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Abstract. Analyzing desired generic properties of hash functions is an
important current area in cryptography. For example, in Eurocrypt 2009,
Dodis, Ristenpart and Shrimpton [8] introduced the elegant notion of
“Preimage Awareness” (PrA) of a hash function HP , and they showed
that a PrA hash function followed by an output transformation modeled
to be a FIL (fixed input length) random oracle is PRO (pseudorandom
oracle) i.e. indifferentiable from a VIL (variable input length) random or-
acle. We observe that for recent practices in designing hash function (e.g.
SHA-3 candidates) most output transformations are based on permuta-
tion(s) or blockcipher(s), which are not PRO. Thus, a natural question
is how the notion of PrA can be employed directly with these types of
more prevalent output transformations? We consider the Davies-Meyer’s
type output transformation OT (x) := E(x)⊕ x where E is an ideal per-
mutation. We prove that OT (HP (·)) is PRO if HP is PrA, preimage
resistant and computable message aware (a related but not redundant
notion, needed in the analysis that we introduce in the paper). The sim-
ilar result is also obtained for 12 PGV output transformations. We also
observe that some popular double block length output transformations
can not be employed as output transformation.
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1 Introduction

Understanding what construction strategy has a chance to be a good hash func-
tion is extremely challenging. Further, nowadays it is becoming more important
due to the current SHA3 competition which is intended to make a new stan-
dard for hash functions. In TCC’04, Maurer et al. [17] introduced the notion of
indifferentiability as a generalization of the concept of the indistinguishability
of two systems [16]. Indifferentiable from a VIL (variable input length) random
oracle (also known as PRO or pseudorandom oracle) is the appropriate notion



of random oracle for a hash-design. Recently, Dodis, Ristenpart and Shrimpton
[8] introduced a generic method to show indifferentiable or PRO security proof
of a hash function, whose final output function R is a FIL (fixed input length)
random oracle. More precisely, they defined a new security notion of hash func-
tion, called preimage awareness (PrA), and showed that F (M) = R(HP (M))
is PRO provided HP is preimage aware (supposed to be a weaker assumption).
The result is applied to prove the indifferentiable security of the Skein hash al-
gorithm [2], a second round SHA3 candidate. Informally, a hash function HP

is called PrA if the following is true for any adversary A having access to P :
For any y committed by A, if a preimage of y is not efficiently “computable”
(by an algorithm called extractor) from the tuple of all query-responses of P
(called advise string) then A should not be able to compute it even after making
additional P queries. This new notion seems to be quite powerful whenever we
have composition of a VIL hash function and a FIL output transformation.

Our Result. We start with a preliminary discussion about the different notions
and interrelationship among them. We note that there are hash functions whose
final output transformation cannot be viewed as a random oracle e.g. some SHA3
second round candidates. So one needs to extended results beyond that of Dodis
et al. to cover the cases of hash functions with various output transformations
which are in use and this becomes our major objective, since it is important
to assure good behavior of these hash functions as well. As a good example
of a prevalent transform for construction of hash functions, we choose Davies-
Meyer [21] OT (x) = E(x) ⊕ x where E is a random permutation and study it
in Section 3. We observe that the preimage awareness of HP is not sufficient
for the PRO security of F . In addition to PrA, if HP is also preimage resistant
(PI) and computable message aware (as we define in Section 3.1), then FP,E is
PRO (proved in Theorem 1). Informally speaking, a hash function HP is called
computable message aware (or CMA) if there exists an efficient extractor
(called computable message extractor) which can list the set of all computable
messages whose HP outputs are implied with high probability given the advise
string of P . The main difference with PrA is that here, no adversary is involved
and the extractor does not get any specific target (see Definition 2). We show
that both preimage resistant and CMA are not implied by PrA and hence these
properties can not be ignored. Our result can then be employed to prove that
a close variant of Grøstl is PRO (see Section 4)1. We continue our research in
finding other good output transformations. We found 12 out of 20 PGVs can
be employed as output transformation OT and we require similar properties of
HP , i.e. PrA, PI and CMA, to have PRO property of OT (HP ) (see Section 5).
However these three properties are not sufficient for some DBL post processors.
In section 6 we show PRO attacks when some popular double block length
post processors are employed. It would be an interesting future research work
to characterize the properties of the inner hash function HP and the output
transformation OT such that OT (HP ) become PRO. In the appendix we review
the results of [8, 9].

