
Cryptanalysis of Hummingbird-1

Markku-Juhani O. Saarinen

REVERE SECURITY

4500 Westgrove Drive, Suite 335, Addison, TX 75001, USA.
mjos@reveresecurity.com

Abstract. Hummingbird-1 is a lightweight encryption and message authentica-
tion primitive published in RISC ’09 and WLC ’10. Hummingbird-1 utilizes a
256-bit secret key and a 64-bit IV. We report a chosen-IV, chosen-message attack
that can recover the full secret key with a few million chosen messages processed
under two related IVs. The attack requires at most 264 off-line computational
effort. The attack has been implemented and demonstrated to work against a real-
life implementation of Hummingbird-1. By attacking the differentially weak E
component, the overall attack complexity can be reduced by a significant fac-
tor. Our cryptanalysis is based on a differential divide-and-conquer method with
some novel techniques that are uniquely applicable to ciphers of this type.

Keywords: Hummingbird cipher, constrained devices, lightweight cryptogra-
phy, stream cipher cryptanalysis.

1 Introduction

The advent of small-form wireless control and communication devices, sensors
and authentication tags is affecting commercial, military and domestic security
engineering in ways which were almost unimaginable only 10–20 years ago.

An important selection criterion when choosing cryptographic security com-
ponents for such extremely constrained devices is obviously cost, which directly
relates to the complexity of hardware and software implementation of the com-
ponent and its computational efficiency. These lightweight cryptographic solu-
tions must also meet stringent security requirements as they are often critical
links in the overall “chain of security” – user authentication with a RFID to-
ken, a private conversation using a wireless hands-free set and encryption of
key presses on a wireless keyboard are some examples.

Hummingbird-1 [2, 5] is a recent cryptographic algorithm proposal for RFID
tags and other constrained devices. It is covered by several pending patents and
is being commercially marketed by the Revere Security [7]. Revere has invested
into Hummingbird’s cryptographic security assurance before its publication by
contracting ISSI, a private consultancy employing some ex-NSA staff [6] and

members of U. Waterloo CACR [4]. After this work was originally done, an
improved version, Hummingbird-2, has been developed.

In the present report we show that the published version of Hummingbird-1
is suspectible to a chosen-IV, chosen message attack that has an attack com-
plexity of significantly less than 264 operations and data complexity of only few
megabytes, the entire 256-bit secret key can be recovered. The attack has been
implemented and demonstrated to work against a validated implementation of
Hummingbird-1.

This paper is structured as follows. In Section 2 we give a description of
Hummingbird-1 and make a key observations about its initialization procedure.
In Section 3 we build an attack, step by step, that breaks Hummingbird-1. Sec-
tion 4 contains a discussion about the implementation and implications of the
attack, followed by conclusions in Section 5.

2 Description of Hummingbird-1

Hummingbird-1 [2, 4, 5] is an encryption and message authentication primitive
that has a 256-bit secret key, uses a 64-bit IV (nonce) and optionally produces a
64-bit authenticator for the message. Hummingbird-1 is similar to ciphers such
as Helix [3] and Phelix [10] in that it is a word-based stream cipher that can also
be used for authentication. We have not analyzed the security of the proposed
authentication functionality and it will not be discussed in this paper.

2.1 Notation and Parameters

The 256-bit secret key K is indexed as a vector of four 64-bit subkeys K(i).
Each one of the 64-bit subkeys further consists of 16-bit words K(i)

j as follows:

K = (K(1),K(2),K(3),K(4))

K(1) = (K
(1)
1 ,K

(1)
2 ,K

(1)
3 ,K

(1)
4)

K(2) = (K
(2)
1 ,K

(2)
2 ,K

(2)
3 ,K

(2)
4)

K(3) = (K
(3)
1 ,K

(3)
2 ,K

(3)
3 ,K

(3)
4)

K(4) = (K
(4)
1 ,K

(4)
2 ,K

(4)
3 ,K

(4)
4).

