2%7) (2°°,2%%) 23]

2nd preimage 6 128/192/256 MMO,MP (2'1% 216) (2112,21%) Ours
2nd preimage 7 128/192/256 MMO,MP (2'2° 2%) (2'2°92%) Ours
Preimage 6 128/192/256 DM (2112, 216) (221, 216) Ours
Preimage 7 128/192/256 DM (2120 28) (2125 28) Ours
Near collision 7 128/192/256 MMO,MP (2%%,2%) (2%2,2%%) 23]
Distinguisher 8 128/192/256 MMO,MP (28 2%2) - [17]
g-multicollision 14 256 DM (¢-2°", negl) - [7]
Attacks on Whirlpool
Collision 5 - - (2129 25%) (279250 (23]
2ne Preimage 5 - - (2504, 28) (25%4 28) Qurs
Near collision 7 - - (2112 25%) (22250 (23]
Collision 7 - - (2184 28) - [23]
Near collision 9 - - (2176, 28 - [23]
Distinguisher 10 - - (2175 28) - [23]

to a collision attack on the Matyas-Meyer-Oseas mode [28, Algorithm 9.41] in-
stantiating 6-round AES. As far as we know, there is no result that attacks
second-preimage resistance or preimage resistance of such an AES usage. Note
that the attack by [23] can generate near-collisions on some PGV compression
functions with 7-round AES, which might be a valid security notion.

Our contributions. In this paper, we propose preimage attacks on AES hash-
ing modes including Davies-Meyer (DM) [28, Algorithm 9.42], Matyas-Meyer-
Oseas (MMO), and Miyaguchi-Preneel (MP) [28, Algorithm 9.43] modes. As a
result, we obtain a preimage attack on 7 rounds of DM-AES with a complexity
of 2125 7-round AES computations and the memory of 28 AES state. We also
obtain a second preimage attack on 7 rounds of MMO-AES and MP-AES with
a complexity of 2'2° 7-round AES computations and the memory of 28 AES
state. Our attack can also generate second preimages of 5-round Whirlpool with
a complexity of 2°04. The attack results are summarized in Table 1.

We apply a meet-in-the-middle preimage approach developed by Aoki and
Sasaki [3]. This approach has successfully been applied to many hash functions
e.g. MD5 [32] and Tiger [18]. All of previously analyzed hash functions adopt
the DM mode with a relatively weak message schedule, and the weak message
schedule is in fact exploited by the attack. However, for AES, the situation is very
different because AES has a heavy round function and key schedule. Moreover,
it is unclear how to perform preimage attacks against MMO and MP modes.

In our attacks, we fix the value of key-input to a randomly chosen value and
search for a plaintext-input that achieves the given hash target. This allows us to
attack All PGV modes [29] in the same procedure. We then show that the splice-
and-cut technique proposed by [3] and the omission of a MixColumns operation
in the last round can be combined well and lead to a significant improvement
for the preimage attack. Intuitively, this is because the round function without
MixColumns is computed as a middle round. This breaks the AES design prin-
ciple, where AES two rounds achieve the full diffusion, and leads to an attack
improvement. Finally, we optimize several techniques of the meet-in-the-middle
preimage attack for AES. Specifically, the initial-structure and matching through
MixColumns contribute to increase the number of attacked rounds.

Paper outline. In Sect. 2, we describe AES. In Sect. 3, we introduce previous
work. In Sect. 4, we explain a basic idea of our attack. In Sect. 5, we present a
preimage attack on 7-round AES. In Sect. 6, we give observations on our attack
and apply it to 5-round Whirlpool. Finally, we conclude this paper in Sect. 7.

2 Specifications

Advanced Encryption Standard (AES) [34,12] is a 128-bit block cipher support-
ing three different key sizes; 128, 192, 256 bits. AES computes 10, 12, and 14
rounds for AES-128, -192, and -256, respectively.

By using the key schedule function, round keys are generated from the orig-
inal secret key. We omit its description because our attacks regard round keys
as given constant numbers and thus they are irrelevant to our attacks.

When the data is processed, the internal state is represented by a 4 * 4 byte
array. At the first, the original secret key is XORed to the plaintext, and then, a
round function consisting of the following four operations is iteratively applied.

- SubBytes(SB): substitute each byte according to an S-box table.

- ShiftRows(SR): apply the j-byte left rotation to each byte at row j.

- MixColumns(M C'): multiply each column by an MDS matrix. MDS guaran-
tees that the sum of active bytes in the input and output of the MixColumns
operation is at least 5 unless all bytes are non-active. The matrices for the en-
cryption and decryption are shown below. Note that X[j] is the input value
and Y[j] is the updated value. Numbers with , are hexadecimal numbers.

Y[0] 2311\ [/X][0] Y[0] € 2b od 29\ [X][0]
vl | (1231 [x[1] VI | [a90eabad | (X))
vigl| {1123 [x2]|° |Y[2]]| T |ada9.eab| | X[2
Y[3] 3112/) \X[3] Y[3] b od 29 e) \X[3]

- AddRoundKey(AK): apply bit-wise exclusive-or with a round key.

