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Abstract. In this paper, we identify higher-order differential and zero-
sum properties in the full Keccak-f permutation, in the Luffa v1 hash
function and in components of the Luffa v2 algorithm. These structural
properties rely on a new bound on the degree of iterated permutations
with a nonlinear layer composed of parallel applications of a number of
balanced Sboxes. These techniques yield zero-sum partitions of size 21575

for the full Keccak-f permutation and several observations on the Luffa
hash family. We first show that Luffa v1 applied to one-block messages
is a function of 255 variables with degree at most 251. This observation
leads to the construction of a higher-order differential distinguisher for
the full Luffa v1 hash function, similar to the one presented by Watanabe
et al. on a reduced version. We show that similar techniques can be used
to find all-zero higher-order differentials in the Luffa v2 compression
function, but the additional blank round destroys this property in the
hash function.

Keywords. Hash functions, degree, higher-order differentials, zero-sums,
SHA-3.

1 Introduction

The algebraic degrees of some hash function proposals and of their building
blocks have been studied for analyzing their security. In particular, the fact that
some inner primitive in a hash function has a relatively low degree can often be
used to construct higher-order differential distinguishers, or zero-sum structures.
This direction has been investigated in [1,13,3] for three SHA-3 candidates, Luffa,
Hamsi and Keccak. Here, we show how to deduce a new bound for the degree
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of iterated permutations for a special category of SP-networks. This category
includes functions that have for non-linear layer, a number of smaller balanced
Sboxes. This class of functions is though quite general: it includes functions
with a large number of small Sboxes (e.g. Sboxes operating on 3 or 4 bits), but
it also includes any nonlinear permutation which can be decomposed as several
independent Sboxes, even of large size. Our new bound shows in particular that,
when it is iterated, the degree of the function grows in a much smoother way
than expected when it approaches the number of variables.

For instance, this new bound enables us to find zero-sum partitions for the
full inner permutations of the hash functions Keccak [2] and for the Luffa v1
hash function [5]. Furthermore, by applying a technique similar to that used in
[13], and by combining it with the results given by the new bound, we show
that the degree of the Luffa v2 compression function [6] is slightly lower than
expected. This also enables us to find distinguishers for the Qj permutations and
for the compression function of Luffa v2. These results do not seem to affect the
security of Luffa v2, but are another confirmation of the fact that the internal
components of Luffa do not behave as ideal random functions.

The rest of the paper is organized as follows. In Section 2, a new bound on the
degree of iterated permutations is presented when the nonlinear layer consists
of several parallel applications of smaller balanced Sboxes. Section 3 recalls how
a low algebraic degree can be exploited for mounting higher-order differential
distinguishers and zero-sum distinguishers. An application to the full Keccak-
f permutation is presented in Section 4, while applications to the Luffa hash
family are described in Section 5.

2 A new bound on the degree of some iterated
permutations

In the whole paper, the addition in Fn
2 , i.e. the bitwise exclusive-or will be

denoted by +, while ⊕ will be used for denoting the direct sum of subspaces of
Fn

2 .
A Boolean function f of n variables is a function from Fn

2 into F2. It can
be expressed as a polynomial, called algebraic normal form. The degree of f ,
denoted by deg(f), is the degree of its algebraic normal form. Moreover, the
degree of a vectorial function F from Fn

2 into Fm
2 is defined as the highest degree

of its coordinates. The Hamming weight of a Boolean function, f , is denoted by
wt(f). It corresponds to the number of x such that f(x) = 1. Any function F
from Fn

2 into Fm
2 is said to be balanced if each element in Fm

2 has exactly 2n−m

preimages under F .
In this paper, we are interested in estimating the degree of a composed func-

tion G ◦ F . Obviously, we can bound the degree of the composition G ◦ F by
deg(G ◦ F ) ≤ deg(G)deg(F ). Though, this trivial bound is often very little rep-
resentative of the true degree of the permutation, in particular if we are trying
to estimate the degree after a high number of rounds. A first improvement of
the trivial bound was provided by Canteaut and Videau [7] when the values



occurring in the Walsh spectrum of F are divisible by a high power of 2, i.e. if
the values wt(ϕb ◦ F + ϕa) for all a ∈ Fn

2 and b ∈ Fm
2 are divisible by a high

power of 2, where ϕa denotes the linear function x 7→ a · x.

Theorem 1. [7] Let F be a function from Fn
2 into Fn

2 such that all values

wt(ϕb ◦ F + ϕa), a, b ∈ Fn
2 , b 6= 0

are divisible by 2`, for some integer `. Then, for any G : Fn
2 → Fn

2 , we have

deg(G ◦ F ) ≤ n− 1− `+ deg(G).

