
Cryptanalysis of the Knapsack Generator

Simon Knellwolf and Willi Meier

FHNW, Switzerland

Abstract. The knapsack generator was introduced in 1985 by Ruep-
pel and Massey as a novel LFSR-based stream cipher construction. Its
output sequence attains close to maximum linear complexity and its re-
lation to the knapsack problem suggests strong security. In this paper
we analyze the security of practically relevant instances of this genera-
tor as they are recommended for the use in RFID systems, for example.
We describe a surprisingly effective guess and determine strategy, which
leads to practical attacks on small instances and shows that the security
margin of larger instances is smaller than expected. We also briefly dis-
cuss a variant of the knapsack generator recently proposed by von zur
Gathen and Shparlinski and show that this variant should not be used
for cryptographic applications.

Keywords: knapsack, stream cipher, pseudorandom generator

1 Introduction

Let w0, . . ., wn−1 be n k-bit integers, and let u0, u1, . . . be a sequence of bits
generated by a linear feedback shift register (LFSR) of order n over F2. At step
i the knapsack generator computes

vi =
n−1
∑

j=0

ui+jwj mod 2k, (1)

discards the ℓ least significant bits of vi and outputs the remaining k − ℓ bits
as part of the keystream. We call u0, u1, . . . the control bits, vi the i-th sum

and w0, . . . , wn−1 the weights of the generator. The entire generator is defined
by n(2 + k) bits: n bits for the connection polynomial of the LFSR, n bits for
the initial control bits (corresponding to the initial state of the LFSR) and kn
bits for the weights. The connection polynomial should be primitive in order
to achieve maximum period in the control sequence. Due to this special choice,
it is natural to consider the connection polynomial as a public parameter. The
remaining n(1 + k) bits form the key of the generator. As a concrete example, a
generator with n = k = 64 has a key length of 4160 bits.

Rueppel and Massey [16] introduced this generator in 1985. They addressed
one of the main issues in the design of LFSR-based cryptosystems, which con-
sists in breaking the linearity of the LFSR. The knapsack generator achieves
this by the use of integer addition modulo 2k which is a highly nonlinear opera-
tion when considered over Fk

2 , see [16,20] for a systematic analysis. Therewith it

provides an interesting alternative to the use of nonlinear boolean filtering and
combining functions. It avoids the tradeoff between high linear complexity and
high correlation immunity which is inherent to nonlinear boolean functions, as it
was shown in [19]. Besides the knapsack generator, Rueppel [14] also introduced
the summation generator to avoid this tradeoff, but it turned out to be vulner-
able to correlation attacks [5,11], algebraic attacks [10] and to attacks based on
feedback with carry shift registers [9]. Compared to the summation generator,
little cryptanalytic work has been published concerning the knapsack generator.
To our knowledge it resisted the well known attack strategies for stream ciphers.
Due to this absence of known security flaws and due to its ease of implementa-
tion, the authors of [2] recommend the knapsack generator for the use in RFID
networks.

The name comes from the close relation to the knapsack problem (also known
as the subset sum problem), which consists in finding a subset of given weights
that add up to a given sum. The decisional version of this problem is known to
be NP-complete and several attempts have been made to use it in cryptography.
A prominent example is the Merkle-Hellman knapsack cryptosystem [13] which
was broken by Shamir [17]. In a different direction, Impagliazzo and Naor [8] con-
structed provably secure pseudorandom generators and universal hash functions
based on the knapsack problem.

Other than the above cryptosystems, the security of the knapsack generator
is not directly related to the hardness of the knapsack problem. In the con-
text of the knapsack problem the weights are known, whereas in the context of
the knapsack generator they are not. For comparison, Howgrave-Graham and
Joux [7] presented new generic algorithms for hard knapsack problems which
allowed them to solve instances with n = k = 96 in practical time. These results
have no implications on the security of the knapsack generator, and knapsack
generators of much smaller size are not a priori insecure (even for n = k = 32,
the key consists of 1056 bits).

Throughout the literature, for example in [2,12,15], it is recommended to
choose k = n. We also focus on these cases and we do not always mention k ex-
plicitly in the following. The cases n = 32, 64 are of particular interest because
they are favorable for software implementation. Besides n, the knapsack gener-
ator has an additional security parameter ℓ, which is the number of discarded
bits per output. Intuitively, if ℓ is small, the output reveals more information
about the control sequence,whereas if ℓ is large, the throughput of the generator
gets low.