Note that the MixColumns operation is not computed at the last round.

014|812 DM-mode MMO-mode Miyaguchi-Preneel
; 2 190 ﬁ s s s
371115

Fig. 1. Byte positions Fig. 2. Illustrations for DM, MMO, and MP modes

Byte positions in a state S are denoted by integer numbers B, B € {0,1,2,...,
15}, as shown in Fig. 1, where the byte 45 + ¢ corresponds to the byte in the
i-th row and j-th column of S, and is denoted by S[4 - j + i]. We often denote
several bytes of state S by S|a,b,...], e.g. 4 bytes in the right most column are
denoted by S[12,13,14,15].

Hash functions based on block ciphers. To build a hash function, we need a
domain extension for iteratively applying the compression function. The Merkle-
Damgard domain extension is probably mostly used one in practice. It applies
the padding to the input message M so that the last block includes the original
message length, and splits the padded message to My||My]|---||Mp—1, where
the size of each My is the block length. An initial value Hy is defined, and
Hy = CF(Hy—-1,Mn_1) is iteratively applied for N = 1,2,..., L. Finally, Hy,
is output as a hash value of M. This paper assumes that the Merkle-Damgard
domain extension is used as a domain extender.

The PGV modes [29] are mode-of-operations to build a compression function
from a block cipher. In fact, many hash functions, e.g. MD5, SHA-2, and several
SHA-3 candidates, use the PGV modes. Among PGV modes, the DM, MMO,
and MP modes are used in practice. Let us denote a block cipher F with a key
K by Ex. The construction of each mode is as follows, which is shown in Fig. 2.

DM mode: CF(HN_l,MN_l) ZEMNA(I{N_QEBfIN_l7
MMO mode: CF(Hy_1,My_1)= Euy_,(Mn_1)® My_1,
MP mode: CF(Hny-1,MNn_1)=FEpy_,(Mn-1)® Mn_1® Hy_1.

3 Previous Work

3.1 Meet-in-the-Middle Preimage Attacks

To mount the preimage attack, we apply a meet-in-the-middle (MitM) preimage
approach developed by Aoki and Sasaki [3], which is based on the pioneering
work by Leurent [24]'. In this approach, the compression function is divided
into two sub-functions so that a portion of bits of the input message only affect
one sub-function and another portion of bits of the input message only affect the
other sub-function as shown in Fig. 3. This allows attackers to mount the meet-
in-the-middle attack. Sub-functions are called chunks (stands for chunks of steps

! A basic idea of the MitM preimage finding technique can also be seen in [4] and [19].

key schedule

key schedule

m l myi m l m,} 1m My} lm
m, H m, mal mal a, bz__a by a by a
v A £y G| = jessssssafe <
7 < <
........ ; . .h. . ;. T T ‘]: ackward, nital Forward R <t Backwar
Forward chun 1 Backward chunk _ chunk nitial- chunk N chunk (1
H i H Hya—— structure Nl P+ Hy
N-1 Independent of m, 1|1 Independent of m, N =
1 ,' Partial-
Al - Match
\,’
Check the match Check the match of the partial-bits

Fig. 3. Basic MitM attack on DM mode Fig. 4. Advanced techniques for MitM

or rounds) and bits affecting only one chunk are called neutral. In this paper,
we call the chunk that computes the round function in the forward direction
forward chunk and in the backward direction backward chunk.

In addition to the basic concept, several techniques have been proposed to
extend the attack framework. The splice-and-cut technique [3] regards that the
first and last steps are consecutive, and thus any step can be the start point or
matching point of the MitM attack. However, as a side-effect, generated items
become pseudo-preimages rather than preimages. The local-collision technique
[31], indtial-structure technique [32] and probabilistic initial-structure technique
[18] ignore the order of message words at the start point of the MitM attack. For
example in Fig. 4, the order of neutral words m, and m, is reversed between the
start points of the forward and backward chunks. These techniques enables MitM
attacks even in such a situation. Finally, the partial-matching/-fizing techniques
[3] and indirect partial-matching technique [1] match two chunks partially and
efficiently. A framework with these techniques is illustrated in Fig. 4.

In n-bit narrow-pipe iterated hash functions, pseudo-preimage attacks with a
complexity of 2, where m < n—2, can be converted to preimage attacks with a
complexity of 22"+ in generic [28, Fact9.99]. Several researchers showed that
pseudo-preimage attacks satisfying certain special properties can be converted to
preimage attacks more efficiently than the generic approach [11, 18, 24]. Because

our attacks cannot satisfy such properties, we omit their details.

The MitM preimage approach has been applied to many hash functions such
as HAVAL [31], MD5 [32], reduced SHA-0/-1 [2], reduced SHA-2 [1], and Tiger
[18]. All of previously attacked hash functions adopt the DM mode and their
weak key-schedules are exploited by the attack. This strategy cannot work for
AES because, in the AES key-schedule, the impact of any change on the secret
key or a subkey always propagate to all other subkeys. This indicates that neutral
words such as described in Fig. 3 or Fig. 4 do not exist for AES. Moreover, if
the message is input as a plaintext in the MMO and MP modes, no input value
is available to separate the compression function into two parts.