In particular, this result applies to the functions composed of a nonlinear
layer followed by a linear permutation, where the nonlinear layer is defined by
the concatenation of m smaller balanced Sboxes S1, . . . , Sm, defined over Fn0

2 ,
n0 ≥ 2. Indeed, since all elements wt(ϕb ◦ Si + ϕa) for all smaller functions
S1, . . . , Sm are divisible by 2, then we deduce that, for the whole permutation,
wt(ϕb ◦ F + ϕa) is divisible by 22m−1. We will show here how this bound can
be further improved in this particular case. The result mainly comes from the
following observation.

Proposition 1. Let F be a balanced function from Fn
2 into Fm

2 , and let k be
an integer with 1 ≤ k ≤ m. Then, all products of k coordinates of F have the
Hamming weight 2n−k.

In particular, if k < n, the product of any k coordinates of F has degree at
most (n− 1).

Proof. Let (f1, . . . , fm) denote the coordinates of F . Let I be any subset of
{1, . . . ,m} of size k, and let FI be the function from Fn

2 into Fk
2 whose coordinates

are the fi, i ∈ I. Since FI is balanced, the multiset {FI(x), x ∈ Fn
2} consists of all

elements in Fk
2 , each one with multiplicity 2n−k. Therefore, there exist exactly

2n−k values of x such that FI(x) is the all-one vector, or equivalently such that∏
i∈I fi = 1. �

From the last part of Proposition 1, we deduce the following theorem.

Theorem 2. Let F be a function from Fn
2 into Fn

2 corresponding to the concate-
nation of m smaller Sboxes, S1, . . . , Sm, defined over Fn0

2 . Let δk be the maximal
degree of the product of any k coordinates of anyone of these smaller Sboxes.
Then, for any function G from Fn

2 into F`
2, we have

deg(G ◦ F ) ≤ n− n− deg(G)
γ

, (1)

where
γ = max

1≤i≤n0−1

n0 − i
n0 − δi

.

Most notably, if all Sboxes are balanced, we have

deg(G ◦ F ) ≤ n− n− deg(G)
n0 − 1

.



Moreover, if n0 ≥ 3 and all Sboxes are balanced functions of degree at most
n0 − 2, we have

deg(G ◦ F ) ≤ n− n− deg(G)
n0 − 2

,

Proof. Let us denote by π the product of d output coordinates of F . Some of
the coordinates involved in π may belong to the same Sbox. Then, for any i,
1 ≤ i ≤ n0, we denote by xi the integer corresponding to the number of Sboxes
for which exactly i coordinates are involved in π. Obviously, we have

deg(π) ≤ max
(x1,...,xn0 )

n0∑
i=1

δixi

where the maximum is taken over all vectors (x1, . . . , xn0) satisfying

n0∑
i=1

ixi = d and
n0∑
i=1

xi ≤ m .

Then, we have

γ deg(π)− d ≤ γ
n0∑
i=1

δixi −
n0∑
i=1

ixi

≤ (γ − 1)n0xn0 +
n0−1∑
i=1

(γδi − i)xi

≤ (γ − 1)n0

n0∑
i=1

xi −
n0−1∑
i=1

((γ − 1)n0 − γδi + i)xi

≤ (γ − 1)n−
n0−1∑
i=1

((γ − 1)n0 − γδi + i)xi ≤ (γ − 1)n ,

where the last inequality comes from the fact that all coefficients in the sum are
positive. Actually, we have

(γ − 1)n0 − γδi + i = γ(n0 − δi)− (n0 − i) ≥ 0

by definition of γ. Thus, since γ deg(π)− d ≤ (γ − 1)n, we deduce that

γ (n− deg(π)) ≥ n− d .

Now, we first show that, if all Sboxes are balanced, then γ ≤ n0 − 1. Indeed, for
any 1 ≤ i ≤ n0 − 1, we have

n0 − i
n0 − δi

≤ n0 − 1
1

,

since we know from Proposition 1 that the degree of the product of (n0 − 1)
coordinates of a balanced n0×n0 Sbox cannot be equal to n0, and thus δi ≤ n0−1.



Also, we can prove that, if the degrees of all Sboxes satisfy degS < n0− 1, then
γ ≤ n0 − 2. Indeed, for i = 1, we have

n0 − i
n0 − δi

=
n0 − 1
n0 − δ1

≤ n0 − 1
2

≤ n0 − 2

since n0 ≥ 3. Similarly, for any i, 2 ≤ i < n0, we have δi ≤ n0− 1, implying that

n0 − i
n0 − δi

≤ n0 − i ≤ n0 − 2 .

�

It is worth noticing that Bound (1) and the trivial bound are in some sense
symetric. Indeed, we have

deg(G ◦ F )
degG

≤ max
1≤i<n0

δi
i

and
n− deg(G ◦ F )
n− degG

≥
(

max
1≤i<n0

n0 − i
n0 − δi

)−1

.

