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Abstract. We analyze adpARX, the probability with which additive dif-
ferences propagate through the following sequence of operations: mod-
ular addition, bit rotation and XOR (ARX). We propose an algorithm to
evaluate adpARX with a linear time complexity in the word size. This algo-
rithm is based on the recently proposed concept of S-functions. Because
of the bit rotation operation, it was necessary to extend the S-functions
framework. We show that adpARX can differ significantly from the multi-
plication of the differential probability of each component. To the best
of our knowledge, this paper is the first to propose an efficient algorithm
to calculate adpARX. Accurate calculations of differential probabilities are
necessary to evaluate the resistance of cryptographic primitives against
differential cryptanalysis. Our method can be applied to find more accu-
rate differential characteristics for ARX-based constructions.
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1 Introduction

Many cryptographic primitives are built using the operations modular addition,
bit rotation and XOR (ARX). The advantage of using these operations is that
they are very fast when implemented in software. At the same time, they have
desirable cryptographic properties. Modular addition provides non-linearity, bit
rotation provides diffusion within a single word, and XOR provides diffusion be-
tween words and linearity. A disadvantage of using these operations is that the
diffusion is typically slow. This is often compensated for by adding more rounds
to the designed primitive.
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Examples of cryptographic algorithms that make use of the addition, XOR
and rotate operations, are the stream ciphers Salsa20 [2] and HC-128 [16], the
block cipher XTEA [13], the MD4-family of hash functions (including MD5 and
SHA-1), as well as 6 out of the 14 candidates of NIST’s SHA-3 hash function
competition [12]: BLAKE [1], Blue Midnight Wish [7], CubeHash [3], Shabal [4],
SIMD [8] and Skein [6].

Differential cryptanalysis is one of the main techniques to analyze crypto-
graphic primitives. Therefore, it is essential that the differential properties of
ARX are well understood both by designers and attackers. Several important re-
sults have been published in this direction. In [15], Meier and Staffelbach present
the first analysis of the propagation of the carry bit in modular addition. Later,
Lipmaa and Moriai proposed an algorithm to compute the XOR differential prob-
ability of modular addition (xdp+) [9]. Its dual, the additive differential proba-
bility of XOR (adp⊕), was analyzed by Lipmaa, Wallén and Dumas in [10]. The
latter proposed new algorithms for the computation of both xdp+ and adp⊕,
based on matrix multiplications. The differential properties of bit rotation have
been analyzed by Daum in [5].

In [11], Mouha et al. propose the concept of S-functions. S-functions are a
class of functions that can be computed bitwise, so that the i-th output bit
is computed using only the i-th input bits and a finite state S[i]. Although S-
functions have been analyzed before, [11] is the first paper to present a fully
generic and efficient framework to determine their differential properties. The
methods used in the proposed framework are based on graph theory, and the
calculations can be efficiently performed using matrix multiplications.

In this paper, we extend the S-function framework to compute the differ-
ential probability adpARX of the following sequence of operations: addition, bit
rotation and XOR. We describe a method to compute adpARX based on the ma-
trix multiplication technique proposed in [10], and generalized in [11]. The time
complexity of our algorithm is linear in the word size. We provide a formal proof
of its correctness, and also confirm it experimentally. We performed experiments
on all combinations of 4-bit inputs and on a number of random 32-bit inputs.

We observe that adpARX can differ significantly from the probability obtained
by multiplying the differential probabilities of addition, rotation and XOR. This
confirms the need for an efficient calculation of the differential probability for the
ARX operation. We are unaware of any results in existing literature where adpARX

is calculated efficiently. Accurate and efficient calculations of differential proba-
bilities are required for the efficient search for characteristics used in differential
cryptanalysis.

The outline of the paper is as follows. In Sect. 2, we define the additive differ-
ential probability of bit rotation (adp≪). We give an overview of S-functions and
we describe how they can be used to compute the additive differential probability
of XOR (adp⊕) in Sect. 3. The additive differential probability of ARX (adpARX) is
defined in Sect. 4. We show that adpARX can deviate significantly from the prod-
uct of the probabilities of rotation and XOR. In Sect. 5, we propose a method for
the calculation of adpARX. The theorem stating its correctness is formulated in
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Table 1. Notation.