1 The indifferentiable security analysis of Grøstl has been studied in [1]



2 Preliminaries

A game is a tuple of probabilistic stateful oracles G = (O1, . . . ,Or) where states
can be shared by the oracles. The oracles can have access to primitives (e.g.
random oracle) via black-box modes. It is reasonable to assume that all random
sources of games come from the primitives. A probabilistic oracle algorithm A
(e.g. an adversary) executes with an input x, its oracle queries being answered
by the corresponding oracles of G. Finally it returns y := AG(x). An adversary
A may be limited by different resources such as its runtime, number of queries
to different oracles, size of its inputs or outputs, etc. If θ is a tuple of parameters
describing the available resources of A then we say that A is a θ-adversary. In
this paper HP is an n-bit hash function defined over a message space M based
on a primitive P which can be only accessed via a black-box.
Indifferentiability. The security notion of indifferentiability or PRO was in-
troduced by Maurer et al. in TCC’04 [17]. In Crypto’05, Coron et al. adopted
it as a security notion for hash functions [6]. Let F be a hash function based
on ideal primitives P = (P1, ..., Pj) and F be a VIL random oracle, let SF =
(SF1 , ..., SFj ) be a simulator (aimed to simulate P = (P1, . . . , Pj)) with access
to F , where Si’s can communicate to each other. Then, for any adversary A,
the indifferentiability- or PRO-advantage of A is defined by Advpro

F P ,SF (A) =
|Pr[AF,P = 1]− Pr[AF,S = 1]|. When the value of the above advantage is negli-
gible, we say that the hash function F is indifferentiable or PRO. Maurer et al.
[17] also proved that if F is indifferentiable, then F (a VIL random oracle) used
in any secure cryptosystem can be replaced by FP1,...,Pj with a negligible loss of
security. In other words, F can be used as a VIL PRO.
Preimage-Awareness or PrA. Dodis, Ristenpart and Shrimpton defined
a new security notion called Preimage-Awareness (or PrA) for hash functions
[8, 9] which plays an important role in analyzing indifferentiability of a hash
function [2]. Given a game GP (can be P itself), a tuple α = ((x1, w1), . . .,
(xs, ws)) is called an advise string at some point of time in the execution of AG,
if wi’s are responses of all P -queries xi’s until that point of time. A PrA (q, e, t)-
adversary A (making q queries and running in time t) commits y1, . . . , ye during
the execution of AP and finally returns M . We write (y1, . . . , ye) ← AP

guess,
M ← AP and denote the advise string at the time AP

guess commits yi by αi. The
guesses and P -queries can be made in any order.

Definition 1. The PrA-advantage of HP with an extractor E is defined as
Advpra

H,P,E(q, e, t) = maxA Advpra
H,P,E(A) where maximum is taken over all (q, e, t)-

adversaries A and the PrA advantage of A, denoted Advpra
H,P,E(A), is defined as

Pr[∃i, HP (M) = yi, M 6= E(yi, αi) : M ← AP ; (y1, . . . , ye) ← AP
guess]. (1)

HP is called (q, e, t, te, ε)-PrA if Advpra
H,P,E(q, e, t) ≤ ε for some extractor E with

runtime te. In short, we say that a hash function is PrA or preimage-aware if
there exists an “efficient” extractor such that for all “reasonable” adversaries A
the PrA advantage is “small”.