In other words, when representing deg(G ◦F ) as a function of degG, the trivial
bound states that the degree of G ◦ F is upper-bounded by a line through the
origin with coefficient degF . When representing the “degree deficiency” (n −
deg(G ◦F )) as a function of (n− degG), (1) states that the degree deficiency of
G ◦ F is lower-bounded by a line through the origin with coefficient γ−1. This
can be observed on Figure 1 where the parameters correspond to the inverse of
the Keccak permutation.
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Fig. 1. Evolution of the degree of G ◦F where F is a 1600-variable function composed
of 320 cubic permutations over F5

2 corresponding to the inverse of Keccak χ function.



3 Distinguishing properties related to the algebraic
degree

3.1 Higher-order derivatives

The algebraic degree of a permutation F provides some particular distinguishers,
which correspond to the values of any derivative of F with respect to a subspace
of Fn

2 with dimension (deg(F )+1). This result comes from the following property
of higher-order derivatives of a function.

Definition 1. [12] Let F be a function from Fn
2 into Fm

2 . For any a ∈ Fn
2 the

derivative of F with respect to a is the function DaF (x) = F (x+ a) +F (x). For
any k-dimensional subspace V of Fn

2 and for any basis of V , {a1, . . . , ak}, the
k-th order derivative of F with respect to V is the function defined by

DV F (x) = Da1Da2 . . . Dak
F (x) =

∑
v∈V

F (x+ v),∀x ∈ Fn
2 .

It is well-known that the degree of any first-order derivative of a function is
strictly less than the degree of the function. This simple remark, which is ex-
ploited in higher-order differential attacks [10], implies that for every subspace
V of dimension (degF + 1),

DV F (x) =
∑
v∈V

F (x+ v) = 0, for every x ∈ Fn
2 .

3.2 Zero-sum structures

The existence of zero-sum structures is a distinguishing property which has been
recently investigated by Aumasson and Meier [1], Knudsen and Rijmen [11] and
by Boura and Canteaut [3].

Definition 2. Let F be a function from Fn
2 into Fm

2 . A zero-sum for F of size
K is a subset {x1, . . . , xK} ⊂ Fn

2 of elements which sum to zero and for which
the corresponding images by F also sum to zero, i.e.,

K∑
i=1

xi =
K∑

i=1

F (xi) = 0 .

It has been shown in [3] that any function from Fn
2 into Fm

2 has zero-sums of
size less than or equal to 5. However, when F is a permutation over Fn

2 , a much
stronger property, named zero-sum partition, can be investigated.

Definition 3. Let P be a permutation from Fn
2 into Fn

2 . A zero-sum parti-
tion for P of size K = 2k is a collection of 2n−k disjoint zero-sums Xi =
{xi,1, . . . , xi,2k} ⊂ Fn

2 i.e.,

2n−k⋃
i=1

Xi = Fn
2 and

2k∑
j=1

xi,j =
2k∑

j=1

P (xi,j) = 0, ∀1 ≤ i ≤ 2n−k .



Here, we focus on the search for zero-sum partitions coming from structural
properties of the permutation P , when P is an iterated permutation of the form

P = Rr ◦ . . . ◦R1,

where all Ri are simpler permutations over Fn
2 , named the round permutations.

The fact that the permutation used in a hash function does not depend on
any secret parameter allows to exploit the previous property starting from the
middle, i.e., from an intermediate internal state. This property was used by
Aumasson and Meier [1] and also by Knudsen and Rijmen in the case of a
known-key property of a block cipher [11]. The only information needed for
finding such zero-sums on the iterated permutation using this first approach is
an upper bound on the algebraic degrees of both the round transformation and
its inverse.

More precisely, we consider P = Rr ◦ . . . ◦R1, and we choose some integer t,
1 ≤ t ≤ r. We define the following functions involved in the decomposition of P :
Fr−t consists of the last (r−t) round transformations, i.e., Fr−t = Rr ◦ . . .◦Rt+1

and Gt consists of the inverse of the first t round transformations, i.e., Gt =
R−1

1 ◦ . . . ◦ R
−1
t . Then, as detailed in [1] and in [3], we can find many zero-sum

partitions for P of size 2d+1 where d = max(deg(Fr−t),deg(Gt)).
Besides the degree of the round transformation, it has been shown in [3]

that some properties of the linear layer in the round transformation may also be
exploited for constructing zero-sum partitions, in particular when the nonlinear
layer of the round transformation consists of parallel applications of smaller
functions defined over Fn0

2 . In the following, we denote by Bi, 0 ≤ i < m, the
n0-dimensional subspaces corresponding to the inputs of these smaller Sboxes,
i.e.,

Bi = 〈en0i, . . . , en0i+n0−1〉
where e0, . . . , en−1 denotes the canonical basis of Fn

2 and where the positions of
the n bits in the internal state are numbered such that the n0-bit Sboxes apply
on n0 consecutive input variables. Then, it was shown in [3] that it is possible
to extend a number of zero-sum partitions that have been found for t rounds, to
t+ 1 rounds, without increasing the complexity.