The 80-bit internal state of Hummingbird-1 at round t consists of four 16-bit
registers RS1t, RS2t, RS3t, RS4t and the independent shift register LFSRt.

When considering differential attacks, we denote by ∆ the additive differ-
ence between two values. In our differential analysis we will be working on

pairs of related instances of Hummingbird-1 which share the same secret key
K. The state of the first and second instance at round t is written as

(RS1t,RS2t,RS3t,RS4t,LFSRt)

and

(RS1′t,RS2
′
t,RS3

′
t,RS4

′
t,LFSR

′
t).

The additive state difference ∆(RS1t,RS2t,RS3t,RS4t,LFSRt) is

(RS1t � RS1′t,RS2t � RS2′t,RS3t � RS3′t,RS4t � RS4′t,LFSRt � LFSR′
t).

Here � denotes two’s complement subtraction modulo 216. We will also
write ∆Pi = Pi�P ′

i and ∆Ci = Ci�C ′
i to denote plaintext and ciphertext dif-

ference at message word i. Numerical values for differentials are in hexadecimal
notation.

2.2 The 16-bit permutation E

The 16-bit permutation component E(x,K(i)) consists of five invocations of
four S-Boxes, interleaved with a mixing of a 16-bit subkey and a linear trans-
form L. Figure 1 illustrates the operation of the the block cipher E.

K
(i)
1

S1

S2

S3

S4

L

K
(i)
2

S1

S2

S3

S4

L

K
(i)
3

S1

S2

S3

S4

L

K
(i)
4

S1

S2

S3

S4

L

K
(i)
1 ⊕K

(i)
3

S1

S2

S3

S4

K
(i)
2 ⊕K

(i)
4

Fig. 1. The “E box” is a 16-bit permutation with a 64-bit key. L is a 16-bit linear transform
L(x) = x⊕ (x ≪ 6)⊕ (x ≪ 10).

Four permutations of values 0..15 are used as the four-bit S-boxes S1(x),
S2(x), S3(x) and S4(x). We have discovered that at least two variants of the
four S-Boxes exist, one set being described in [5] and an another set in ISSI’s
analysis [6]. The second set of S-Boxes is equivalent to S4-S7 of Serpent-1 [1]
and is compatible with test vectors provided by Revere Security [9]. Tables 1
and 2 give both S-Boxes in full.

Any particular choice of S-Boxes does not affect the main cryptanalysis
presented in this paper. In fact, the attack is applicable regardless of what type
of E function is used as long as it is keyed with only 64 bits. Hence the particular

Table 1. Hummingbird S-Boxes as reported in [5].

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1(x) 8 6 5 15 1 12 10 9 14 11 2 4 7 0 13 3
S2(x) 0 7 14 1 5 11 8 2 3 10 13 6 15 12 4 9
S3(x) 2 14 15 5 12 1 9 10 11 4 6 8 0 7 3 13
S4(x) 0 7 3 4 12 1 10 15 13 14 6 11 2 8 9 5

Table 2. The actual Hummingbird S-Boxes in an implementation obtained from its authors [9].

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1(x) 1 15 8 3 12 0 11 6 2 5 4 10 9 14 7 13
S2(x) 15 5 2 11 4 10 9 12 0 3 14 8 13 6 7 1
S3(x) 7 2 12 5 8 4 6 11 14 9 1 15 13 3 10 0
S4(x) 1 13 15 0 14 8 2 11 7 4 12 10 9 3 5 6

choice of the number of rounds, S-Boxes and the linear transformation has little
effect to the overall security of the cipher.

We define the linear transform L(x) as

L(x) = x⊕ (x ≪ 6)⊕ (x ≪ 10), (1)

where ≪ is a left circular shift operator. By S(x) we denote the application of
the four S-boxes in parallel on the four nibbles of x = x0 | x1 | x2 | x3:

S(x) = S1(x0) | S2(x1) | S3(x2) | S4(x3). (2)

The complete 16-bit keyed permutation E(x,K(i)) is described by:

u0 = x⊕K
(i)
1

u1 = L(S(u0))⊕K
(i)
2

u2 = L(S(u1))⊕K
(i)
3

u3 = L(S(u2))⊕K
(i)
4

u4 = L(S(u3))⊕K
(i)
1 ⊕K

(i)
3

E(x,K(i)) = S(u4)⊕K
(i)
2 ⊕K

(i)
4 .