Implication among Collision Resistant, Preimage resistant (PI), PrA.
If a collision attacker BP returns a collision pair (M, M ′), then a PrA attacker
makes all necessary P queries to compute HP (M) = HP (M ′) = y and finally
returns M if E(y, α) = M ′, o.w. returns M ′. So a PrA hash function must be
collision resistant. In [8] the authors consider a weaker version of PrA (called
weak-PrA) where an extractor can return a set of messages (possibly empty)
whose output is y. A PrA adversary wins this new weak game if it can find a
preimage of y different from those given by the extractor. They also have shown
that PrA is equivalent to collision resistant and weak-PrA. One can modify a
definition of a preimage-resistant hash function by introducing only one collision
pair. It still remains preimage resistant as the randomly chosen target in the
particular collision value has negligible probability. However, it is not preimage-
aware since a collision is known. On the other hand HP (x) = P−1(x) or HP (x) =
x are not preimage resistant but PrA.

3 Hash Function with Output Transformation E(x) ⊕ x

In [8], hash functions have been analyzed for which the output transformation
can be modeled as a FIL random oracle. Generally, we can consider various
kinds of output transformations such as Davis-Meyer, PGV compression func-
tions [20] or some DBL (Double Block Length) compression functions [19, 12,
13, 15] in the ideal cipher model. Traditionally, the most popular known design
of hash function uses one of the above post-processors. It is well-known that
all such compression functions are not indifferentiably secure [6]. So, we need
a separate analysis from [8]. In this section, we consider Davis-Meyer transfor-
mation OT (x) = E(x) ⊕ x, where E is a permutation modeled as a “random
permutation.” A simple example of HP (e.g. the identity function) tells us that
the preimage awareness is not a sufficient condition to have PRO after employ-
ing Davis-Meyer post-processor. This suggests that we need something stronger
than PrA. We first observe that the preimage attack on identity function can
be exploited to have the PRO attack. So preimage resistant can be a necessary
condition. We define a variant of preimage resistant, called multipoint-preimage
(or mPI), which is actually equivalent to PI. The multipoint-preimage (or mPI)
advantage of a (q, t, s)-adversary A (i.e., adversary which makes q queries, runs
in time t and has s targets) for HP is defined as

AdvmPI
HP (A) = Pr

h1,...,hs
$←{0,1}n

[∃i,HP (M) = hi : M ← AP (h1, . . . , hs)] (2)

When s = 1, it corresponds to the classical preimage advantage AdvPI
HP (A).

Conversely, mPI advantage can be bounded above by preimage advantage as
described in the following. For any (q, t, s)-adversary A with multipoint-preimage
advantage ε against HP , there is a (q, t + O(s))-adversary A′ with preimage-
advantage ε/s. The adversary A′ generates (s−1) targets randomly and embeds
his target among these in a random position. So whenever an mPI adversary A
finds a multipoint preimage of these s targets, it is the preimage of A’s target



with probability 1/s (since there is no way for A to know the position of the
target for A′). W.l.o.g. one can assume that the targets are distinct and chosen
at random. Otherwise we remove all repeated hi’s and replace them by some
other random distinct targets. So we have the following result.

Lemma 1. Let h1, . . . hs be distinct elements chosen at random (i.e. outputs of
a random permutation for distinct inputs). Then, any (q, t)-adversary AP can
find one of the preimages of hi’s with probability at most s×AdvPI

HP (q, t).

3.1 Computability

Next we show that preimage resistant and PrA are not sufficient to prove the
PRO property. Consider the following example based on an n-bit one-way per-
mutation f and random oracle P .

Example 1. HP (m) = P (f(m)) ⊕m. Given α = (f(m), w) it is hard to find m
and hence there is no efficient extractor to find the message m even though an
adversary A knows m and its HP -output. An adversary can compute z = F(m)
and makes E−1(z ⊕ w ⊕ m) query. No feasible simulator can find message m
from it with non-negligible probability and hence cannot return w⊕m. However
w⊕m is the response when A interacts with the real situation (FP,E , P, E, E−1).
So A can have a PRO attack to F . It is easy to see that HP is preimage resistant
and PrA (given the advise string α = ((x1, w1), . . . , (xq, wq)) and the target x
(that helps to find m back) the extractor finds i for which f(wi ⊕ x) = xi and
then returns wi ⊕ x).