Proposition 2. [3] Let d1 and d2 be such that deg(Fr−t−1) ≤ d1 and deg(Gt) ≤
d2. Let us decompose the round transformation after t rounds into Rt+1 = A2◦χ◦
A1 where both A1 and A2 have degree 1 and χ corresponds to the concatenation
of m smaller permutations defined over Fn0

2 . Let I be any subset of {0, . . . ,m−1}
of size

⌈
(d+ 1)/n0

⌉
, let

V =
⊕
i∈I

Bi

and W be its complement. Then, the sets

Xa = {(Gt ◦A−1
1 )(a+ z), z ∈ V }, a ∈W

form a zero-sum partition of Fn
2 of size 2k, with k = n0

⌈
d+1
n0

⌉
, for the r-round

permutation P .



It is worth noticing that the zero-sum partitions deduced from this propo-
sition correspond to a structural property which can be described by means of
some close formula. This implies for instance that they can be used for proving
that some given permutations do not satisfy the expected property, and this may
only require the evaluation of the permutation on a few sets Xi. In this sense,
they differ from the zero-sum partitions found by a generic algorithm since all
generic algorithms known so far require the evaluation of the permutation at
almost all points (see [3] for a discussion on generic algorithms for finding zero-
sums and zero-sum partitions).

4 Application to the Keccak-f permutation

4.1 The Keccak-f permutation

Keccak [2] is one of the fourteen hash functions selected for the second round
of the SHA-3 competition. Its mode of operation is the sponge construction.
The inner primitive in Keccak is a permutation, composed of several iterations
of very similar round transformations. Within the Keccak-family, the SHA-3
candidate operates on a 1600-bit state, which is represented by a 3-dimensional
binary matrix of size 5 × 5 × 64. Then, the state can be seen as 64 parallel
slices, each one containing 5 rows and 5 columns. The permutation in Keccak
is denoted by Keccak-f [b], where b is the size of the state. So, for the SHA-3
candidate, b = 1600.

The number of rounds in Keccak-f [1600] was 18 in the original submission,
and it has been updated to 24 for the second round. Every round R consists of
a sequence of 5 permutations modifying the state:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ.

The functions θ, ρ, π, ι are transformations of degree 1 providing diffusion in all
directions of the 3-dimensional state. Then, keeping the same notation as in the
previous section, we have A1 = π ◦ ρ ◦ θ, which is linear and A2 = ι, which
corresponds to the addition of a constant value. Therefore, the linear part of
A = A1 ◦A2 corresponds to L = π ◦ ρ ◦ θ. The nonlinear layer, χ, is a quadratic
permutation which is applied to each row of the 1600-bit state. In other words,
320 parallel applications of χ0 are implemented in order to provide confusion.
The inverse permutation, denoted by χ−1, is a permutation of degree 3.

4.2 Zero-sum partitions for the full Keccak-f permutation

We apply here Theorem 2 to the Keccak-f round permutation, which is denoted
by R. For any F ,

deg(F ◦R) = deg(F ◦ χ) ≤ n− n− deg(F )
3



and

deg(F ◦R−1) = deg((F ◦ L−1) ◦ χ−1) ≤ n− n− deg(F )
3

by using that the inverse of χ has degree 3. By combining this bound with the
trivial bound, we get the bound presented in Table 1 on the degree of several
iterations of the round permutation of Keccak-f and of its inverse. With this

Table 1. Upper bounds on the degree of several rounds of Keccak-f and of its inverse
(the results in bold are obtained with the new bound, while the other ones correspond
to the trivial bound).

forward backward

# rounds bound on deg(Rr) # rounds bound on deg(R−r) bound on deg(R−r)
using [8]

1 2 1 3 3
2 4 2 9 9
3 8 3 27 27
4 16 4 81 81
5 32 5 243 243
6 64 6 729 729
7 128 7 1309 1164
8 256 8 1503 1382
9 512 9 1567 1491

10 1024 10 1589 1545
11 1408 11 1596 1572
12 1536 12 1598 1586
13 1578 13 1599 1593
14 1592 14 1599 1596
15 1597 15 1599 1598
16 1599 16 1599 1599

new bound, we can use the technique presented in Proposition 2 for finding
zero-sum partitions for the full Keccak-f permutation. Namely, we consider
the intermediate states after the linear layer L = π ◦ ρ ◦ θ in the 11-th round.
Let us choose any subspace V in F1600