Symbol Meaning

n Number of bits in one word

x n-bit word

x[i] Select the (i mod n)-th bit (or element) of the n-bit word x,
x[0] is the least-significant bit (or element)

+ Addition modulo 2n

- Subtraction modulo 2n

r Rotation constant, 0 ≤ r < n

≪ r Left bit rotation by r positions

≫ r Right bit rotation by r positions

≫ 1 A signed shift by one position to the right (e.g. −1 ≫ 1 = −1)

⊕ Exclusive-OR (XOR)

∆x n-bit additive difference (x2 − x1) mod 2n

‖ Concatenation of bit strings

ARX The sequence of the operations: +,≪,⊕

adp≪ The additive differential probability of bit rotation

adp⊕ The additive differential probability of XOR

adpARX The additive differential probability of ARX

x2 Number x in binary representation

∆α → ∆β Input difference ∆α propagates to output difference ∆β

Sect. 6. In Sect. 7, we confirm the computation of adpARX experimentally. Sec-
tion 8 concludes the paper. The matrices used to compute adpARX are given in
Appendix A. Appendix B contains the full proof of correctness of the adpARX

algorithm. Throughout the paper, we use the notation listed in Table 1.

2 Definition of adp≪

The additive differential probability of bit rotation, denoted by adp≪, is the
probability with which additive differences propagate through bit rotation. This
probability was studied by Daum in [5]. We give a brief summary of the results
in [5] that are relevant to our work.

Let ∆α be a fixed additive difference. Let a1 be an n-bit word chosen uni-
formly at random and (a1, a1 + ∆α) be a pair of n-bit words input to a left
rotation by r positions. Let ∆β be the output additive difference between the
rotated inputs:

∆β = ((a1 + ∆α) ≪ r) − (a1 ≪ r) . (1)

In [5, Corollary 4.14, Case 2] it is shown that there are four possibilities for ∆β:

∆β ∈ {∆βu,v = (∆α ≪ r) − u2r + v, u, v ∈ {0, 1}} . (2)

3



f

. . .

a1[0] a2[0] ak[0]

b[0]

S[0]
f

. . .

a1[1] a2[1] ak[1]

b[1]

S[1]
f

. . .

a1[n − 1] a2[n − 1] ak[n − 1]

b[n − 1]

S[n − 1] S[2]S[n]
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Fig. 1. Representation of an S-function.

The probabilities for the output differences ∆β are:

P0,0 = P (∆α → ∆β0,0) = 2−n(2r − ∆αL)(2n−r − ∆αR) , (3)

P0,1 = P (∆α → ∆β0,1) = 2−n(2r − ∆αL − 1)∆αR , (4)

P1,0 = P (∆α → ∆β1,0) = 2−n∆αL(2n−r − ∆αR) , (5)

P1,1 = P (∆α → ∆β1,1) = 2−n(∆αL + 1)∆αR . (6)

In the above equations, ∆αL is the word composed of the r most significant bits
of ∆α and ∆αR is the word composed of the n − r least significant bits of ∆α
such that

∆α = ∆αL ‖ ∆αR . (7)

We define the additive differential probability of bit rotation as

adp≪(∆α
r
−→ ∆β) =

{

Pu,v , if ∆β = ∆βu,v for some u, v ∈ {0, 1} ,

0 , otherwise .
(8)

3 Computation of adp⊕ Using S-Functions

S-functions were introduced by Mouha et al. in [11]. An S-function (short for
state-function) accepts n-bit words a1, a2, . . . , ak and a list of states S[i] (for
0 ≤ i < n) as input, and produces an n-bit output word b in the following way:

(b[i], S[i + 1]) = f(a1[i], a2[i], . . . , ak[i], S[i]), 0 ≤ i < n . (9)

Initially, we set S[0] = 0. A schematic representation of an S-function is given
in Fig. 1.

In [11], S-functions were used to compute the additive differential probability
of XOR (adp⊕). This is the probability with which additive differences propagate
through the XOR operation. The results of [11] confirm the calculation of adp⊕

obtained in [10]. They are relevant to the calculation of adpARX, and will therefore
be briefly described below.
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Fix the additive differences ∆α, ∆β, ∆γ. With ∆e we designate the additive
difference:

∆e = e2 − e1 = ((c1 + ∆α) ⊕ (d1 + ∆β)) − (c1 ⊕ d1) . (10)

The probability adp⊕ is equal to the number of pairs (c1, d1) for which ∆e = ∆γ,
divided by the total number of pairs (c1, d1):

adp⊕(∆α, ∆β → ∆γ) =
|{(c1, d1) : ∆e = ∆γ}|

|{(c1, d1)}|
. (11)