The above example motivates us to define a computable message given an advise
string. A message M is called computable from α if there exists y such that
Pr[HP (M) = y|α] = 1. In other words, the computation of HP (M) = y can
be made without making any further P -queries. We require the existence of an
efficient extractor Ecomp, called computable message extractor, which can list all
computable messages given the advise string. We note that this is not same
as weak-PrA as the extractor has to find all messages whose outputs can be
computed to a value (unlike PrA, no such fixed target is given here). This notion
does not involve any adversary.

Definition 2. A pair (HP , Ecomp) is called (q, qH , ε)-computable message aware
or CMA if for any advise string α with q pairs, the number of computable mes-
sages is at most qH and Ecomp(α) outputs all these. Moreover, for any non-
computable messages M , Pr[HP (M) = y|α] ≤ ε, ∀y.
A hash function HP is called (q, qH , ε, tc)-computable message aware or CMA if
there is Ecomp with run time tc such that (HP , Ecomp) is (q, qH , ε)-CMA. In short
we say that HP is CMA if it is (q, qH , ε, tc)-computable message aware where
for any feasible q, qH and tc are feasible and ε is negligible. We reconsider the
above example HP (m) = P (f(m))⊕m for an one-way permutation f . We have
seen that it is both PI and PrA. However, there is no efficient extractor that can
not find all computable messages given the advise string say (f(m), w). In fact,



m is computable but there is no way to know it by the extractor only from the
advise string (extractor can know if the target f(m)⊕ w = HP (m) is given).

To be a computable message aware, the list of computable message has to be
small or feasible so that an efficient computable message extractor can exist. For
example, the identity function has a huge set of computable messages given any
advise string which cannot be listed by any efficient algorithm even though we
theoretically know all these messages.

3.2 PRO Analysis of a Hash Function with OT E(x) ⊕ x

In this section we prove that OT (HP ()) is PRO whenever HP is PrA, PI and
CMA. We give an informal idea how the proof works. Note that for E-query,
E(x) ⊕ x almost behaves like a random oracle and hence PrA property of HP

takes care the simulation. This would be similar to the random oracle case except
that we have to deal with the fact there is no collision on E. The simulation of
responses of P -queries will be same as P . The non-trivial part is to response
E−1 query. If the E−1-query y is actually obtained by y = F(M) ⊕ HP (M)
then simulator has to find the M to give a correct response. Since simulator has
no idea about the F(M) as he can not see F-queries, the query y is completely
random to him. However, he can list all computable messages and try to compute
HP (M) and F(M). This is why we need CMA property. The simulator should
be able to list all computable messages only from the P query-responses. If he
finds no such messages then he can response randomly. The simulator would
be safe as long as there is no preimage attack to the random output. Now we
provide a more formal proof.

Let FP,E(M) = E(HP (M))⊕HP (M) and A be a PRO adversary making at
most (q0, q1, q2, q3) queries to its four oracles with bit-size lmax for the longestO0-
query. We assume that HP (·) is preimage resistant and (q∗, qH , ε)-computable
message aware for an efficient computable message extractor Ecomp where q∗ =
q1 + q2NQ[lmax]. Let q = qH + q′ and q′ = q0 + q1 + q2 + q3. For any given
PrA-extractor E , we can construct a simulator SF = (S1, S2, S3) (defined in
the oracles of CA in Fig. 3) that runs in time t∗ = O(q2 + q3Time(Ecomp)).
Given any indifferentiability adversary A making at most (q0, q1, q2, q3) queries
to its four oracles with bit-size lmax for the longest O0-query, there exists a PrA
(q, q2 + 1, t)-adversary CA with runtime t = Time(A) + O(q2 · Time(E) + q0 +
q1 + (q2 + q0)NQ[lmax]). Now we state two lemmas which are useful to prove
the main theorem of the section. Proof ideas of these lemmas are very similar
to that of Lemma 8 and Lemma 10. The games G4 and G5 are defined in the
Fig. 2. We use a simulation oracle simE which works given a runtime database
E. A random element from the set {0, 1}n \ Range(E) is returned for simE[1, y]
whenever y is not in the domain of E. Similarly a random element from the set
{0, 1}n \ Domain(E) is returned in simE[−1, c] whenever c is not in the range
of E. Whenever y or c are defined before the simulator oracle just returns the
previous returned value. We use three such simulation oracles for E0 (which
keeps the input output behavior of E due to O0 queries only), E1 (which keeps