2 corresponding to a collection of 318 rows
(out of the 320), implying dimV = 1590. Then, the sets

Xa = {(G10 ◦ L−1)(a+ z), z ∈ V }, a ∈ F1600
2 ,

where G10 denotes the inverse of the first 10 rounds, form a zero-sum parti-
tion of size 21590 for the full Keccak-f permutation. This comes directly from
Proposition 2 and from the fact that the inverse of the first 10 rounds of the
permutation has degree at most 1589 < dimV , and that the last 13 rounds have
degree at most 1578 < dimV.

Recently, Duan and Lai [8] have observed that the inverse of χ has the fol-
lowing remarkable property: the product of any 2 components of χ−1 has degree



at most 3 (instead of 4 which is the bound obtained with Proposition 1). Then,
we deduce that the value of the coefficient γ for χ−1 involved in Theorem 2 is
γ = 2 since δ2 = 3. By using this particular property of χ−1, the previous result
can be improved as follows: for any F ,

deg(F ◦R−1) = deg((F ◦ L−1) ◦ χ−1) ≤ n− n− deg(F )
2

.

This leads to the new bound on several iterations of R−1 as presented in the
last column of Table 1. Now, by choosing the intermediate states after the linear
layer on the 12-th round of Keccak-f in any subspace V corresponding to
a collection of 315 rows, we obtain a zero-sum partition for the full 24-round
Keccak-f permutation of size 21575. This comes from the fact that the inverse
of the first 11 rounds have degree at most 1572 < dimV and that the last
12 rounds have degree at most 1536 < dimV .

5 Application to the hash function Luffa

5.1 The Luffa hash function

The Luffa hash function [5,6] is also a Round-2 candidate of the NIST SHA-3
competition. Its mode of operation is based on a variant of the sponge design.
The internal state in Luffa consists of w 256-bit words where w equals 3, 4 and 5
for the output lengths 256, 384 and 512 bits respectively. At each iteration, a 256-
bit message block is processed by applying a linear message injection function
MI. Then, a permutation is applied to the output as follows: the state is split
into w 256-bit words and w parallel 256-bit permutations Qj are applied to each
word independently.

Fig. 2. The Luffa construction

The internal state of each permutation Qj is now divided in 8 words of
32 bits, denoted by a0, . . . , a7. Each permutation consists of an input tweak
applied only once at the beginning of each permutation and 8 rounds of a round



transformation Step. The Step function consists of a nonlinear transformation
called SubCrumb, a linear transformation MixWord and an addition of constants
AddConstant. The nonlinear part SubCrumb consists of 64 parallel applications
of a 4× 4 cubic permutation.

Fig. 3. The Step function

Finally, a finalization step is applied. It consists of several iterations of a
blank round with fixed message 0x0...00 followed by a linear output function
OF. In Luffa v1, a blank round with message block 0x0...00 is applied at the
beginning of the finalization, only if the number of padded message blocks is
strictly greater than one. In Luffa v2 such a blank round is always applied, in
order to prevent higher-order differential attacks.

The SubCrumb Permutation. The input of every Sbox has four bits, every
one coming from a different word ak: S substitutes the `-th bits of a0, a1, a2, a3

(or a4, a5, a6, a7) by a 4 × 4 Sbox of degree 3. The Sbox used in the original
submission, Luffa v1, was

S1[16] = {7, 13, 11, 10, 12, 4, 8, 3, 5, 15, 6, 0, 9, 1, 2, 14} ,

but the terms of degree 3 in the first three coordinates of this Sbox are similar.
This property has been exploited in [13] for showing that the degree of Qj does
not grow as expected. In particular, Qj reduced to 5 rounds out of 8 has degree
at most 130, and the sum of the first two coordinates of Qj after 6 rounds has
degree at most 214. In order to avoid these unsuitable properties, the designers
have modified the Sbox according to the strategy detailed in [4]. The new Sbox
used in Luffa v2, is then

S2[16] = {13, 14, 0, 1, 5, 10, 7, 6, 11, 3, 9, 12, 15, 8, 2, 4} ,

and the algebraic normal forms of its outputs are

y0 = 1 + x0 + x1 + x1x2 + x0x3 + x1x3 + x0x1x3 + x0x2x3



y1 = x0 + x3 + x0x1 + x1x2 + x0x3 + x1x3 + x0x1x3 + x0x2x3

y2 = 1 + x1 + x3 + x0x2 + x1x2 + x1x3 + x2x3 + x0x1x2 + x0x1x3

y3 = 1 + x1 + x2 + x0x3 + x0x2 + x1x2 + x1x3 + x2x3 + x0x1x2 + x0x1x3

Then the substitution by S is given by

b3,`||b2,`||b1,`||b0,` = S[a3,`||a2,`||a1,`||a0,`], 0 ≤ ` < 32,
b7,`||b6,`||b5,`||b4,` = S[a7,`||a6,`||a5,`||a4,`], 0 ≤ ` < 32.