1.1 Previous Cryptanalytic Results

Rueppel [15] provided a first extensive analysis of the knapsack generator. He
showed that the ⌈log n⌉ least significant bits of the sums do not achieve high
linear complexity, and he provided some evidence that the other bits indeed do.
This let him recommend to choose ℓ = ⌈log n⌉. He further estimated the number
of different boolean functions {0, 1}n → {0, 1} mapping n control bits to the i-th
bit of a sum as in (1), and he found that for ⌊log n⌋ ≤ i < n at least 2n(⌊logn⌋−1)

such functions can be specified by n weights. He stated this as a lower bound on
the effective key length of the generator.

Von zur Gathen and Shparlinski [3] considered scenarios where either the
control bits or the weights are known. In both cases they translate the task
of finding the unknown parts of the key into a short vector problem which
they solve by LLL lattice basis reduction algorithms. In the known control bit
scenario, they can predict the generator if ℓ is not too small using about n2 − n
outputs. It is difficult to estimate the practical time complexity of their strategy
when extended to a guess and determine attack, and no empirical results are
provided.

1.2 Contribution of This Paper

We describe a novel guess and determine attack which needs only a few more
outputs than the number of weights n. Our analytical and empirical results show
that the security level of the knapsack generator is not significantly higher than
n bits. For a generator with n = 32 we implemented the full attack on a Desktop
Computer.

Further, we analyze the faster variant of the knapsack generator recently pro-
posed in [4], and show that it should not be used in cryptographic applications.

1.3 Road Map

In Section 2 we describe the knapsack generator as a system of modular equations
and we introduce the notion of an approximation matrix, which is the basic
concept of our analysis. In Section 3 we explain how to find good approximation
matrices. In Section 4 we describe the full attack and illustrate its performance
by empirical results, including a practical attack for n = 32. In Section 5 we
briefly analyze the fast variant of the knapsack generator proposed in [4].

2 Problem Formalization

In this section we address the following problem: Given the control bits and s
outputs of the knapsack generator, predict some bits of subsequent outputs with
probability higher than 1/2. Later, in Section 4, we extend this to a guess and
determine attack when the control bits are not known.

We first formulate the knapsack generator as a system of modular equations
and fix some notation.

2.1 A System of Modular Equations

In order to produce s outputs, the knapsack generator computes s sums accord-
ing to (1). This can be written as

v = Uw mod 2n, (2)

where v = (v0, . . . , vs−1) are the sums, w = (w0, . . . , wn−1) are the weights and
U is a s × n matrix whose coefficients are given by the control bits. We call U
the control matrix. Its rows are the consecutive states of a binary LFSR, and
the control matrix is entirely determined by one of its rows. We write ui for the
i-th row of U and, more generally, for the i-th state of the LFSR generating the
control sequence. It is shown in [3] that n consecutive row vectors ui are always
linearly independent over the integers modulo 2n. Hence, if U is known and s ≥ n,
the system described by (2) can be easily solved for w. The challenge is to deal
with the discarded bits. An attacker can only observe the n− ℓ most significant
bits of each component of v. Guessing the discarded bits is too expensive, since at
least nℓ bits would have to be guessed. The idea is to recover only the significant
bits of each weight which might be sufficient to make a prediction.

2.2 Weight Approximation Matrices

We write the outputs as a vector z = (z0, . . . , zs−1) such that zi = vi ≫ ℓ for
0 ≤ i < s. Here, ≫ denotes a right shift of n-bit integers, left shift is denoted
by ≪, and when used for vectors, the shifting is applied componentwise. Since
U has full rank modulo 2n, there always exists a n × s matrix T with integer
coefficients such that TU = In mod 2n, where In denotes the n × n identity
matrix. We call such a T an approximation matrix. The name is motivated by
the fact that

w = T (z ≪ ℓ) + Td mod 2n

for some unknown vector d = (d0, . . . , ds−1) with 0 ≤ di < 2ℓ for 0 ≤ i < s (the
di correspond to the discarded bits), which lets us hope to obtain approximate

weights w̃ by ignoring the discarded bits, that is, by computing

w̃ = T (z ≪ ℓ) mod 2n. (3)

The matrix T will be derived only from U (independently from z). As soon as
s > n, the choice of T is not unique. In the next paragraph we obtain a criterion
for making a good choice.