Game G4 and G5

Initialize : Ē = E0 = E1 = φ; H = H’ = β = φ, Bad =F;
300 On O3 - query c
301 S = {X1, . . . , Xr} = Ecomp(β);
302 For all 1 ≤ i ≤ r do

303 yi = HO1 (Xi) := H[Xi]; F(Xi) = zi; ci = yi ⊕ zi;
304 If ∃ unique i s.t. ci = c,
305 If E1[yi] = ⊥ then y = yi;
306 Else if E1[yi] = c′ 6= ⊥ then Bad = T ; y = simE1[−1, c];
307 Else if no i s.t ci = c, then y = simE1[−1, c];
308 Else Bad =T; y = simE1[−1, c];

309 If E−1
0 [c] 6= ⊥ and E−1

0 [c] 6= yi then Bad = T ; y = E−1
0 [c];

310 If y is E1-simulated and E0[y] 6= ⊥ then Bad = T ; y = simE[−1, c];

311 E1[y] := c; Ē[y] := c; return y;
200 On O2 - query y

201 X = E(y, β); Ext
∪← (y, X);

202 y′ = HO1 (X), H
∪← (X, y′); z = F(X); c = z ⊕ y′;

203 If y′ 6= y then
204 c′ = simE1[1, y];

205 If E0[y] 6= ⊥ then Bad =T; c′ = E0[y];

206 Else if c′ ∈ Range(E0) then Bad =T; c′ = simĒ[1, y];

207 E1[y] := c′; Ē[y] := c′; return c′;
208 If y′ = y and c ∈ Range(E1) then
209 c′ = simE1[1, y];

210 If E0[y] 6= ⊥, then Bad =T; c′ = E0[y];

211 Else if c′ ∈ Range(E0) then Bad =T; c′ = simĒ[1, y];

212 E1[y] := c′; Ē[y] := c′; return c′;
213 If y′ = y and c 6∈ Range(E1) then

214 If E0[y] 6= ⊥, then Bad =T; c = E0[y];

215 Else if c ∈ Range(E0) then Bad =T; c = simĒ[1, y];

216 E1[y] := c; Ē[y] := c; return c;
100 On O1 - query u

101 v = P (u); β
‖← (u, v);

102 return v;
000 On O0 - query M

001 z = F(M); y = HP (M); c = z ⊕ y;
002 If ∃ M ′ s.t. M 6= M ′ and (M ′, y) ∈ H’ then

Bad =T; H
∪← (M, y); z = F(M ′); return z;

003 H’
∪← (M, y); H

∪← (M, y);

004 If Ē[y] = ⊥ ∧ Ē−1[c] = ⊥ then Ē[y] := c; E0[y] := c; return z;
005 If Ē[y] = c then E0[y] := c; return z;

006 If Ē[y] 6= ⊥ ∧ Ē[y] 6= c then Bad =T; z = Ē[y]⊕ y; return z;

007 If Ē[y] = ⊥ ∧ Ē−1[c] 6= ⊥ then

Bad =T; simĒ[1, y] = c′; Ē[y] := c′; E0[y] = c′; z = c′ ⊕ y; return z;

Fig. 1. G4 executes with boxed statements whereas G5 executes without these. G4

and G5 perfectly simulate (F P,E , P, E, E−1) and (F , S1, S2, S3), respectively. Clearly
G4 and G5 are identical-until-Bad.



the input output behavior of E due to O2 and O3 queries) and E (which keeps
the input output behavior of E for all queries, i.e. it is the union of the previous
two unions).

Lemma 2.
G4 ≡ (FP,E , P, E,E−1), G5 ≡ (F , S1, S2, S3) and G4, G5 are identical-until-
Bad.