3.2 Previous Analysis on AES

The security of AES in hash function modes was first evaluated by Knudsen and
Rijmen [21]. They showed a non-ideal property of 7-round AES. Lamberger et al.
showed a collision attack on 5.5-round Whirlpool based on the rebound attack
[27], which is trivially converted to a collision attack on 6-round AES. As far
as we know, no result is known on the second-preimage or preimage resistance.
Note that current collision attacks can be applied only if the mode-of-operation
is MMO or MP, where attackers fix Hy_q and search for (My_1, My _,). If the
DM mode is used instead, attackers fix My_1 and search for (Hn_1,Hj_4).
Hence, only pseudo-collisions on the compression function can be generated.
As analysis methods against the AES block cipher, there exist attacks named
collision attack [16] and Meet-in-the-Middle attack [13] (and their extension
[15]). These attacks are not related to attacks on hash functions. These attacks
based on an observation that a function from a certain input byte to a certain
output byte after 4 rounds can be described by 25-byte parameters. Hence, this
collision attack does not find paired messages producing an identical state, or
this Meet-in-the-Middle attack does not separate the cipher into two independent
sub-functions. The goal of these attacks is recovering the secret key of the AES
block cipher. Their applicability to hashing modes is not understood well.

4 Basic Idea of Our Attack and Techniques for Extension

We first explain a basic idea of our attack by using 4-round AES as an example
(Sect. 4.1). We fix the block-cipher’s key to a constant. This approach is different
from previous work in Sect. 3.1 which utilize the independence among subkeys.
In this attack, for simplicity, we only apply the splice-and-cut technique. We then
explain several techniques to extend the number of attacked rounds (Sect. 4.2).

4.1 Basic Attack for 4-Round AES

Goal of the attack. We fix the key-input when we perform the MitM attack,
and the goal is to find the plaintext-input that provides the given target. This ap-
proach is irrelevant to the mode-of-operation used. That is, in the DM-mode, we
fix a message M _1 to some constant and try to find a chaining variable Hy_1
that produces the given target Hpy. Similarly, in the MMO- and MP-modes,
we fix a chaining variable Hy_; and search for a message My_;1. Generated
pseudo-preimages are later converted to preimages with a technique in Sect. 3.1.

Chunk separation. We separate 4-round operations into two chunks as shown
in Fig. 5. The start point of each chunk is state #9. We choose #9[0] as a neutral
byte for the forward chunk and #9[12] for the backward chunk. We fix the other
bytes, i.e. #9[1,2,...,11,13,14,15], to randomly chosen values. The backward
chunk covers the computation from state #9 to #5 and the forward chunk covers
from state #9 to #16 and #0 to #5. Results from two chunks will match at #5.

'

#
——
: ﬁ start point

#9 #10 #11 #12 #13
SB SR MC AK
— —
#13 #14 #17

SB
—

Given target

[l: values depending on neutral bytes for the backward chunk [_]: fixed constant

: values depending on neutral bytes for the forward chunk |:|: unknown value

Fig. 5. Basic attack idea: chunk separation for 4-round AES

Forward computation. The forward computation starts from #9. Because
#9[12] is a neutral byte for the backward chunk, we regard #9[12] to be unknown
during the forward computation. Hence, one byte is unknown at #11 and the
unknown byte is expanded to 4 bytes at #12. Similarly, by simply tracing the
computation, we obtain 8-byte information at #5 (#5[0,1,2,3,8,9,10,11]).

An important observation is that the omission of the MixColumns opera-
tion in the last round extends the number of rounds that can be computed
independently. The diffusion of AES is designed so that the full diffusion can be
achieved after the 2-round operation. In fact, if MixColumns exists between #15
and #16, all bytes become unknown after this operation and it limits the attack
efficiency strongly. However, the omission of MixColumns yields 12 known bytes
at #16, and to make things worse, the positions of unknown bytes will overlap
by the next ShiftRows operation, and thus attackers can compute MixColumns
for another round. As a conclusion, we can summarize this property as follows;

AES 2-rounds achieve the full diffusion, however, if MixColumns is omit-
ted in the second round, 4 rounds are needed to achieve the full diffusion.

This property is illustrated in Fig. 6. This situation does not seem to occur for
the AES block cipher. However, in hash function modes, the splice-and-cut can
exploit it by starting the forward chunk from the second last round.

)
=
14
=
15

AK H:—— SB H:—— SR H:—— MC AK
—> —> —> —> —>

[

AK SB SR AK
sB SR MC AK
—> —> — —>
SB SR MC AK
—> —> —> —>

Fig. 6. Slow diffusion with the omission of MixColumns in the second round

5

i HERGE

Overall attack procedure. Because the backward computation is similar and
straight-forward, we omit its explanation. Overall, if we fix 14 bytes at #9 as
shown in Fig. 5, we can compute the forward chunk for 28 values of #9[0] and
obtain 8-byte information at #5. The obtained results are stored in a table and
sorted. Similarly, we can compute the backward chunk for 2% values of #9[12]
and obtain 12-byte information at #5. Because 2 bytes (#5[1,11]) are overlapped
between the results from both chunks, we can efficiently check the match of those
results. If the match is not found, the attack is repeated by changing the values
of fixed 14 bytes at #9 or the values for the AES key-input.