in Luffa v1. In Luffa v2, the order of the last four input words is modified when
entering the Sbox in order to break the symmetries exploited in [13]:

b3,`||b2,`||b1,`||b0,` = S[a3,`||a2,`||a1,`||a0,`], 0 ≤ ` < 32,
b4,`||b7,`||b6,`||b5,` = S[a4,`||a7,`||a6,`||a5,`], 0 ≤ ` < 32.

The MixWord Permutation. MixWord is a linear permutation of two words. If
z0, . . . , z7 are the 8 words of the state after the application of Step we have that

(z0, z4) = MixWord(b0, b4),

(z1, z5) = MixWord(b1, b5),

(z2, z6) = MixWord(b2, b6),

(z3, z7) = MixWord(b3, b7).

5.2 Algebraic degree of the Qj permutation and its inverse

We now show that the approach used in [13] still applies to some extent to
the Luffa v2 nonlinear function, and that this approach can be combined with
Theorem 2 in order to find a new upper bound on the degree of several iterations
of the Step function.

The remarkable property comes from the fact that the sum of the four co-
ordinates of S2 has degree 2 only: indeed, we deduce from the algebraic normal
forms of the coordinates of S2 that

d = y0 + y1 + y2 + y3 = 1 + x1 + x2 + x0x1 + x0x3 .

Let xr
i =

(
xr

i,`

)
0≤`<32

denote the output words of r rounds of Step, and let dr
0,`

(resp. dr
4,`) denote the sum xr

0,` +xr
1,` +xr

2,` +xr
3,` (resp. xr

4,` +xr
5,` +xr

6,` +xr
7,`).

Now, let us consider the sum of any two distinct monomials of degree 3 in
4 variables. Any such two monomials share two variables. Then, if we denote by
d the sum of all four variables, we obtain that

xixjxk + xixjxk′ = xixjxk + xixj(xi + xj + xk + d)
= xixjxk + xixj + xixj + xixjxk + xixjd

= xixjd .



It follows that, since all coordinates of the Sboxes S2 contain an even number
of distinct monomials of degree 3, the degrees of their outputs (and then the
degree of the output of (r + 1) rounds) satisfy

deg xr+1
i,` ≤ 2 max

0≤j≤3
deg xr

j,` + deg dr
0,` ∀0 ≤ i ≤ 3 . (2)

Moreover, this property holds for any ordering of the inputs and outputs of the
Sbox, implying

deg xr+1
i,` ≤ 2 max

4≤j≤7
deg xr

j,` + deg dr
4,` ∀4 ≤ i ≤ 7 .

Now, since the linear layer consists of the same function applied to all pairs of
words (bk, bk+4) for 0 ≤ k ≤ 3 separately, we deduce that

dr+1
0,` = xr+1

0,` + xr+1
1,` + xr+1

2,` + xr+1
3,`

=
3∑

i=0

MixWord0,`(bi, bi+4) = MixWord0,`

(
3∑

i=0

bi,

3∑
i=0

bi+4

)

and

dr+1
4,` = MixWord1,`

(
3∑

i=0

bi,

3∑
i=0

bi+4

)
.

Therefore, the degrees of dr+1
0,` and of dr+1

4,` correspond to the degrees of the sum
of the four coordinates of the Sboxes, implying

deg dr+1
i,` ≤ 2 max

i≤j≤i+3
deg xr

j,` , i ∈ {0, 4} . (3)

Both recurrence relations (2) and (3) lead to the bounds presented in Table 2
on the degrees of several iterations of Step for the new nonlinear layer (i.e. for
the new Sbox S2 and the ordering of the input variables).

Table 2. Upper bounds on the algebraic degree of the output of r iterations of Step
for Luffa v2 (and comparison with the results obtained in [13] for Luffa v1).

r Luffa v2 Luffa v1

deg xr
i,` deg dr

i,` deg xr
i,` deg dr

i,`

1 3 2 3 2

2 8 6 8 5

3 22 16 20 13

4 60 44 51 33

5 164 120 130 84

6 - 214



Now, for r ≥ 6, we apply Theorem 2, exploiting the fact that Step is the
composition of a linear layer and of several parallel applications of a smaller
balanced Sbox of degree 3 defined over F4

2. Then, for any G, we have

deg(G ◦ Step) ≤ 512 + deg(G)
3

,

implying

max
i,`

deg(xr
i,`) ≤

512 + maxi,` deg(xr−1
i,` )

3

max
i,`

deg(dr
i,`) ≤

512 + maxi,` deg(dr−1
i,` )

3
.