2.3 Initialization

To set up Hummingbird-1, we first load the 64-bit IV value to the state registers:

(RS1−4,RS2−4,RS3−4,RS4−4) = (IV1, IV2, IV3, IV4). (3)

After this, four rounds of special stepping is performed for t = −4,−3,−2,−1:

v12t = E((RS1t � RS3t)� RS1t, K
(1))

v23t = E(v12t � RS2t, K
(2))

v34t = E(v23t � RS3t, K
(3))

tvt = E(v34t � RS4t, K
(4))

RS1t+1 = RS1t � tvt

RS2t+1 = RS2t � v12t

RS3t+1 = RS3t � v23t

RS4t+1 = RS4t � v34t .

Here the � operator denotes addition modulo 216. After the final round, we
set the bit 12 (or the 13th bit as it is expressed in the specification) in the tv
temporary variable and assign that as the LFSR value:

LFSR0 = tv3 ∨ 1000. (4)

Therefore the 80-bit state after the initialization phase consists of the five
words

(RS10 RS20 RS30 RS40 LFSR0). (5)

Observation 1 The Hummingbird-1 initialization function has a high-bit XOR
differential that holds with probability 1:

∆(IV1, IV2, IV3, IV4) = (8000, 0000, 0000, 0000)

⇓
∆(RS10,RS20,RS30,RS40,LFSR0) = (8000, 0000, 0000, 0000, 0000).

2.4 The encryption function

Each Hummingbird-1 encryption round accepts a 16-bit plaintext word Pi to
produce a ciphertext word Ci. Figure 2 illustrates one round of Hummingbird
encryption.

For t ≥ 0 (after initialization) we have

v12t = E(Pt � RS1t, K
(1))

v23t = E(v12t � RS2t, K
(2))

v34t = E(v23t � RS3t, K
(3))

Ct = E(v34t � RS4t, K
(4))

LFSRt+1 = STEP(LFSRt)

RS1t+1 = RS1t � v34t

RS4t+1 = RS4t � v12t � RS1t+1

RS2t+1 = RS2t � v12t � RS4t+1

RS3t+1 = RS3t � v23t � LFSRt+1.

The Hummingbird LFSR has been implemented in a slightly unusual right-
cyclical fashion, which is best desribed in the C language:

lfsr = (lfsr >> 1) ^ (-(lfsr & 1) & 0xCA44);

THe LFSR operates independently from the other registers as there is no
feedback from them or the plaintext to it. The particular LFSR selection or its
operation does not affect on our attack in any way.

In this paper we will denote by HB(IV, v) = z a query for encryption of
vector v with the given IV value. Conversely, HB−1(IV, z) = v is a decryption
query. Since Hummingbird is attacked in a “black box” fashion in this chosen-
IV, chosen message attack, we don’t include the unknown secret key into the
notation of encryption/decryption queries.

3 Building an attack

Our attack proceeds in several stages, first attacking the initialization function
and then each 64-bit subkey individually, proceeding from the “outer layer”
subkeys K(1) and K(4) towards the “inner layer” subkeys K(3) and K(2). Each
stage of the attack is constructed differently.

The line of attack described in this paper is just one of many. A small mod-
ification of the algorithm or adjustment of the usage model may lead to wholly
different security properties.

We will first describe a very simple chosen-IV distinguisher for Humming-
bird, which will be a part of subsequent stages of the attack. For any two nonces
(IVs) that have a difference in the most significant bit (MSB) of the first word,

we can simply flip the MSB of the plaintext word and the ciphertext words will
match.