Each chunk can be built using 2% possible neutral values with 2% compu-
tations. The results are stored in a table of the size 2° AES state and then
sorted. After that, 2'6 pairs are tested in the 2-byte match and 1 pair will suc-
ceed. Hence, if we repeat the attack 2'2 times, we will find a pair that also
matches other 14 bytes. The final complexity for generating pseudo-preimages
is 28 - 2112 = 2120 Thjs is converted to a preimage attack on the hash function
with a complexity of 9 HFEE 4L — 9125 using a generic conversion in Sect. 3.1.

Note that the attack efficiency is not optimized because the purpose of this
attack is to demonstrate the basic idea of our attack. Also note that, the impact
of the change of #9[12] does not propagate to all bytes at the matching stage.
This is because the backward chunk is too short. If the number of attacked rounds
is extended as explained in Sect. 5, the impact will propagate to all bytes.

4.2 Techniques for Attacking More Rounds

We show that a technique similar to the initial-structure [32] can extend the num-
ber of rounds in each chunk by one round (in total 2 rounds), and by considering
the MixColumns operation deeply, we can include one more round during the
matching stage. These techniques are directly applied to our 7-round attack that
will be explained in Sect. 5. Specifically, the differential path described in Fig. 7
and Fig. 8 are the copy of a part of differential path in Fig. 9.

Backward chunk SR

I/ I/ MC

Forward Chunk

Fig. 7. Initial-structure technique for AES Fig. 8. Known-byte patterns for
matching through MixColumns

Initial-structure. The idea is choosing several bytes as neutral bytes, and
determining these values so that several output bytes of the MixColumns or
InverseMixColumns operations can be constant values. This minimizes the num-
ber of unknown bytes after the first MixColumns operation in each chunk, and
thus, the number of attacked rounds is extended by one round in each chunk.
The construction of the initial-structure is shown in Fig. 7.

The neutral bytes for the forward chunk are 4 bytes #B]0,1,2,3]. We choose 28
values of these bytes and use them to compute the forward chunk independently
of the backward chunk. These values are determined as follows;

1. Randomly choose constant values for 3 bytes at #A (#A[1,2,3]).

2. For all possible 28 values of #B[0], we calculate the values of #B[1,2,3] so
that the chosen 3 bytes at #A (#A[1,2,3]) can be achieved through the
InverseMixColumns operation. Note that, according to Eq. (1), #A[1,2,3] is
computed by Eq.(2). Because there are 3 free variables to control 3 bytes,
this is possible by solving a system of equations.

B[]
BAN\ (9 00 obod
#A[2] | = [2d .9 e ub gg} (2)
#as) \obadu9.e) \ G50

As a result, for any 28 neutral values of #B[0,1,2,3], #A[1,2,3] become constant,
and thus, the backward computation from #A can start with 15 known bytes

and only 1 unknown byte.
The neutral bytes for the backward chunk are 3 bytes #E[12,14,15]. We
choose 28 values of these bytes as follows;

1. Randomly choose constant values for 2 bytes, which will be the impact from
#E[12,14,15] to the chosen 2 bytes at #F (#F[13,15]). In details, by consid-

10

ering the MixColumuns operation in Eq. (1), #F[13,15] are written as follows:

#F[13] = (1-#E02) ® (2- #E[3) @ (3- #E[14]) @ (1- #E[15]), (3)
#F[15) = (3- #E[12]) @ (1- #E(13) © (1 #E[14]) & (2- #E[15]). (4)

The impacts on #F[13] and #F[15] from #E[12,14,15] mean the following
values respectively.

(1-#E012]) ® (3- #L[14]) & (1 - #E[15]), (5)

(3-#E[12]) © (1- #E[14]) ® (2 - #E[15]). (6)

2. For all possible 2% values of #E[12], we calculate the values of #E[14,15] by
solving a system of equations so that the impact on the chosen 2 bytes at #F

(#F[13,15]) can be achieved through the MixColumns operation. Because
there are 2 free variables to control 2 bytes, this is always possible.

As a result, for any 2% neutral values of #E[12,14,15], the impact from these
values to #F[13,15] becomes the determined constant. Note that #F[13,15] are
also influenced by #E[13], and thus, final values of #F[13,15] are exclusive-or of
the determined constant and values depending on #E[13]. Finally, the forward
computation from #F can start with 14 known bytes and only 2 unknown bytes.

Match through MixColumns. Assume that many values of the partially
known states of the form #a and #b in Fig. 8 are stored in tables. The goal
of this match is efficiently finding paired values (#a, #b) that match through
the MixColumns operation. Because MixColumns is applied column by column,
the match is also tested column by column. We explain the match for the first
column as an example. The other columns can be tested in the same procedure.