These new bounds are given in Table 3.

Table 3. Upper bounds on the algebraic degree of the output of r iterations of Step
for Luffa v1 and Luffa v2.

r Luffa v2 Luffa v1

deg xr
i,` deg dr

i,` deg xr
i,` deg dr

i,`

1 3 2 3 2

2 8 6 8 5

3 22 16 20 13

4 60 44 51 33

5 164 120 130 84

6 225 210 214 198

7 245 240 242 236

8 252 250 251 249

It is worth noticing that the same upper bounds hold for the degree of r it-
erations of the inverse of Step in Luffa v2 since the algebraic normal form of the
inverse of S2 is

y0 = x0 + x2 + x3 + x2x3

y1 = 1 + x3 + x0x1 + x0x2 + x0x3 + x2x3 + x0x2x3 + x1x2x3

y2 = x1 + x2 + x3 + x0x1 + x1x2 + x0x3 + x1x3 + x0x1x3 + x0x1x2 + x0x2x3

+x1x2x3

y3 = x1 + x2 + x3 + x0x2 + x2x3 + x0x1x2 + x0x1x3 .

Then, the sum of the four coordinates of S−1
2 is equal to

1 + x0 + x2 + x1x2 + x1x3 + x2x3



and has degree 2 only. Moreover, all four coordinates of S−1
2 have an even number

of monomials of degree 3. Then, the previously described technique for upper-
bounding the degree of several iterations of the round function applies similarly
when computing the inverse.

5.3 Higher-order differentials for the compression function of
Luffa v2

The compression function in Luffa v2 takes as input a 256w-bit chaining value
and a 256-bit message block and it outputs a new 256w-bit chaining value, where
w equals 3, 4 and 5 when the output length is 256, 384 and 512. Then, we have
proved that this function has degree at most 252, while it is expected from its
construction to have degree 255.

A first consequence is the existence of all-zero higher-order differentials for the
full compression function of Luffa v2, similar to those found in [13] for Luffa v1
reduced to 7 steps. Let us choose a position `0 among the 32 possible positions
in a word, 0 ≤ `0 < 32, and let us consider any coset of the linear subspace V of
the set of all possible message blocks defined as

V = 〈ei,`, 0 ≤ i ≤ 7, ` 6= `0〉 ,

where ei,` denotes the 256-bit word of Hamming weight 1 having a one at po-
sition ` in word i. Then, V has dimension 248. For any fixed chaining value,
the message injection function MI stabilizes the subspaces 〈ei,`, 0 ≤ i ≤ 7〉,
implying that the input of each Qj is a coset of V . Now, the tweak function at
the beginning of each Qj rotates the least significant four words by a number
of bits depending on j. Its output then corresponds to a coset of a subspace V ′,
which is the direct sum of 4-dimensional subspaces of the form 〈ei,`, 0 ≤ i ≤ 3〉
or 〈ei,`, 4 ≤ i ≤ 7〉. Since the first nonlinear layer applies to those 4-dimensional
subspaces separately, it stabilizes the structure of V ′. Therefore, the output of
the first iteration of Step in each Qj varies in a coset of a subspace of dimen-
sion 248. Then, the outputs of the compression function, i.e., after 8 iterations
of Step, sum to zero when the message block varies in any coset of V , since
dimV = 248 > 246 > deg(Step7). This observation holds for any size of the
hash value. It should be noted that, by nature, this algebraic property is very
different from the properties exploited in previously known distinguishers on the
compression function of Luffa v2 (e.g. [9]).

5.4 Zero-sum partitions for the Qj permutations

We consider the subspace V generated by the first 23 bits in a given word, that
is

V = 〈ei0,0, ei0,1, . . . , ei0,22〉 ,

for some 0 ≤ i0 ≤ 7. Then, we can show that the sets

Xa = {Tweak−1
j ◦

(
Step−1

)4
(a+ z), z ∈ V }, a ∈ F256

2 .



form a zero-sum partition of size 223 for each Qj .
We first consider any coset of V as input of 4 rounds of Step. Then, the 23

active bits in V correspond to the inputs of 23 different Sboxes and thus the first
round of Step is a function of degree 1 in these 23 input bits. As 3 iterations of
Step have degree at most 22, we deduce that∑

x∈Xa

Qj(x) = 0 .

We now focus on the backward computation. We first take the image of V under
the inverse of the linear application MixWord. As all the variables are in the same
word ai0 , after the application of the inverse of the linear layer, all words are
constant except the words of index i0 and (i0 + 4). But the bits of the words ai0

and ai0+4 all go to different Sboxes, implying that the first round backwards is
linear. As we have proven that the inverse of 3 iterations of Step has degree at
most 22, we deduce that ∑

x∈Xa

x = 0 .