Observation 2 There is a Chosen-IV distinguisher for Hummingbird that works
with probability P = 65535/65536 and has data complexity of 1 word. One can
use the high-bit differential of Observation 1 and the following differential for
the first round:

∆(P0,RS10,RS20,RS30,RS40,LFSR0) = (8000, 8000, 0000, 0000, 0000, 0000)

m
∆(C0,RS11,RS21,RS31,RS41,LFSR1) = (0000, 8000, 8000, 0000, 8000, 0000)

The differential works both ways (chosen plaintext and chosen ciphertext).
If we decipher the same word, say, 0000 under the two different nonces that are
related by only having a MSB difference in the first word, there will be a high-
bit difference in the first word of the corresponding plaintext. This constitutes
the distinguisher.

3.1 An iterative differential

Observation 3 There is a one-round iterated differential that works if a colli-
sion occurs inside the cipher as follows:

∆v12t = 8000 , ∆v23t = 0000 , ∆v34t = 0000

∆(RS1t,RS2t,RS3t,RS4t,LFSRt) = (8000, 8000, 0000, 8000, 0000)

m
∆(RS1t+1, · · ·RS4t+1,LFSRt+1) = (8000, 8000, 0000, 8000, 0000).

The initial condition for t = 5 can be satisfied using the initialization and first-
round encryption differentials given in Observations 1 and 2.

To verify Observation 3, one may find it useful to trace the high-bit differ-
entials (and their internal cancellation) in Figure 2 with a highlighting pen. We
note that each one of the conditions ∆v12 = 8000, ∆v23 = 0000, ∆v34 = 0000

implies the other two if the input (or output) state differential holds.
From the algorithm description we see that the internal value v34 satisfies

∆v34 = ∆E−1(Ci,K
(4))�∆RS4t. (6)

For the condition ∆v34 = 0000 to be satisfied and the iterative differential
to work it suffices to find a pair of ciphertext words Ci = a and C ′

i = b such
that

E−1(a,K(4))�E−1(b,K(4)) = 8000. (7)

Pt RS1t RS2t RS3t RS4t LFSRt

EK(1)

(v12)

EK(2)

(v23)

EK(3)

(v34)

EK(4)

Ct RS1t+1 RS2t+1 RS3t+1 RS4t+1

STEP

LFSRt+1

Fig. 2. Encrypting a single 16-bit word Pt to produce a ciphertext word Ct with Hummingbird.
After initialization t ≥ 0.

The first stage of our overall attack is based on chosen-ciphertext queries of
the type

P = HB−1
(
(0000, 0000, 0000, 0000), (x, a, a, . . . , a)

)
(8)

P ′ = HB−1
(
(8000, 0000, 0000, 0000), (x, b, b, . . . , b)

)
. (9)

If a and b are related in as in Equation 7, the iterative differential of Obser-
vation 3 will hold for all t ≥ 1 in Equations 8 and 9 above. The initial x word
is arbitrary; the differential will work as long as C0 = C ′

0. This will result in
∆P0 = 8000.

For our attack any pair (a, b) satisfying Equation 7 will suffice. It is easy to
see that there are 216 such pairs. By the birthday paradox, by decrypting about√
216 = 28 vectors of the form given in Equations 8 and 9, we should have

found one such pair. How to distinguish it from the other pairs ?

From the algorithm definition we can see that if the iterative differential
holds, then ∆v12 = 8000, ∆RS1t = 8000 and the plaintext words satisfy for
all t > 0

∆Pt = E−1(v12t ,K
(1))�

(
E−1(v12t � 8000,K(1))� 8000

)
. (10)

To analyze this condition, we may consider a random bijective function F
on n-bit values and the behavior of the differential

∆F (x) = F (x)� F (x� c) (11)

where c is some nonzero constant and x takes on all values 0 ≤ x ≤ 2n. It is
easy to show that the behavior of ∆F (x) resembles that of a random function
in that its range can be expected to be 2n(1 − e−1) ≈ 0.6321 × 2n rather than
2n. For ease of exposition we will be considering the absolute delta value

abs(∆x) = x− x′ if x > x′ and x′ − x otherwise. (12)