2.3 Prediction With Approximate Weights

In order to predict zs = vs ≫ ℓ, we compute ṽs = usw̃ mod 2n, where us =
(us, . . . , us+n−1) are the corresponding control bits. Substituting w̃, we get ṽs =
usT (z ≪ ℓ) mod 2n. The generator actually computes

vs = usT (z ≪ ℓ) + usTd mod 2n.

Intuitively, the significant bits of ṽs are likely to be correct if the integer sum-
mand usTd is small in absolute value. We denote by pλ the probability that at
least λ significant bits of ṽs are correct,

pλ = Pr
[

(vs ⊕ ṽs) ≫ (n− λ) = 0
]

.

The intuition is then formalized by the following lemma.

Lemma 1. Let m be the smallest integer such that |usTd| < 2m. Then, we have

pλ > 1−
1

2λ−m

for all λ with m ≤ λ < n.

Proof. For shorter notation we set a = usT (z ≪ ℓ) and b = usTd. The difference
vs ⊕ ṽs then writes as (a+ b)⊕ a. Let’s first assume that b ≥ 0. Then, the sum
a+b can be recursively described by (a+b)j = aj⊕bj⊕cj−1, cj = ajbj⊕ajcj−1⊕
bjcj−1, where cj denotes the carry bit, and c−1 = 0. For j ≥ m we have bj = 0,

and thus, (a+ b)m ⊕ am = cm−1 and for j > m, (a+ b)j ⊕ aj = cm−1

∏j−1
i=m ai.

The bound follows immediately under the assumption that the values of the bits
ai are independent and uniformly distributed for m ≤ i < n. The case of b < 0
is very similar (using the recursive description of a− b with a borrow bit instead
of the carry bit).

Lemma 1 guarantees that we can correctly predict at least one bit per output
with probability higher than 1/2 if m < n− 1. Smaller m give more predictable
bits. Hence, we are interested in an upper bound on m. Since the coefficients of
us are restricted to be 0 or 1 and the coefficients of d are strictly smaller than
2ℓ, we have |usTd| < ‖T‖2ℓ, where we use ‖T‖ =

∑

i,j |tij | as the norm of T . By
the definition of m, this gives

m < ⌈log‖T‖⌉+ ℓ.

It follows that ⌈log‖T‖⌉ ≤ n−ℓ−1 is a sufficient condition to predict at least one
bit. In the next section we describe a method that finds approximation matrices
with much lower norms than needed for typical values of ℓ.

3 Finding Good Approximation Matrices

The success of our attack essentially depends on the ability to find good approx-
imation matrices, that is, matrices with small coefficients in absolute value. To
compute such a matrix T we proceed row by row. We search for n row vectors
ti with small norm and such that tiU = ei, where ei is the i-th unit vector of
the standard basis of Fn

2 . This is a special case of the following problem:

Problem 1. Given an s× n integer matrix A and an integer column vector b of
dimension n, find an integer row vector x such that xA = b and such that the
coefficients of x are small in absolute value.

Typically, in our scenario, there are many solutions to the equation xA = b

and it is not difficult to find one of them by linear algebra techniques. The difficult
part is to find one with a small norm. We use an approach which is implemented
in Victor Shoup’s NTL [18]. The idea is the following: Given an arbitrary solution
x′, search for a vector x′′ in the kernel of A such that x = x′ − x′′ has a small

norm. This essentially corresponds to the approximate closest vector problem in
the lattice spanned by the kernel vectors. Using Babai’s algorithm [1] together
with a LLL reduced kernel basis we can find very close vectors x′′ in practice. A
nice introduction to Babai’s algorithm and its use in combination with LLL can
be found in [6].

In our specific application, the matrix A (= U) has only 0 and 1 as coefficients
and its rows are the successive states of an LFSR. It turns out that the small
coefficients are favorable, that is, the average norm of the returned solution is
smaller than for more general integer matrices. The particular structure of the
control matrix (successive states of an LFSR) has no significant influence, the
results are about the same as for random matrices with binary coefficients. In
particular, the choice of the connection polynomial seems not to be important
(as long as it is primitive).