There exist
(
32
23

)
× 8 = 227.7 such zero-sum partitions for each Qj corresponding

to all possible choices for V , i.e., for all possible choices for i0 and for the
23 positions within the word of index i0.

5.5 Higher-order differentials for the full Luffa v1 hash function

It is shown in [13] that, when hashing messages of length at most 256 bits, the
reduced version of Luffa v1 hash function, with 7 out of 8 steps in each Qj , does
not behave as a random function. Actually, if the message block varies in some
particular subspace of dimension 216, then some linear combination of the output
words of this reduced version of Luffa v1 sums to zero. This property comes from
the fact that Luffa v1 does not perform any blank round for one-block messages,
and that, after 6 rounds of Step, some linear combinations of the output words
have degree at most 214. Even if the advantage that this property could give to
an attacker is unclear, this unsuitable property has led the designers to modify
the function for the second round of the SHA-3 competition. In particular, a
blank round is performed for any message length in Luffa v2.

It turns out that this was probably a prudent decision, as the new upper
bound on the degree of Qj for Luffa v1 given in Table 3 now shows that a
similar distinguisher can be exhibited for the full Luffa v1, since the degree of
the two words obtained by

(y0 + y1 + y2 + y3, y4 + y5 + y6 + y7)

after 7 iterations of Step is at most 236. We then get a similar distinguisher based
on the fact that the corresponding linear combinations of the bits of the hash
values sum to zero when the message block varies in some particular subspace
of dimension 240.



More interestingly, we have shown that the full Luffa v1 hash function, when
applied to one-block messages, has degree at most 251 in the 255 bits of the
message.

5.6 Degree of the full Luffa v2 hash function with chosen IVs

The previous observation does not hold for Luffa v2 since a blank round is
performed for any message length. However, if we would consider the 256w bits
of the initial value of Luffa v2 as an additional input which can freely be chosen,
then we can still make some theoretical observations for the hash function applied
to one-block messages. Recall that w equals 3, 4 and 5 for a message digest of
256, 384 and 512 bits respectively.

In this setting, Luffa v2 is a function from (256(w + 1)− 1) bits to 128(w −
1) bits, where the input bits correspond to the bits of the initial value and of the
message block. But, Luffa v2 is composed of a linear message injection function,
followed by a function G from 256w bits to 128(w−1) bits. Therefore, the degree
of the (256(w + 1) − 1)-bit function Luffa v2 is equal to the degree of G and
cannot exceed 256w. Moreover, we can show that the degree of this function is
even smaller than 256w due to the particular design of the inner permutation.

This new upper bound on the degree of Luffa v2 comes from the fact that
G can be decomposed as the inner permutation P , i.e., the parallel applica-
tions of w independent nonlinear permutations Qj of n0 = 256 variables with
degree less than (n0 − 2), followed by some rounds of the finalization function
Final. Moreover, the first 256 bits of the message digest are extracted after a
single application of Final. Then, using that the finalization function consists
of 8 iterations of Step and has then degree at most 252, Theorem 2 implies that

deg(Final ◦ P ) ≤ 256w − 256w − deg(Final)
254

≤ 256w − 256w − 252
254

< 256w − (w − 1) .

For the (128(w − 1))-bit version of Luffa v2, we get that the first 256 output
bits of Luffa v2 have degree at most (256w − w). This property must be com-
pared to the probability that this property holds for a randomly chosen function
from F256(w+1)−1

2 to F256
2 bits. Such a function can be written as a polynomial

with coefficients in F2256 and the number of its monomials of degree greater
than (256w − w + 1) is

256+w−1∑
i=0

(
256(w + 1)− 1

i

)
.

Therefore, the probability that a randomly chosen function with the same pa-
rameters as Luffa v2-256 has degree at most 765 is 2−2837

.



For the 384-bit version (resp. for the 512-bit version), i.e., for w = 4 (resp.
w = 5), we get that Luffa v2 has 1280 variables (resp. 1536 variables) and
degree at most 1020 (resp. 1275). The probability that this property holds for a
randomly chosen function with the same parameters is 2−2933

(resp. 2−21010
).

6 Conclusions

We have found a new bound for the degree of iterated permutations. This im-
proved bound has firstly led to zero-sum distinguishers for the full Keccak-f
permutation. Even if the security of the hash function is not affected, our re-
sults contradict the so-called hermetic sponge strategy. Additionally, a number of
structural properties related to the existence of all-zero higher-order differentials
and of zero-sum partitions have been presented for the Luffa hash family.
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