∆Pi in Equation 10 has similarly limited range if the iterative differential
holds. If the differential does not hold, ∆Pi may have any value. We use this fea-
ture to test for the right pair; if the iterative differential holds for some ciphertext
words x and y, the range of abs(∆Pi) values will be close to 215(1 − e−1) ≈
20713 rather than 215 = 32768. The procedure is given by Algorithm 1. The
complexity of Algorithm 1 is less than 230 operations and data complexity is
equivalent to decrypting eight megabytes of data. The choice of looping through
29 values of i and using 212 words of data in Algorithm 1 may not be optimal,
but will be sufficient for actually finding a correct pair with a reasonable proba-
bility.

In practice the algorithm finds a right pair in a few seconds. The current
implementation also rechecks the pair with longer decryptions and performs a
retry if the count of the absolute range is larger than 25000.

3.2 Attacking K(1)

Our first target is to attack the 64-bit subkey K(1). With the (a, b) ciphertext
word pair obtained with Algorithm 1, and further chosen-message queries, we
will extract the entire range S1 of the function δ1 defined by

δ1(x) = abs
(
E−1(x,K(1))� E−1(x� 8000,K(1))

)
. (13)

The expected size of S1 is 215(1 − 1
e) ≈ 20713 elements. To compute S1,

we decrypt two at least megaword-long vectors consisting of the a and b words:

P = HB−1
(
(0000, 0000, 0000, 0000), (0000, a, a, . . . , a)

)
(14)

P ′ = HB−1
(
(8000, 0000, 0000, 0000), (0000, b, b, . . . , b)

)
. (15)

Algorithm 1 Probabilistically find a pair (a, b) satisfying Equation 7 as dis-
cussed in Section 3.1.

for i = 1, 2, . . . , 29 do
v = (0000, i, i, . . . , i), a vector of 212 words.
x[i][1..212] = HB−1

(
(0000, 0000, 0000, 0000), v)

)
.

y[i][1..212] = HB−1
(
(8000, 0000, 0000, 0000), v)

)
.

end for
a = 0, b = 0,m = 215.
for i = 0, 1, . . . , 29 do

for j = 0, 1, . . . , 29 do
Count the number of different words n in the set defined by abs(x[i][k]� y[j][k]).
if n < m then

a = i, b = j, m = n.
end if

end for
end for

Since the iterative differential of Observation 3 holds for all rounds t > 1
but the internal state is otherwise evolving and can be modelled as random, each
difference in corresponding plaintext words can be simply inserted into the set
S1:

abs(Pi � P ′
i ⊕ 8000) ∈ S1 when i > 0. (16)

Note that the completeness of S1 is highly dependent on the length of the ci-
phertext vectors; one million words will yield a complete set with high certainty,
but one hundred thousand words with very low certainty.

Armed with the set S1, we can perform an off-line attack on the first subkey.
To test a subkey candidate K(1) it suffices to loop through values x doing the
membership test δ(x) ∈ Si, as indicated by Equation 13. For a false key candi-
date the membership test will fail with probability of roughly 63.2%. Most key
candidates can be discarded after two trials. Since each membership test (for
x) is independent, the certainty that a correct key has not been found after n
successful trials (1 − 1

e)
n. n = 97 trials gives a 2−64 uncertainty. Our imple-

mentation performs all n = 215 trials, as the performance penalty is negligible
due to the early exit strategy.

3.3 Attacking K(4)

The next subkey to be attacked after K(1) is the last to be used during encryp-
tion, K(4). There are several ways to do this efficiently. We will describe the one
we implemented.

We use our knowledge of K(1) and the differential of Observation 3 to find
more ciphertext pairs (Ci, C

′
i) that have a ∆ = 8000 input difference to the last

invocation of E. This implies that these ciphertext pairs satisfy the equation

E−1(Ci,K
(4)) = E−1(C ′

i,K
(4))� 8000. (17)

If at least four such ciphertext word pairs are available, we may do a con-
clusive exhaustive search over the entire 64-bit subkey K(4) by using Equation
17 as a test.