Not surprisingly, the average norm of the returned solutions depends on
s (it basically determines the kernel dimension of A). Figure 1 illustrates the
performance of the method in function of s for n = 64. The graph indicates the
average logarithmic norm as well as the lower and the upper quartile for samples
of 100 approximation matrices obtained for s = 68, 70, . . . , 96. Recall that s is
the number of outputs used to compute the approximate weights.

10

15

20

25

30

35

68 72 76 80 84 88 92 96

L
o
g
a
ri
th
m
ic

n
o
rm

o
f
T

average
lower quartile
upper quartile

Fig. 1. Average logarithmic norm of T for n = 64 in function of s.

4 Description of the Attack and Empirical Results

So far, we can predict the generator if the control bits are known. The empirical
results in this section illustrate the effectiveness of the approach. But first, we
describe the extension of our technique to an attack where the control bits are
not known.

4.1 Description of the Attack

We assume a scenario where the attacker does not know the control bits nor the
weights. Since the whole control sequence is determined by only n bits (typically,
the initial state of the LFSR), the above approach naturally extends to a guess
and determine attack:

1. Guess u0, . . . , un−1 and derive the s× n control matrix U .
2. Find an approximation matrix T based on U .
3. Use T and z0, . . . , zs−1 to compute w̃ as in (3).
4. Compute t predictions and check their λ most significant bits. If almost all

of them are correct, the control bits have been guessed correctly. Otherwise,
go back to step 1.

The parameters t and λ must be chosen such that the checking is reliable. At
least, t should be chosen such that n ≥ tλpλ. This is not a problem, because
the norms of the approximation matrices are very low, and λ can be chosen
such that pλ is almost one. The attack then needs s + t outputs: s outputs
to approximate the weights and t outputs to check the predictions. The most
expensive part of the attack is at step 2, where the approximation matrices are
computed. Instead of computing 2n such matrices, we can check several guesses
by the same matrix T . Using z1, . . . , zs to compute w̃ at step 3, we can check
if u0, . . . , un−1 was the state of the LFSR after one clock and we can easily
compute the initial state. In general, if r ≥ s + t outputs are available, only
2n/(r − s) approximation matrices must be computed. Since this computation
is independent of the observed outputs, it can even be done offline.

4.2 Practical Attack for n = 32

For n = 32 the above attack is practical on a desktop computer. In our ex-
periments we assumed that 552 outputs could be observed. We used control
matrices with s = 40 rows and the parameters for the checking part were t = 20
and λ = 5. Hence, only 223 approximation matrices had to computed. A guess
was accepted when less than 20 of the 100 predicted bits where wrong. On a
Intel Core 2 Duo E8400 3.0 GHz Processor with 4 GB of RAM it took about
three days to identify the correct initial control bits and about 870 bits of the
weights. This allows an attacker to predict more than 22 bits per output (we
used ℓ = 5, hence an output has 27 bits).

4.3 Empirical Results for Larger n

For larger n the attack is not practical on a desktop computer, since we could
not circumvent the guessing of the n bits. Hence, we assume in this paragraph
that the control bits are known and that we have observed s outputs. This
corresponds to a known control bits attack or to the checking part of our guess
and determine attack. We are interested in the average number of significant
bits per output that we can correctly predict. To be precise, let λ∗ be the largest
λ such that (vs ⊕ ṽs) ≫ (n − λ) = 0. We analyze the average size of λ∗. Note
that if ṽs would be obtained by coin tossing, the expectation of λ∗ would be
∑n

i=1 i/2
i+1 ≈ 1 bits per output. Table 1 contains the results for n = 32, 64, 128

with ℓ = log n and different values of s. The samples were taken randomly from
the key space of the generator (recall that the key consists of n(1 + n) bits).

Table 1. Average number of correctly predicted bits per output (λ∗).

s− n n = 32 n = 64 n = 128 n = 256

8 20.6 42.9 85.3 164.6
16 22.2 48.7 100.9 203.4
24 22.6 50.3 105.9 216.4
32 22.7 50.8 108.1 222.4

The results in Table 1 show that even for large n the security of the knapsack
generator is not significantly higher than n bits. Computing an approximation
matrix which allows to predict about 108 bits per output of a generator with
n = 128 takes a few seconds and needs no more than 160 outputs.