The i-th bit of the output difference ∆e[i] can be computed from the i-th bits
of the input differences ∆α[i], ∆β[i] and the state S[i]. The state S[i] consists of
the carries s1[i], s2[i] and the borrow s3[i]:

s1[i] = (c1[i − 1] + ∆α[i − 1] + s1[i − 1]) ≫ 1 , (12)

s2[i] = (d1[i − 1] + ∆β[i − 1] + s2[i − 1]) ≫ 1 , (13)

s3[i] = (e2[i − 1] − e1[i − 1] + s3[i − 1]) ≫ 1 , (14)

where s1[0] = s2[0] = s3[0] = 0. Note that the bit shift by one position to the
right in (14) is a signed shift (e.g. −1 ≫ 1 = −1). The S-function for adp⊕ is
defined as

(∆e[i], S[i + 1]) = f(c1[i], d1[i], ∆α[i], ∆β[i], S[i]), 0 ≤ i < n . (15)

By definition, the state S[i] of an S-function has the same fixed size for every
0 ≤ i < n. In the case of adp⊕, this size is 3 bits. Therefore, there are eight
distinct states S[i] in total for any bit position 0 ≤ i < n. For fixed input
differences, the transition between consecutive states S[i] and S[i + 1] can be
described by an 8× 8 adjacency matrix. There are eight such matrices in total –
one for each value of the 3-tuple (∆α[i], ∆β[i], ∆γ[i]). These eight matrices are
derived in [11] and are shown to be equal (up to a permutation) to the matrices
previously computed in [10].

The probability adp⊕ is computed by iterating over all bit positions 0 through
n− 1. At each position i, one of the eight matrices is selected depending on the
value of the bits of the differences ∆α[i], ∆β[i], ∆γ[i]. All n matrices that are
selected in this way are multiplied. The resulting matrix is right-multiplied by
the column vector representing the initial state. We now obtain a column vector.
After summing its elements, we end up with the number of pairs (a1, b1) for
which ∆e = ∆γ. The probability adp⊕ is computed by dividing the obtained
value by the total number of pairs (a1, b1). This whole process is summarized by
the following formula:

adp⊕(∆α, ∆β → ∆γ) = 2−2nLAw[n−1] · · ·Aw[1]Aw[0]C . (16)

In (16), the factor 22n corresponds to the total number of n-bit pairs (c1, d1).

C =
(

1 0 0 0 0 0 0 0
)T

is a column vector indicating the initial state S[0] = 0,
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(a1, a1 + ∆α) (b1, b1 + ∆β)

≪ r
(c1, c1 + ∆γ) (q1, q1 + ∆ρ)

(d1, d1 + ∆λ)

(e1, e1 + ∆e)

Fig. 2. Additive differences passing through the ARX operation.

corresponding to the two initial carries s1[0], s2[0] and the initial borrow s3[0]
being equal to zero. Multiplication by the row vector L =

(

1 1 1 1 1 1 1 1
)

is equivalent to adding the elements of the column vector resulting from the
product Aw[n−1] · · ·Aw[0]C. The matrix indices w[i], 0 ≤ i < n are in the set
{0, 1, . . . , 7}. Index w[i] is obtained by concatenating the i-th bits of the differ-
ences: w[i] = ∆α[i] ‖ ∆β[i] ‖ ∆γ[i]. At every bit position i, the index w[i] selects
one of the eight distinct adjacency matrices Aw[i]. They are given in Appendix A.

In the next sections, we define the additive differential probability of ARX and
we describe a method to compute this probability using S-functions.

4 Definition of adpARX

The operation ARX is defined as:

ARX(a, b, d, r)
def

= ((a + b) ≪ r) ⊕ d . (17)

Let the additive differences ∆α, ∆β, ∆λ, ∆η be fixed. Let ∆e be the difference
between two outputs of ARX:

∆e = e2 − e1 = ARX(a1 + ∆α, b1 + ∆β, d1 + ∆λ, r) − ARX(a1, b1, d1, r) . (18)

Equation (18) is illustrated in Fig. 2. Additive differences pass through modular
addition with probability one. Therefore we can directly compute the output
difference after the addition: ∆γ = ∆α + ∆β. Let c1 = a1 + b1 be any output
from the addition (Fig. 2). The additive differential probability of ARX is defined
as the number of pairs (c1, d1) for which ∆e = ∆η, divided by all pairs (c1, d1):

adpARX(∆γ, ∆λ
r
−→ ∆η)

def

=
|{(c1, d1) : ∆e = ∆η}|

|{(c1, d1)}|
. (19)

An estimation of adpARX can be obtained as the product of the probabilities of
rotation and XOR. We designate the probability computed in this way by Protxor:

Protxor =

4
∑

j=0

(adp≪(∆γ
r
−→ ∆ρj) · adp⊕(∆ρj , ∆λ → ∆η)) , (20)
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where ∆ρj , 0 ≤ j < 4 are the four possible output differences after the rotation
(2). Equation (20) would be an accurate evaluation of adpARX if the inputs to the
rotation and the inputs to the XOR operation were independent. In reality they
are not, as illustrated by the following example.