We will first obtain a known value for RS11. We use the known (a, b) pair
from Section 3.1 and Algorithm 1 and decrypt a set of two-word vectors for few
running values of initial ciphertext word x:

P = HB−1
(
(0000, 0000, 0000, 0000), (x, a)

)
(18)

P ′ = HB−1
(
(8000, 0000, 0000, 0000), (x, b)

)
. (19)

For each decryption ∆P0 = 8000 as indicated by Observation 2. The sec-
ond plaintext word will satisfy

E(P1 � RS11,K
(1)) = E(P ′

1 � RS11 � 8000,K(1))� 8000 (20)

since ∆RS11 = 8000. There usually is only one or at most few possible values
of RS11 that satisfy Equation 20. Such an unique value is found for some x by
simply searching through all possible 216 values of RS11 using the knowledge
of the subkey K(1) (that was obtained in the previous section). This gives us
information about the internal state of the cipher after one encryption round.

Let y = P0 = P ′
0 � 8000 for some pair of related decryptions described

in Equations 18 and 19 such that an unique value for RS11 can be established.
To create pairs suitable for testing by Equation 17 we again turn into a chosen-
plaintext attack and encrypt few vectors for a chosen running value of v121 :

C =HB
(
(0000, 0000, 0000, 0000), (y, E−1(v121 ,K

(1))� RS11)
)

C ′ =HB
(
(8000, 0000, 0000, 0000),

(y � 8000, E−1(v121 � 8000,K(1))� RS11 � 8000)
)
.

The ciphertext words C1 and C ′
1 can be used for exhaustive search of the

64-bit subkey K(4) using Equation 17.

3.4 Attacking K(3)

Thus far we have recovered 128 bits of the secret key K, K(1) and K(4) using
MSB differentials only. The next in turn is K(3), which appears to require a
slightly more complicated attack also involving second highest bit.

We will be using the two new differentials in addition to the ones given in
Observation 1 for initialization rounds t = −4, . . . ,−1 and Observation 2 for
t = 0. For t = 1 the differential is:

∆v121 = C000 , ∆v231 = d , ∆v341 = 8000

∆(RS11,RS21,RS31,RS41,LFSR1) = (8000, 8000, 0000, 8000, 0000)

⇓
∆(RS12,RS22,RS32,RS42,LFSR2) = (0000, 8000, d, 4000, 0000).

To make this differential work, we will use the known value for RS11 ob-
tained in Section 3.3. Loop through the values y = v121 = 0, 1, . . . , 216 − 1
and for each one of those make the following two-word encryption queries until
C1 = C ′

1 condition is reached:

C =HB
(
(0000, 0000, 0000, 0000), (x,E−1(y,K(1))� RS11))

C ′ =HB
(
(8000, 0000, 0000, 0000),

(x� 8000, E−1(y � C000,K(1))� RS11 � 8000))

From the C1 = C ′
1 condition we will know that ∆v341 = 8000 as it cancels

out the differential ∆RS41 = 8000 before invocation of the last E function.
When the condition is met by some x, d = ∆v231 = ∆RS32 will be a quantity
that satisfies

E−1(v341 ,K
(4))� E−1(v341 � 8000,K(4)) = d. (21)

Now we will extend the chosen-plaintext attack by one more round. We will
use the differential:

∆v122 = 8000 , ∆v232 = 0000 , ∆v342 = 8000

∆(RS12,RS22,RS32,RS42,LFSR2) = (0000, 8000, d, 4000, 0000)

⇓
∆(RS13,RS23,RS33,RS43,LFSR3) = (8000, 4000, d, 4000, 0000).