5 Analysis of the Fast Knapsack Generator

In [4], von zur Gathen and Shparlinski describe a variant of the knapsack gen-
erator which achieves faster output generation. We call it the fast knapsack

generator. They consider a slightly more general setting as we did in this paper
by taking the weights in an arbitrary ring R (in this paper we just considered
R = Z/mZ with m = 2n). The speedup is achieved by a special choice of the
weights. Instead of randomly choosing each of the n weights, it is proposed to
choose two elements a, b ∈ R and to compute wj = abn−j for 0 ≤ j ≤ n − 1.
With these weights, the (i + 1)-th sum can be computed recursively from the
i-th sum by

vi+1 = bvi − abn+1ui + abui+n, for i ≥ 0.

Hence, only one multiplication and two additions are needed for generating one
output. If R is a prime field, the sequence (vi) has provable properties concern-
ing the uniformity of its distribution (see Theorem 3.5 in [4]). However, it was
left open whether this specialization affects the cryptographic security of the
generator. We show that the sequence does not provide cryptographic security

if R is a prime field and we believe that the security is highly questionable if
R = Z/mZ for m = 2n. Our attack is a guess and determine attack whose com-
plexity essentially depends on the number of discarded bits (and not on n as
in the case of the original generator). It specifically exploits the strong relation
between the weights.

5.1 The Fast Generator Over Prime Fields

Assume that R is a prime field, i.e. R = Fp for p prime. We think of the elements
of Fp as ⌈log p⌉-bit integers and as above we denote by ℓ the number of discarded
bits. Let’s first suppose that the control bits are known. Then a and b can be
determined as follows (here, all operations are modulo p):

1. Find i0 such that ui0 = 0 and ui0+n = 0
2. Guess the 2ℓ discarded bits of vi0 and vi0+1

3. Compute b = vi0+1/vi0 and a = vi0/
∑n−1

j=0 ui0+jb
n−j

4. For some i 6= i0 compute
∑n−1

j=0 ui+jab
n−j and check if the significant bits

agree with those of vi.

The cost of this attack is about the cost of 22ℓ times computing two modular
inverses and two sums with n summands. If we drop the assumption that the
control bits are known, we can not choose i0 suitably in the first step. We have
to guess it and hope that ui0 and ui0+n are zero. Then, at the third step, we
miss n − 1 control bits for computing a. Instead of guessing these control bits,
we speculate on ui0+1 = 0 and ui0+n+1 = 1 such that vi0+2 = bvi0+1 + ab. So,
we only have to guess the discarded bits of vi0+2 for obtaining a. In order to
check a and b we try to find ui0+2, . . . , u2n−1 such that the significant bits of
bvi−abn+1ui+abui+n agree with those of vi+1 for i0+2 ≤ i < n. If such control
bits can be found, our guess is correct with high reliability. In average we need
about 24 trials for finding a suitable i0 (satisfying the conditions for the first and
the third step) and for each trial we have to guess 23ℓ discarded bits. Checking
a guess costs at most 4n additions of three summands. The attack works with
about 24+n outputs and its total cost is about 24+3ℓ times the cost of computing
two modular inverses and at most 4n+ 1 additions.

5.2 The Fast Generator Modulo 2n

The attack of the prime field case does not directly translate to the case R =
Z/mZ for m = 2n (or to other rings). The problem is that, in general, the
elements of a ring do not have a unique inverse. Hence, the divisions at the third
step are not well defined. Instead, we have to find a and b such that

bvi0 = vi0+1,

vi0+2 = bvi0+1 + ab.

For some guesses, no such a and b exist. These guesses can be easily ruled out.
But for other guesses, many choices for a and b are possible and the checking of
them will be more costly.

6 Discussion

It was already noticed by von zur Gathen and Shparlinski in [3] that the security
of the knapsack generator is smaller than suggested by a naive estimate based
on its key length. The results in this paper show that it is no more than n bits.
Our approach applies to all relevant parameters ℓ, including the following:

n 32 64 128
ℓ ≤ 25 ≤ 42 ≤ 98

.

In particular, it applies to ℓ = ⌈log n⌉. The full attack works with only a few
more outputs than the number of weights and it is not difficult to translate our
analysis to the cases where k and n are not equal.