Example 1. Let n = 4, r = 1, ∆γ = 10002, ∆λ = 00002, ∆η = 00012. Two
output differences after the rotation are possible: ∆ρ0 = 00012 and ∆ρ2 = 11112,
each with probability 2−1. They both propagate through the XOR operation with
probability 2−1.54. The total probability Protxor is

Protxor = adp≪(10002
1
−→ 00012) · adp⊕(00012, 00002 → 00012)

+ adp≪(10002
1
−→ 11112) · adp⊕(11112, 00002 → 00012)

= 2−1 · 2−1.54 + 2−1 · 2−1.54 = 2−1.54 . (21)

The actual probability is, however, higher than Protxor and is Pexper = 2−1. The
reason for the discrepancy is the fact that there exist pairs of inputs to XOR

that satisfy the differences ∆ρ0 or ∆ρ2, but when they are rotated back they
do not satisfy the difference ∆γ. One such input pair is (q1, q2) = (2, 1). This
pair satisfies the difference ∆ρ2: q2 − q1 = (1 − 2) mod 16 = 15 = 11112. Yet,
it does not satisfy the difference ∆γ: (q2 ≫ 1)− (q1 ≫ 1) = (8− 1) mod 16 =
7 = 01112 6= 10002. There are 8 such pairs in total: (0, 15), (2, 1), (4, 3), (6, 5),
(8, 7), (10, 9), (12, 11), (14, 13). Given the output difference ∆ρ2, these pairs are
impossible. Thus the total number of possible inputs to the XOR is reduced from
256 to 128. The reason is, that for every impossible pair (q1, q2), there are 16
possibilities for the second input pair (d1+∆λ, d1). Of those 128 pairs, 64 satisfy
the output difference ∆η. Thus the actual probability is adp⊕(11112, 00002 →
00012) = 64/128 = 2−1 and not 88/256 = 2−1.54. We have a similar situation
for the difference ∆ρ0. In that case the impossible pairs are (1, 2), (3, 4), (5, 6),
(7, 8), (9, 10), (11, 12), (13, 14), (15, 0) and the adp⊕ probability is again 2−1.
Thus the final probability adpARX is 2−1.

5 Computation of adpARX

In Example 1, we showed that the inputs to the rotation and to the XOR operation
are not independent. This causes the additive differential probability of ARX, es-
timated by the multiplication of the probabilities of the rotation and the XOR, to
differ from the actual probability. This problem can be solved if the intermediate
differences ∆ρj , 0 ≤ j < 4 are not computed explicitly. Consider the ARX oper-
ation (17). Let a1 + b1 = c1, q1 = (c1 ≪ r) and e1 = ARX(a1, b1, d1, r), e2 =
ARX(a2, b2, d2, r), as shown in Fig. 2. Note that c1[i] = q1[i + r]. Therefore
q1[i + r] ⊕ d1[i + r] = e1[i + r] is equivalent to

c1[i] ⊕ d1[i + r] = e1[i + r] . (22)

Using this representation, we can compute the bits of the output e1 without
using the intermediate variable q1. Consequently, we can compute the output
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difference ∆e = e2 − e1 without using the intermediate differences ∆ρi:

c2[i] = c1[i] ⊕ ∆γ[i] ⊕ s1[i] , (23)

d2[i + r] = d1[i + r] ⊕ ∆λ[i + r] ⊕ s2[i + r] , (24)

∆e[i + r] = e1[i + r] ⊕ e2[i + r] ⊕ s3[i + r] , (25)

where

s1[i] = (c1[i − 1] + ∆γ[i − 1] + s1[i − 1]) ≫ 1 , (26)

s2[i + r] = (d1[i + r − 1] + ∆λ[i + r − 1] + s2[i + r − 1]) ≫ 1 , (27)

s3[i + r] = (e2[i + r − 1] − e1[i + r − 1] + s3[i + r − 1]) ≫ 1 . (28)

The S-function for adpARX is defined as

(∆e[i + r], S[i + 1]) = f(c1[i], d1[i + r], ∆γ[i], ∆λ[i + r], S[i]),

0 ≤ i < n . (29)

The definitions of the S-functions for adpARX (29) and adp⊕ (15) are very similar.
Yet the computation of the two differ in several aspects. We describe these
differences below.