We now proceed to deriving the contents of RS12. We choose the first two
plaintext words P0, P

′
0, P1, P

′
1 as before. For some z and y = 0, 1, . . . , 216 − 1

the third words will be chosen as

P2 = E−1(z,K(1)) � y (22)

P ′
2 = E−1(z � 8000,K(1)) � y (23)

until the corresponding ciphertext

C = HB
(
(0000, 0000, 0000, 0000), (P0, P1, P2)

)
C ′ = HB

(
(8000, 0000, 0000, 0000), (P ′

0, P
′
1, P

′
2)
)

satisfies the previous conditions and the additional condition

E−1(C2,K
(4))� E−1(C ′

2,K
(4)) = 4000. (24)

This will imply that the second differential works and the conditions ∆v122 =
8000, ∆v232 = 0000, and ∆v342 = 8000 hold. Furthermore we will have the
contents of register RS12 = y and v122 = z. Note that if the guess for RS12 = y
is correct, then Equation 24 will hold for any z in Equations 22 and 23.

We now have sufficient information about the internal state of Hummingbird
to mount a “quartet” attack on K(3). Additional quantities of the internal state
can be derived as follows:

v341 = RS12 � RS11 (25)

RS41 = E−1(C1,K
(4)) � v341 (26)

RS42 = RS41 � E(P1 � RS12,K
(1))� RS12 (27)

v342 = E−1(C2,K
(4))� RS42. (28)

We can now perform an exhaustive search for K(3) that satisfies

E−1(v341 ,K
(3))� E−1(v341 � 8000,K(3)) = d and (29)

E−1(v342 ,K
(3))� E−1(v342 � 8000,K(3)) = d (30)

for some value d. We call this a “quartet test” as it involves four (inverse) E
invocations. To get more quartets (you will need at least four), increase z in
Equations 22 and 23 and perform more chosen-plaintext queries.

3.5 Attacking K(2)

After the recovery of K(1), K(3) and K(4), there is only 64 bits of unknown
keying material left to discover. A simple known-plaintext exhaustive search for
K(2) will suffice to recover this last missing piece.

4 Discussion

Hummingbird has some superficial similarities to the Helix [3] and Phelix [10]
ciphers – these are stream ciphers where message data is used to modify the
internal state of the cipher and an authentication code is produced. An analysis
by Muller also used a lack of high-bit propagation in a distinguishing attack [8].

4.1 Implementing the Attack

Our attack on Hummingbird-1 was implemented using the C language on Linux
platform. Due to the divide-and-conquer technique that we are using, we may
efficiently demonstrate the attack with keys that have limited entropy in each
one of the subkeys. Our demonstration code attacks a variant that has four 24-
bit subkeys, bringing the total effective key size to 96 bits. Note that this is not
a reduced cipher; the subkey entropy has simply been reduced.

The demonstration code first performs a self-test of its Hummingbird-1 im-
plementation against test vectors supplied by Revere Security It then chooses a
random key and lets the attack code perform black-box chosen-IV encryption or
decryption queries. Typical execution time is 15-20 seconds before the correct
96-bit key is found on an Intel Core 2 Duo clocked at 3.16 GHz.

It seems reasonable to assume that the the E function described in Section
2.2 offers less than 264 security since its diffusion properties are far from per-
fect. To illustrate this, we note that in Figure 1 it is easy to see that the 16-bit
subkey K

(i)
4 affects two invocations of the S-Box layer and a single bit linear

diffusion layer – therefore a single bit change in this subkey won’t even neces-
sary affect all ciphertext bits. Since the security of Hummingbird-1 is reduced
to the security of the E function by the techniques described in this paper, we
feel confident in estimating that Hummingbird-1 offers significantly less than
64 bits of security.

Throughout this paper the any constant pair of IVs can be used as long as

∆(RS10,RS20,RS30,RS40,LFSR0) = (8000, 0000, 0000, 0000, 0000).

This initial condition follows from ∆IV = (8000, 0000, 0000, 0000) by
Observation 1, but if the flaw in the initialization function is fixed, we may find
such pairs by the birthday paradox. If the initialization function would be com-
pletely random, finding such a pair would require about

√
280 = 240 queries.

Testing for the condition can be done with Observation 2.