However, we could not circumvent the guessing part of our attack, for ex-
ample, using ideas from fast correlation attacks. Due to the high nonlinearity of
integer addition with multiple inputs, it seems very unlikely to find approximate
linear relations between outputs or correlations to the state of the LFSR.

So far, a knapsack generator of size n provides n-bit security. To guarantee
this security level it needs a n(n + 1) bit secret key, and the example of the
fast knapsack generator shows that it is delicate to reduce the potential entropy
of the weights. This has to be taken into account when evaluating the knap-
sack generator as an alternative to nonlinear boolean filtering and combining
functions, or when using it in RFID applications.

Acknowledgements. We thank the anonymous reviewers for helpful com-
ments. Especially, we thank the reviewer who pointed us to the use of LLL for
computing the approximation matrices. This work was partially supported by
European Commission through the ICT programme under contract ICT-2007-
216676 ECRYPT II and by the Hasler Foundation www.haslerfoundation.ch

under project number 08065.

References

1. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986)

2. Cole, P.H., Ranasinghe, D.C.: Networked RFID systems and lightweight cryptog-
raphy: raising barriers to product counterfeiting. Springer-Verlag (2007)

3. von zur Gathen, J., Shparlinski, I.: Predicting Subset Sum Pseudorandom Gener-
ators. In: Handschuh, H., Hasan, M.A. (eds.) SAC. LNCS, vol. 3357, pp. 241–251.
Springer (2004)

4. von zur Gathen, J., Shparlinski, I.: Subset sum pseudorandom numbers: fast gen-
eration and distribution. J. Math. Crypt. 3, 149–163 (2009)

5. Golic, J.D., Salmasizadeh, M., Dawson, E.: Fast Correlation Attacks on the Sum-
mation Generator. J. Cryptology 13(2), 245–262 (2000)

6. Hoffstein, J., Pipher, J., Silverman, J.H.: An introduction to mathematical cryp-
tography. Springer (2008)

7. Howgrave-Graham, N., Joux, A.: New Generic Algorithms for Hard Knapsacks. In:
Gilbert, H. (ed.) EUROCRYPT. LNCS, vol. 6110, pp. 235–256. Springer (2010)

8. Impagliazzo, R., Naor, M.: Efficient Cryptographic Schemes Provably as Secure as
Subset Sum. J. Cryptology 9(4), 199–216 (1996)

9. Klapper, A., Goresky, M.: Feedback Shift Registers, 2-Adic Span, and Combiners
with Memory. J. Cryptology 10(2), 111–147 (1997)

10. Lee, D.H., Kim, J., Hong, J., Han, J.W., Moon, D.: Algebraic Attacks on Summa-
tion Generators. In: Roy, B.K., Meier, W. (eds.) FSE. LNCS, vol. 3017, pp. 34–48.
Springer (2004)

11. Meier, W., Staffelbach, O.: Correlation Properties of Combiners with Memory in
Stream Ciphers. In: EUROCRYPT. pp. 204–213 (1990)

12. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press (2001)

13. Merkle, R., Hellman, M.: Hiding information and signatures in trapdoor knapsacks.
IEEE Transactions Information Theory 24(5), 525–530 (1978)

14. Rueppel, R.A.: Correlation Immunity and the Summation Generator. In:
CRYPTO. LNCS, vol. 218, pp. 260–272. Springer (1985)

15. Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer (1986)
16. Rueppel, R.A., Massey, J.L.: Knapsack as a nonlinear function. IEEE Intern. Symp.

of Inform. Theory 46 (1985)
17. Shamir, A.: A Polynomial Time Algorithm for Breaking the Basic Merkle-Hellman

Cryptosystem. In: CRYPTO. pp. 279–288 (1982)
18. Shoup, V.: NTL: A Library for doing Number Theory. www.shoup.net/ntl
19. Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryp-

tographic applications. IEEE Transactions on Information Theory 30(5), 776–780
(1984)

20. Staffelbach, O., Meier, W.: Cryptographic Significance of the Carry for Ciphers
Based on Integer Addition. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO.
LNCS, vol. 537, pp. 601–614. Springer (1990)

www.shoup.net/ntl

	Cryptanalysis of the Knapsack Generator