5.1 The Initial State

As described in Sect. 3 for adp⊕, the state is composed of two carries and one
borrow arising from the three modular operations involved in computing the
output (10). At position i = 0, these values are all zero. Therefore, the initial
state is S[0] = (s1[0], s2[0], s3[0]) = (0, 0, 0). In the case of adpARX the situation is
slightly different. The reason is that when we perform the ARX operation bitwise,
at position 0, we compute the 0-th bit of c2 and the r-th bits of d2 and ∆e
(23)-(25). Similarly to adp⊕, the carry s1[0] is zero. However the carry s2[r] and
the borrow s3[r] are not necessarily zero:

s1[0] = 0 , (30)

s2[r] = (d1[r − 1] + ∆λ[r − 1] + s2[r − 1]) ≫ 1 , (31)

s3[r] = (e2[r − 1] − e1[r − 1] + s3[r − 1]) ≫ 1 . (32)

Thus the initial state of the adpARX S-function is S[0] = (s1[0], s2[r], s3[r]). Be-
cause s2[r] ∈ {0, 1} and s3[r] ∈ {−1, 0}, there are four possibilities for S[0]. Each
of them corresponds to one of the 3-tuples (0, 0,−1), (0, 1,−1), (0, 0, 0), (0, 1, 0).
We map all 8 possible values of any state S[i] = (s1[i], s2[i + r], s3[i + r]) to
the set of integers {0, 1, ..., 7} as shown in Table 2. Following this convention,
S[0] ∈ {0, 2, 4, 6}.
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Table 2. Mapping between the 8 states of the adpARX S-function and the set of integers
{0, . . . , 7}

S[i] 0 1 2 3 4 5 6 7

(s1[i], s2[i + r], s3[i + r]) (0,0,-1) (1,0,-1) (0,1,-1) (1,1,-1) (0,0,0) (1,0,0) (0,1,0) (1,1,0)

5.2 The Final State

From (30)-(32), it follows that in order to compute S[0] we have to know s2[r−1]
and s3[r − 1]. In other words, in order to compute the initial state of the adpARX

S-function we need information from the final state S[n− 1] = (s1[n− 1], s2[r −
1], s3[r − 1]). However, at the start of the computation (i = 0) we do not know
the output of the S-function at position i = n − 1 yet. We solve this problem
by iterating over all four values of (s2[r − 1], s3[r − 1]) at i = 0. For each of
them, we compute S[0] and we proceed with the computation of the S-function.
From the set of final output states S[n − 1], we accept as valid only those that
match the values of (s2[r − 1], s3[r − 1]) at position i = 0. Each value of the
tuple (s2[r− 1], s3[r− 1]) will match exactly two of all eight final states S[n− 1]
corresponding to the two possibilities for c1[n − 1] ∈ {0, 1}. For example the
initial state (0, 0,−1) will be matched by final states (0, 0,−1) and (1, 0,−1). In
general, following the mapping in Table 2, an initial state S[0] = j ∈ {0, 2, 4, 6}
will match final states S[n − 1] = j and S[n − 1] = j + 1.

5.3 A Special Intermediate State

There is one final issue that should be taken care of, before we are able to
compute adpARX. Consider step i = n − r − 1 of the computation of the S-
function of adpARX. At this step, we are operating on bits at position n − 1 in
order to compute s2[0] and s3[0]. Since these are the most-significant input bits,
the carries and borrows that they generate should be discarded. Consequently,
s2[0] and s3[0] should be set to zero at this step:

s1[n − r] = (c1[n − r − 1] + ∆γ[n − r − 1] + s1[n − r − 1]) ≫ 1 , (33)

s2[0] = 0 , (34)

s3[0] = 0 . (35)

Therefore state S[n−r] = (s1[n−r], s2[0], s3[0]) is a special intermediate state for
which the only permissible values are (0, 0, 0) and (1, 0, 0) i.e. S[n − r] ∈ {4, 5}.
Because of this special state, it is necessary to construct an 8 × 8 projection
matrix R in addition to the matrices Aq, 0 ≤ q < 8 used in the computation
of adp⊕ (16). By multiplying the matrix Aw[n−r−1] at position n − r − 1 to
the left by R, the transition from the set of output states corresponding to
the value of the 3-tuple (∆γ[n − r], ∆λ[0], ∆η[0]) to the set of reachable output
states is performed (cf. Sect. 3). This operation effectively transforms every state
S[n − r] = (s1[n − r], s2[0], s3[0]) to the permissible value for the special state
S[n − r] = (s1[n − r], 0, 0).
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5.4 Computing adp
ARX