4.2 Lessons Learned

Due to its extremely light-weight application target scenario, the security mar-
gins used in the design of Hummingbird-1 are very small. In addition to the
unfortunate bug in the initialization function (Observation 1), the security of
Hummingbird-1 seems to suffer from the fact its state size is very small and
that chosen input can directly affect almost all of its internal state bits (apart
from the LFSR “counter”) in an adaptive attack. We suggest that the number of
state bits which run independently from input data should be increased in future
encryption algorithm designs of the Hummingbird type.

5 Conclusions

We have described a key-recovery attack against the 256-bit authenticated en-
cryption primitive Hummingbird-1. The attack is based on a divide-and-conquer
and differential techniques and has complexity upper bounded by 264 opera-
tions. Significant improvements to this bound are possible by attacking the E
function. The attack requires processing of few megabytes of chosen messages
under two related nonces (IVs).

The attack proceeds in four stages, attacking each one of the 64-bit subkeys
individually. The attacks are mainly based on differentials in in the high bits
of words. It is noteworthy that the described attacks work regardless of the de-
sign of the main nonlinear component, the E keyed permutation. The present
line of attack are made effective by a clear design flaw in the Hummingbird-1
initialization function, but similar attacks can be envisioned for many possible
straightforward fixes.

We conclude that the published version of Hummingbird-1 may not offer ad-
equate security for some cryptographic applications. The Revere Security team
is actively developing an improved version that will remedy the security issues
reported in this paper.

References

1. R. ANDERSON, E. BIHAM AND L. KNUDSEN. “Serpent: A Proposal for the Advanced
Encryption Standard.” http://www.cl.cam.ac.uk/~rja14/Papers/serpent.
pdf, 1999.

2. X. FAN, H. HU, G. GONG, E. M. SMITH AND D. ENGELS. “Lightweight Implementation
of Hummingbird Cryptographic Algorithm on 4-Bit Microcontroller.” The 1st International
Workshop on RFID Security and Cryptography 2009 (RISC’09), pp. 838–844, 2009.

3. N. FERGUSON, D. WHITING, B. SCHNEIER, J. KELSEY, S. LUCKS, AND T. KOHNO “He-
lix: Fast Encryption and Authentication in a Single Cryptographic Primitive.” FSE 2003,
LNCS 2887, Springer, pp. 330–346, 2003.

4. D. ENGELS, X. FAN, G. GONG, H. HU AND E. M. SMITH. “Ultra-Lightweight Cryp-
tography for Low-Cost RFID Tags: Hummingbird Algorithm and Protocol.” Centre for
Applied Cryptographic Research (CACR) Technical Reports, CACR-2009-29. http:
//www.cacr.math.uwaterloo.ca/techreports/2009/cacr2009-29.pdf

5. D. ENGELS, X. FAN, G. GONG, H. HU AND E. M. SMITH. “Hummingbird: Ultra-
Lightweight Cryptography for Resource-Constrained Devices.” 1st International Workshop
on Lightweight Cryptography for Resource-Constrained Devices (WLC’2010). Tenerife, Ca-
nary Islands, Spain, January 2010

6. R. FRAZER (ED.) “An Analysis of the Hummingbird Cryptographic Algorithm.” Com-
mercial security analysis report by Information Security Systems Inc. Dated 26 April 2009.
http://www.reveresecurity.com/pdfs/ISSI_Hummingbird.pdf

7. REVERE SECURITY. Web page and infomation on the Hummingbird cipher. Fetched 03-
Nov-2010. http://www.reveresecurity.com/

8. F. MULLER. “Differential Attacks against the Helix Stream Cipher.” FSE 2004, LNCS
3017, Springer, oo. 94–108, 2004.

9. E. M. SMITH. Personal communication, July 7, 2010.
10. D. WHITING, B. SCHNEIER, S. LUCKS, AND F. MULLER. “Phelix – Fast Encryption and

Authentication in a Single Cryptographic Primitive.” ECRYPT Stream Cipher Project Report
2005/027. http://www.schneier.com/paper-phelix.html, 2005.