Let us consider the InverseMixColumns operation from #b to #a. From
Eq. (1), #a[0] and #a[2] are expressed as follows;

#G[O] = (z€ " #b[O}) D («b- #b[l]) D («d - #b[ﬂ) D (9 #6[3]) (7)
#a[2] = (od-#b[0]) ® (29 #0[1]) © (ze-#b[2]) © (b - #b[3]) (8)

Considering that #b[1,2,3] are known values, the equations can be transformed
by using some constant numbers Cy and C; as follows;

#al0] @ Cy = e - #b[0], #a[2] ® Cy = d - #b]0]. (9)
Whether or not these equations are satisfied can be checked efficiently by using

the idea based on the indirect partial-matching [1]. Namely, ,d - (#a[0] ® Cp) =
z€- (#a]2]®C1) is obtained from Eq. (9), and then obtain the following equation:

+d-#al0] & ze-#a[2] = 4d-Cy & e-Ch. (10)

Let us denote ,d - #a[0] & ze-#a[2] and ,d-Cy & ze-C1 by Cror and Cpger,
respectively. By computing C'yor and Checr in the computation for each chunk,
we can perform the match by just comparing these values.

Note that AES has 4 columns in a state. Because the number of candidates
for the match can be reduced by a factor of 278 per column, for 4 columns, the
number of candidates is reduced by a factor of 2732

11

7

7.

2

Match
through MC

#13 #14 #15 | #16 _ #17

-u_nuf
////

7

.

7

A % /
7 f
,/%/%/% /i /i /) / ;7

#29

7.

Given target

Fig. 9. Chunk separation for 7-round AES

5 Preimage Attack against 7-Round AES

By considering the techniques explained in Sect. 4.2, we can attack up to 7
rounds of AES. The chunk separation for this attack is depicted in Fig. 9.

In this attack, states #16 to #19 are chosen as the initial-structure and we
apply the match between states #7 and #8. The neutral bytes for the forward
computation are 4 bytes at #16, namely, #16[0,1,2,3]. The neutral bytes for the
backward computation are 3 bytes at #19, namely, #19[12,14,15].

To make the initial-structure work, we choose neutral bytes for the forward
chunk so that 3 bytes #15[1,2,3] can be pre-determined constant values. Simi-
larly, neutral bytes for the backward chunk are computed so that impacts on 2
bytes #20[13,15] can be pre-determined constant values. The matching proce-

12

dure is exactly the same as the one explained in Section 4.2. The detailed attack
procedure is explained below. Note that the procedure below is a preimage at-
tack on the compression function. To convert this attack to the one for a hash
function, we need additional effort depending on the mode-of-operation used.

1. Choose a value for the key-input, and compute all sub-keys. How to choose
the value depends on the mode-of-operation. In this procedure, we assume
that the key-input can be any value. We remove this assumption later.

2. Randomly choose constant values for 9 bytes in state #16 (#16[4,5,7,8,9,10,
13,14,15]), for 3 bytes in state #15 (#15[1,2,3]), and for impacts on 2 bytes
in state #20 (#20[13,15]) from the neutral bytes of the backward chunk.

3. For all 28 values of #16[0], do as follows.

(a) Calculate #16][1,2,3] so that 3 bytes #15[1,2,3] can be pre-determined
constant values.

(b) Compute the forward chunk from #20 to #28, and then, from #0 to
#7. Also compute C/,, in Eq. (10) for each column.

(c) Store the results in a table T¥,,.

4. Sort the table T, after obtaining 28 values.

5. For all 28 values of #19[12], do as follows.

(a) Calculate #19[14,15] so that the impacts from these values to 2 bytes

#20[13,15] can be pre-determined constant values.

) Compute the backward chunk from #15 to #8.

(¢) From 12 known bytes of #8, compute Chpqex in Eq. (10) for each column.

) Check if there exists an entry in T, that matches the computed Cpacr-
) If exits, compute all bytes of #7 and #8 with matched values and check
if all 128-bit values of #7 and #8 match.
(f) If all 128-bits match, output the corresponding (Hy_1, Mn_1).

6. If the attack does not succeed with 28 values of #19[12], go back to Step 2

(or Step 1 if necessary) and repeat the attack with different constant values.

Complexity evaluation. In this attack, the sum of the complexity for com-
puting 28 results of #7 and #8 is roughly 28 7-round AES computations. At
Step 3c, we need a memory to store 28 - 4-byte information for C ror- At Step 5d
we search for the table of the size 28. Hence, for all 28 values of #19[12], the cost
is about 2%-log 28 memory access, which is enough small compared to 28 7-round
AES for computing #7 and #8. The success probability of the match is 278 for
each column, and thus 2732 for 4 columns. Hence, after generating 2% results for
#7 and 28 results for #8, 28 - 28 . 2732 = 2716 candidate will remain, where a
remaining candidate satisfies 4-byte linear relations in a state. Therefore, if we
iterate the above procedure 2''2 times, we obtain 2!1? . 2716 = 296 candidates
satisfying the match and one of them will satisfy the other 12-byte linear rela-
tions in a state, in other words, a preimage on the compression function is found.
Note that, at Step 6, the algorithm can go back to Step 2 up to 2''? times for
a fixed key-input. To repeat the attack more, we need to change the key-input
at Step 1. The final complexity of the attack is 28 - 2112 = 2120 AES 7-round
computations and we need a memory for storing 2% - 4-byte information.