The probability adpARX can be computed as follows:

adpARX(∆γ, ∆λ
r
−→ ∆η) =

2−2n
∑

j∈{0,2,4,6}

(LjAw[n−1] · · ·Aw[n−r]RAw[n−r−1] · · ·Aw[1]Aw[0]Cj) . (36)

In (36), j ∈ {0, 2, 4, 6} iterates over the four possible initial states. The binary
column vector Cj of dimension 8 × 1 indicates the initial state. It has 1 at
position j and 0 elsewhere. The vector Lj is a 1×8 binary row vector that has 1 at
positions j and j+1 and has 0 elsewhere. By multiplying the result of the matrix
multiplication by Lj , we are effectively adding only the two final states that
correspond to the initial state j (cf. Sect. 5.2). The indices w[0], . . . , w[n−1] are
in the set {0, 1, . . . , 7}. Index w[i] is obtained by concatenating the corresponding
bits of the differences: w[i] = ∆γ[i] ‖ ∆λ[i + r] ‖ ∆η[i + r]. For every bit position
0 ≤ i < n, index w[i] selects one of the eight 8 × 8 adjacency matrices Aq, 0 ≤
q < 8. For position i = n− r − 1, matrix Aw[n−r−1] is additionally multiplied to
the left by the projection matrix R. The matrices Aq are the same as the the ones
used in the computation of adp⊕. Matrices Aq and R are given in Appendix A.

The computation of adpARX (36) is slightly different from the computation
of adp⊕ (16). The main difference is that there are four evaluations of the S-
function. From each of them, two of the eight final states are selected. The second
difference is the presence of the additional projection matrix R.

In Example 2, we demonstrate the computation of adpARX for the additive
differences given in Example 1.

Example 2. For n = 4, r = 1, ∆γ = 10002, ∆λ = 00002, ∆η = 00012, we want
to compute adpARX(∆γ, ∆λ

r
−→ ∆η). First we compute the indices w[i] = ∆γ[i] ‖

∆λ[i + 1] ‖ ∆η[i + 1], 0 ≤ i < 4:

w[0] = ∆γ[0] ‖ ∆λ[1] ‖ ∆η[1] = 000 ,

w[1] = ∆γ[1] ‖ ∆λ[2] ‖ ∆η[2] = 000 ,

w[2] = ∆γ[2] ‖ ∆λ[3] ‖ ∆η[3] = 000 ,

w[3] = ∆γ[3] ‖ ∆λ[0] ‖ ∆η[0] = 101 .

Indices w[0], w[1], w[2] select matrix A000; index w[3] selects matrix A101. The
probability adpARX is computed as

adpARX(10002, 00002
1
−→ 00012)

= 2−8
∑

j∈{0,2,4,6}

LjA101RA000A000A000Cj = 2−1 ,

10



where

C0 =
(

1 0 0 0 0 0 0 0
)T

, L0 =
(

1 1 0 0 0 0 0 0
)

,

C2 =
(

0 0 1 0 0 0 0 0
)T

, L2 =
(

0 0 1 1 0 0 0 0
)

,

C4 =
(

0 0 0 0 1 0 0 0
)T

, L4 =
(

0 0 0 0 1 1 0 0
)

,

C6 =
(

0 0 0 0 0 0 1 0
)T

, L6 =
(

0 0 0 0 0 0 1 1
)

.

6 Proof of Correctness

With the following theorem we state that the computation of the probability
adpARX (36) is correct. To prove this, we use arguments similar to [11, §3.4,
Theorem 1]. The full proof is given in Appendix B. In this section, we provide
the intuition behind it.

Theorem 1.

2−2n
∑

j∈{0,2,4,6}

(LjAw[n−1] · · ·Aw[n−r]RAw[n−r−1] · · ·Aw[1]Aw[0]Cj) =

|{(c1, d1) : ∆e = ∆η}|

|{(c1, d1)}|
. (37)

Proof. The full proof is given in Appendix B.

Theorem 1 states that the probability computed using the proposed method (36)
is equal to the probability adpARX as defined by (19). The most natural way to
see this is by using a graph representation of the S-function [11]. In [11, §3.4]
it is shown that an S-function can be represented as a directed acyclic graph
composed of bipartite subgraphs. In this representation, all pairs of inputs that
satisfy the input differences are equal to the number of paths through the graph.
Each path connects a valid initial state to a valid final state. A subset of these
paths corresponds to the set of input pairs that satisfy both the input and the
output differences. Therefore, the computation of the S-function is equivalent
to counting the number of paths in the subset and dividing the result by the
number of all paths. Since, in the process, no path is counted more than once,
the result is exactly equal to adpARX as defined by (19).