13

DA

Generate many H,® Pseudo-preimage attack Copy

Fig. 10. (Top) Given first-preimage (Bottom) Second-preimage construction

Conversion to hash function scenario. How to convert this attack to the
hash function scenario depends on the mode-of-operation used. For the DM
mode, this attack finds (Hy_1, Mn_1), where the value of My_; is chosen at
Step 1 and the value of Hy_1 is determined randomly during the attack. In this
scenario, we can choose the message so that the padding string can be satisfied.
Instead, Hy_1 cannot be fixed to IV. Hence, we choose My_1 at Step 1 so
that the padding string for 2-block messages is satisfied, and convert pseudo-
preimages into preimages with the conversion in Sect. 3.1. Finally, the attack
generates preimages of 2-block long with a complexity of 211(120+128)/2 — 9125

For the MMO or MP modes, the value of Hy_; is chosen at Step 1 and
the value of My_; is determined randomly during the attack. Therefore, we
can always start from the IV, but cannot satisfy the padding string. Because
of the padding problem, this attack cannot generate preimages. Hence, we aim
to generate second preimages. Assume that the given first preimage is 3-block
long. The attack is depicted in Fig. 10. Our attack copies the last message block
in which the padding string is included. For the first block, we choose several

different message values Méw) to find several different chaining variables H{I).

) and search for a

Finally, for the second block, we choose one of generated H fz
message M/ that satisfies CF(M], H 1(90)) = Hs using the pseudo-preimage attack.
Hence, second preimages are generated with a complexity of 2'2°. Note that, a
fixed Hy cannot be mapped from a fixed Hl(z) for any M| with a probability of
1 —e~! In such a case, we choose another H*) and repeat the attack. After

several trials of Hl(”:)7 we will find a valid M| with a probability almost 1.

6 Discussion
Other PGV modes. In PGV, 12 schemes in Table 2 are secure. Our attacks

can be applied to all 12 schemes. In our attack, the key is chosen and fixed.
Therefore, as long as the key is equivalent to H;, the same attack as the MMO-

14

Table 2. Twelve secure PGV constructions. X; represents H; & M.

No.| Computation ||No.| Computation ||[No.| Computation ||No.| Computation
En, (Hi) ® Hi || 6 |En, (X5) @ X5 En, (Hi) ® Xi|| 8 |En, (Xi) ® H;
EX7(M1)€BMZ 10 EX7(HZ) @ H;|l 11 E}Q(MJ@HZ 12 EX7(HZ) o M;

N

Nel NG N

mode can be performed. Hence, on No.1 to No.4, a second-preimage attack with
2120 computations is possible. Similarly, on No.5 to No.8, a preimage attack with
2125 computations is possible. On No.9 to No.12, the key X; is chosen but either
H; or M; cannot be chosen. Hence, only a second-preimage attack with 2!2°
computations is possible. Considering the long message attack [20], our attack
has an advantage only if the length of the given message is 3- to 7-blocks.

As a further generalization, applications to the generalized PGV construction

proposed by [33] seems interesting. We leave this work as an open problem.

Complexity on AES 6-rounds. To demonstrate the change of the complexity
with a different number of rounds, we attacked 6-rounds. The idea is omitting
the match through the MC and apply the direct match instead. This enables
attackers to reduce the number of known bytes in the backward chunk, and thus
to keep 2'6 neutral values for each chunk. The final results are listed in Table 1.

Known-key attack on 7-round AES. Our attack can be regarded as a new
approach of the known-key attack on AES, which finds fixed points on 7-round
AES. The success probability of the attack is 1 — e~ ?.

The attacker is given a randomly chosen key k. Then, she carries out the
pseudo-preimage attack on 7-round AES in Sect. 5 with setting the given target
hash value to 0. With a complexity of 2'2° a plaintext p s.t. p = Ex(p) will be
found, while finding such p will cost 2'2® for a 128-bit random permutation.

Note that Gilbert and Peyrin proposed a known-key distinguisher on 8-round
AES [17]. They find some non-ideal differential property, while our attack finds
a fixed point which has been discussed for a long time. The application of our
known-key distinguisher to the hash function scenario is meaningful, which finds
a preimage of 0 in several PGV constructions. However, [17] attacks 8-round with
a feasible complexity, while ours attacks 7-round with an infeasible complexity.

Difficulties in chosen-key setting. In our attack, the key-input is fixed to a
constant. It might be possible to extend the attack by actively choosing the key-
input. However, this is not trivial. Firstly, the splice-and-cut technique cannot
be used for the key-schedule function, namely, most part of the first round key
cannot be obtained from the last round key without computing the inversion.
Hence, the MitM attack would be difficult. Secondly, the previous related-key
attacks on AES focused their attention on differential properties. It is unclear
how to use the weak property of the key-schedule function to build preimages.

15

0007

UHDBUHUA D)

i
Y

Vi
IV

Given Target

Fig.11. Chunk separation for second preimage attack on 5-round Whirlpool.
Whirlpool computes ShiftColumns(SC) and MixRows(MR) instead of SR and MC.

Application for Whirlpool. Our attack exploits the omission of MixColumns
in the last round. Here, we discuss a variant of AES, which computes MixColumns
in the last round?. To check the number of attacked rounds, we again use Fig. 9.
Due to MixColumns in the last round, we need to remove the 7th round from
our target. Note that known byte positions at states #25 and #5 are identical.
This indicates that we also need to remove the first round, and state #25 should
be connected to state #6. As a result, we can attack only 5 rounds.

Whirlpool [30] is a hash function which is deeply based on AES with a larger
state size. Because Whirlpool computes MixColumns during the last round,
the above analysis can be directly applied as a preimage attack on reduced
Whirlpool. Whirlpool uses 8 x8-byte (512-bit) state and consists of 10 naturally-
expanded AES rounds. It produces the compression function output with the MP
mode. In Fig. 11, we show the chunk separation for attacking 5-round Whirlpool.

The attack strategy is the same as 7-round attack on AES. Hence we omit the
details. Pseudo-preimages can be generated faster than the brute force attack
by a factor of 28, which is 2°%4. Because Whirlpool uses the MP mode, this can
be a second-preimage attack with a complexity of 2°°4 and a memory of 28.

2 One may note another study on the effects of the omission of MixColumns [14].

16

7 Concluding Remarks

In this paper, we studied the security of AES hashing modes in terms of the
classical and important security notions. We proposed a preimage attack on the
PGV modes instantiating AES by applying the meet-in-the-middle approach.
As a result, we obtained a preimage attack on 7 rounds of DM-AES and second-
preimage attack on 7 rounds of MMO-AES and MP-AES. This attack can also
generate second preimages of Whirlpool reduced to 5 rounds.

Note that our results do not give impact on other AES-based hash functions
e.g. several SHA-3 candidates, in particular, those with the wide-pipe structure.

Acknowledgements

I would like to thank the anonymous reviewers of FSE 2011 for many fruitful
comments, especially for the research motivation and applications of the attack.

References

1. Kazumaro Aoki, Jian Guo, Krystian Matusiewicz, Yu Sasaki, and Lei Wang. Preim-
ages for step-reduced SHA-2. In ASTACRYPT 2009, volume 5912 of LNCS, pages
578-597. Springer-Verlag, 2009.

2. Kazumaro Aoki and Yu Sasaki. Meet-in-the-middle preimage attacks against re-
duced SHA-0 and SHA-1. In CRYPTO 2009, volume 5677 of LNCS, pages 70-89.
Springer-Verlag, 2009.

3. Kazumaro Aoki and Yu Sasaki. Preimage attacks on one-block MD4, 63-step MD5
and more. In SAC 2008, volume 5381 of LNCS, pages 103-119. Springer-Verlag,
20009.

4. Jean-Philippe Aumasson, Willi Meier, and Florian Mendel. Preimage attacks on
3-pass HAVAL and step-reduced MD5. In SAC 2008, volume 5381 of LNCS, pages
120-135. Springer-Verlag, 2009.

5. Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and Adi
Shamir. Key recovery attacks of practical complexity on AES-256 variants with
up to 10 rounds. In EUROCRYPT 2010, volume 6110 of LNCS, pages 299-319.
Springer-Verlag, 2010.

6. Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full
AES-192 and AES-256. In ASIACRYPT 2009, volume 5912 of LNCS, pages 1-18.
Springer-Verlag, 2009.

7. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikoli¢. Distinguisher and related-
key attack on the full AES-256. In CRYPTO 2009, volume 5677 of LNCS, pages
231-249. Springer-Verlag, 2009.

8. Alex Biryukov and Ivica Nikoli¢. A new security analysis of AES-128. Rump
session of CRYPTO 2009, 2009. http://rump2009.cr.yp.to/.

9. Alex Biryukov and Ivica Nikolic. Automatic search for related-key differen-
tial characteristics in byte-oriented block ciphers: Application to AES, Camellia,
Khazad and others. In EUROCRYPT 2010, volume 6110 of LNCS, pages 322-344.
Springer-Verlag, 2010.

17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Andrey Bogdanov, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B.
Robshaw, and Yannick Seurin. Hash functions and RFID tags: Mind the gap. In
CHES 2008, volume 5154 of LNCS, pages 283-299. Springer-Verlag, 2008.
Christophe De Canniére and Christian Rechberger. Preimages for reduced SHA-0
and SHA-1. In CRYPTO 2008, volume 5157 of LNCS, pages 179-202. Springer-
Verlag, 2008.

Joan Daemen and Vincent Rijmen. The design of Rijndeal: AES — the Advanced
Encryption Standard (AES). Springer-Verlag, 2002.