7 Experiments

In this section, we confirm the correctness of the computation of adpARX (36)
experimentally. We performed two sets of experiments: one for 4-bit words and
one for 32-bit words. In both sets, we compare three computations of the additive
differential probability of ARX:

– Pexper: the probability computed experimentally, using (19), over a certain
number of inputs that satisfy the input differences

11



– adpARX: the probability computed using the proposed method (36)
– Protxor: the probability computed as a product of the probabilities adp≪

and adp⊕ (20)

In the set of experiments on 4-bit words, we exhaustively searched over all pos-
sible combinations of input and output differences ∆γ, ∆λ, ∆η and over all non-
zero rotation constants r ∈ {1, 2, 3}. We performed 12, 288 experiments in total.
For each of them we computed Pexper, adpARX and Protxor. The probability Pexper

was computed over all 28 possible input words. In each experiment, the proba-
bility adpARX was equal to Pexper, while Protxor often deviated. The 24 cases in
which the absolute deviation is higher than 0.1 are shown in Table 3.

We experimented over random 32-bit input and output differences of rela-
tively low weight (less than 16). The probability Pexper was computed over 222

random inputs. We performed 210 experiments in total. For all of them, the esti-
mation of the probability adpARX was closer to the experimentally obtained value
Pexper than to Protxor. A selection of 11 cases for which the absolute deviation
from Protxor was observed to be relatively high is shown in Table 4.

8 Conclusions

In this paper, we analyzed the probability adpARX with which additive differences
propagate through the sequence of operations: modular addition, bit rotation
and XOR. We proposed a method for the computation of adpARX, based on the
recently proposed concept of S-functions. The time complexity of our algorithm
is linear in the word size n. To the best of our knowledge, our algorithm is the
first to calculate adpARX efficiently for large n.

In Sect. 7, we observed that the estimated probability obtained by analyzing
the components of ARX separately, can differ significantly from the actual prob-
ability. In our method, we analyze the three operations as a single operation
(ARX). In this way, we obtain the exact probability adpARX. Our algorithm can be
used to evaluate the probability of differential characteristics for cryptographic
algorithms more accurately.

An interesting topic for future research, is therefore to use our technique in
the search of differential characteristics. Possible targets include several hash
functions from NIST’s ongoing SHA-3 competition, as well as stream ciphers
(e.g. Salsa20), or block ciphers such as XTEA.
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A Appendix

A000 =

2

6

6

6

6

6

6

6

6

6

6

4

0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 1 0 4 0 0 1
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 1

3

7

7

7

7

7

7

7

7

7

7

5

, A001 =

2

6

6

6

6

6

6

6

6

6

6

4

4 0 0 1 0 1 1 0
0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

5

, A010 =

2

6

6

6

6

6

6

6

6

6

6

4

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
1 0 0 1 0 1 4 0
0 0 0 1 0 1 0 0
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7

7

7

7

7

7

7

7

7

7
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,

A011 =

2

6

6

6

6

6

6

6

6

6

6

4

0 1 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 1 4 0 1 0 0 1
0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
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3
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7
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7

7

7

7

7

7

7
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, A100 =
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0 0 0 1 0 0 0 0
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3

7

7

7

7

7

7

7

7

7

7
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, A101 =

2
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6
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6

6

6

6

4

0 0 1 0 1 0 0 0
0 4 1 0 1 0 0 1
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

3

7

7

7

7

7

7

7

7

7

7

5

,

A110 =

2

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0
0 0 1 0 1 0 0 0
0 1 1 0 1 0 0 4

3

7

7

7

7

7

7

7

7

7

7

5

, A111 =

2

6

6

6

6
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6
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1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
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0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0

3

7

7

7

7

7

7

7

7

7

7

5

, R =

2

6

6

6

6

6

6

6

6

6

6
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0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7
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B Proof of Correctness of the Computation of adpARX

In this section, we provide the full proof of Theorem 1. We use the graph rep-
resentation of an S-function [11]. For input words of size n, an S-function can
be represented as a directed acyclic graph, composed of n bipartite subgraphs.
Each bipartite subgraph corresponds to one of the eight adjacency matrices
Aq, q ∈ {0, 1, . . . , 7}. The vertices of the i-th subgraph are composed of the
two disjoint sets of eight input states S[i] ∈ {0, 1, . . . , 7} and eight output states
S[i + 1] ∈ {0, 1, . . . , 7}. Furthermore, the output states of the i-th subgraph are
input states for the (i + 1)-th subgraph. An edge between a vertex in S[i] and a
vertex in S[i + 1] corresponds to a value of the tuple (c1[i], d1[i + r]) that results
in the fixed output difference ∆e[i + r] = ∆η[i + r]. With this representation in
mind, we state the following two lemmas before we proceed to the main theorem.