Hiiseyin Demirci and Ali Aydin Selguk. A meet-in-the-middle attack on 8-round
AES. In FSE 2008, volume 5086 of LNCS, pages 116-126. Springer-Verlag, 2008.
Orr Dunkelman and Nathan Keller. The effects of the omission of last round’s
MixColumns on AES. Cryptology ePrint Archive, Report 2010/041, 2010. http:
//eprint.iacr.org/2010/041.

Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key attacks on
8-round AES-192 and AES-256. In ASIACRYPT 2010, volume 6477 of LNCS,
pages 158-176. Springer-Verlag, 2010.

Henri Gilbert and Marine Minier. A collision attack on 7 rounds Rijndael. In Third
AES Candidate Conference (AES3), pages 230-241. Springer-Verlag, 2000.

Henri Gilbert and Thomas Peyrin. Super-Sbox cryptanalysis: Improved attacks
for AES-like permutations. In FSE 2010, volume 6147 of LNCS, pages 365-383.
Springer-Verlag, 2010.

Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced meet-
in-the-middle preimage attacks: First results on full Tiger, and improved results
on MD4 and SHA-2. In ASTACRYPT 2010, volume 6477 of LNCS, pages 56—75.
Springer-Verlag, 2010.

Sebastiaan Indesteege and Bart Preneel. Preimages for reduced-round Tiger. In
WEWoRC 2007, volume 4945 of LNCS, pages 90-99. Springer-Verlag, 2007.
John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for
much less than 2" work. In EUROCRYPT 2005, volume 3494 of LNCS, pages
474-490. Springer-Verlag, 2005.

Lars R. Knudsen and Vincent Rijmen. Known-key distinguishers for some block
ciphers. In ASIACRYPT 2007, volume 4833 of LNCS, pages 315-324. Springer-
Verlag, 2007.

Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and
Martin Schléffer. Rebound distinguishers: Results on the full Whirlpool com-
pression function. In ASTACRYPT 2009, volume 5912 of LNCS, pages 126—143.
Springer-Verlag, 2009.

Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and
Martin Schlaffer. The rebound attack and subspace distinguishers: Application to
Whirlpool. Cryptology ePrint Archive, Report 2010/198, 2010. http://eprint.
iacr.org/2010/198.

Gaétan Leurent. MD4 is not one-way. In FSE 2008, volume 5086 of LNCS, pages
412-428. Springer-Verlag, 2008.

Jigiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim. New impossible
differential attacks on AES. In INDOCRYPT 2008, volume 5365 of LNCS, pages
279-293. Springer-Verlag, 2008.

Florian Mendel, Thomas Peyrin, Christian Rechberger, and Martin Schléffer. Im-
proved cryptanalysis of the reduced Grgstl compression function, ECHO permu-
tation and AES block cipher. In SAC 2009, volume 5867 of LNCS, pages 16-35.
Springer-Verlag, 2009.

18

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Florian Mendel, Christian Rechberger, Martin Schléffer, and Sgren S. Thomsen.
The rebound attack: Cryptanalysis of reduced Whirlpool and Grgstl. In FSE 2009,
volume 5665 of LNCS, pages 260-276. Springer-Verlag, 2009.

Alfred John Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on block
ciphers: A synthetic approach. In CRYPTO 1993, volume 773 of LNCS, pages
363—-378. Springer-Verlag, 1994.

Vincent Rijmen and Paulo S. L. M. Barreto. The WHIRLPOOL hashing function.
Submitted to NISSIE, September 2000.

Yu Sasaki and Kazumaro Aoki. Preimage attacks on 3, 4, and 5-pass HAVAL. In
ASTACRYPT 2008, volume 5350 of LNCS, pages 253-271. Springer-Verlag, 2008.
Yu Sasaki and Kazumaro Aoki. Finding preimages in full MD5 faster than ex-
haustive search. In FUROCRYPT 2009, volume 5479 of LNCS, pages 134-152.
Springer-Verlag, 2009.

Martijn Stam. Blockcipher-based hashing revisited. In FSE 2009, volume 5665 of
LNCS, pages 67-83. Springer-Verlag, 2009.

U.S. Department of Commerce, National Institute of Standards and Technology.
Specification for the ADVANCED ENCRYPTION STANDARD (AES) (Federal
Information Processing Standards Publication 197), 2001. http://csrc.nist.gov/
encryption/aes/index.html\#fips.

U.S. Department of Commerce, National Institute of Standards and Technology.
Federal Register /Vol. 72, No. 212/Friday, November 2, 2007/Notices, 2007. http:
//csrc.nist.gov/groups/ST/hash/documents/FR_Notice_NovO07.pdf.
Yongzhuang Wei, Jigiang Lu, and Yupu Hu. Meet-in-the-middle attack on 8 rounds
of AES block cipher under 192 key bits. Cryptology ePrint Archive, Report
2010/537, 2010. http://eprint.iacr.org/2010/537, appeared in the accepted
papers list of ISPEC 2011.

19