Lemma 1. Let input differences ∆γ[i], ∆λ[i+r] be given. Then, for every input
value (c1[i], d1[i + r]) and input state S[i], the output value ∆e[i + r] and the
output state S[i + 1] are uniquely determined.
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Proof. The proof follows directly from (23)-(25). ⊓⊔

Lemma 2. The i-th subgraph in the graph representation of the adpARX S-function
(29) contains an edge if and only if ∆e[i + r] = ∆η[i + r]

Proof. The statement holds by construction of the subgraphs. ⊓⊔

Theorem 1.

2−2n
∑

j∈{0,2,4,6}

(LjAw[n−1] · · ·Aw[n−r]RAw[n−r−1] · · ·Aw[1]Aw[0]Cj) =

|{(c1, d1) : ∆e = ∆η}|

|{(c1, d1)}|
. (38)

Proof. Proving the statement of the theorem is equivalent to proving that the re-
sult computed by formula (36) is equal to the definition of adpARX (19). Consider
the S-function for adpARX (29) and the i-th subgraph of its graph representation.
Fix the inputs ∆γ[i], ∆λ[i + r]. From Lemma 1, it follows that every edge in the
subgraph corresponds to a distinct pair of inputs (c1[i], d1[i+ r]), (c2[i], d2[i+ r])
that satisfies the input differences (∆γ[i], ∆λ[i + r]). From Lemma 2, it follows
that the subgraph contains only those among all edges, for which the pair of
inputs satisfies also the output difference ∆η[i + r]. Consider next the graph
composed of all n subgraphs. A path in this graph is composed of n edges:
one edge from each subgraph. For bit position i, one edge corresponds to dis-
tinct pairs (c1[i], d1[i + r]), (c2[i], d2[i + r]) that satisfy differences ∆γ[i], ∆λ[i +
r], ∆η[i + r]. Therefore, a path composed of n edges will correspond to distinct
pairs (c1, d1), (c2, d2) that satisfy the n-bit differences ∆γ, ∆λ, ∆η. It follows
that the number of paths in the S-function graph is equal to the number of
pairs of inputs that satisfy both the input and the output differences. The num-
ber of paths that connect input state S[0] = u ∈ {0, . . . , 7} to output state
S[n − 1] = v ∈ {0, . . . , 7} is equal to the value of the element in column u and
row v of the matrix A, denoted by Au,v with indexing starting from zero. The
matrix A is obtained by multiplying the n adjacency matrices corresponding to
each of the n subgraphs

A = Aw[n−1] · · ·Aw[n−r]RAw[n−r−1] · · ·Aw[1]Aw[0] , (39)

where R is the projection matrix derived in Sect. 5. In Sect. 5, it was shown
that due to the bit rotation in the ARX operation, the only valid initial states
for the S-function are S[0] = u ∈ {0, 2, 4, 6}. Their corresponding valid final
states are S[n − 1] = u and S[n − 1] = u + 1. Therefore the number of paths
connecting valid input and output states is equal to the sum of elements Au,v

u ∈ {0, 2, 4, 6}, v ∈ {u, u + 1} of A:
∑

u∈{0,2,4,6}

∑

v∈{u,u+1}

Au,v =
∑

j∈{0,2,4,6}

LjACj , (40)
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where Cj and Lj are the same as in (36). It remains to prove that (40) is equal
to |{(c1, d1) : ∆e = ∆η}|. For this it is enough to show that none of the paths
corresponding to Au,v overlap. This is indeed the case since the four initial states
u do not overlap (no two values of u are equal) and each of them ends in a set
of final states so that no two sets {u, u + 1} overlap. From this, and because
|{(c1, d1)}| = 22n, it follows that

2−2n
∑

j∈{0,2,4,6}

LjACj =
|{(c1, d1) : ∆e = ∆η}|

|{(c1, d1)}|
= adpARX(∆γ, ∆λ

r
−→ ∆η).

⊓⊔

17