Proof. It is easy to see from the pseudocode that G4, G5 are identical-until-
Bad. The games G5 and the oracles simulated by CA (same as (F , S1, S2, S3))
are actually identical. They have common random sources which are namely F ,
P and the simulated oracle simE0 (we can ignore the dead conditional statements
which have boxed statements which are not actually executed in game G5). Now
it remains to show that G5 is equivalent to a real game for a PRO attacker. Note
that oracles O2 and O3 are statistically equivalent to a random permutation
E and its inverse which are simulated runtime. Moreover O0 returns F(M) if
E[y], E

−1
[c] are undefined or E[y] = c where y = HP (M) and c = F(M)⊕ y. In

all other cases O0(M) either computes or simulates c′ = E[y] and returns c′⊕ y.
So O0(M) is statistically equivalent to the oracle E(HP ())⊕HP (). Hence G4 is
statistically equivalent to (FP,E , P,E, E−1).

The following result follows immediately from the fact that F and HP are
statistically independent and F is a random oracle.

Lemma 3. For any adversary CP,F making q queries to the n-bit random oracle
F we have Pr[F(M)⊕HP (M) = F(M ′)⊕HP (M ′),M 6= M ′ : (M,M ′) ← C] ≤
q(q − 1)/2n+1.

Lemma 4. Whenever AG5 sets Bad true, CA also sets one of the Bad events
true. Moreover,

Pr[CA sets Bad true ] ≤ Advpra

HP ,P,E(CA) + q3 ×AdvPI
HP (q, t)+

q0q3ε +
2q0q3 + q2q0

2n − q0 − q2 − q3
+

(qH + q2 + q0)
2

2n+1
.

Proof. The first part of the lemma is straightforward and needs to be verified
case by case. We leave the details for readers to verify. It is easy to see that
whenever Badpra sets true C is successful in a PrA attack. Now we estimate the
probability of the other bad events, from which the theorem follows.

1. Pr[BadmPI = T ] ≤ q3 × AdvPI
HP (q∗, t∗). It is easy to see that whenever

BadmPI sets true we have a preimage of some yi which is generated from
simE1. Note that simE1 responds exactly like a random permutation. So by
lemma 1 we have the bound.

2. Pr[Badcomp = T ] ≤ q0q3ε. Whenever Badcomp sets true we should have
HP (Mi) = yi where Mi is not computable (since it is not in the list given
by Ecomp). So from computable message awareness definition we know that
Pr[HP (Mi) = yi] ≤ ε. The number of such Mi’s and yi’s are at most q0q3.



The Oracles O2 (or S2) and O3 (or S3) The oracles O0 (or F), O1 (or P ) and
Finalization

/The VIL random oracle F is simulated by
CA/

/The VIL random oracle F is simulated
by CA/

Initialize : E1 = L = L1 = F′ = H = β =
φ;

100 On O1 - query u

Run A and response its oracles 101 v = P (u); β
‖← (u, v); return v;

300 On O3 - query c
301 S = {X1, . . . , Xr} = Ecomp(β); 000 On O0 (or F)- query M

302 For all 1 ≤ i ≤ r do 001 z = F(M); L ∪← M ;
303 yi = HO1(Xi) := H[Xi]; F(Xi) =
zi;

304 ci = yi ⊕ zi; F′[Xi] = ci; L1
∪← X; Finalization()

305 If ∃ unique i, ci = c, 501 If collision in F′ then BadF1 =T;
306 If E1[yi] = ⊥ then y = yi 502 If collision in H then BadPrA =T;

Finish();
307 Else if O3(c

′) = yi was queried and 503 For all M ∈ L do 504-518
308 no i on that query then 504 z = F(M), H[M ] = HP (M) = y;
309 BadPI = T ; y = simE1[−1, c]; 505 F′[M ] = c = y ⊕ z;
310 Else if no i then y = simE1[−1, c]; 506 If F′[X] = c, X 6= M then

BadF1 =T;
311 Else BadF1 =T;y = simE1[−1, c]; 507 If H[X] = y, X 6= M then

BadPrA =T; Finish();
312 E1[y] = c; return c; 508 If Ext[y] 6= ⊥, M then BadPrA =T;

Finish();
509 If O2(y) = ci, y 6= yi

200 On O2 - query y := yi, i = i + 1 510 then BadE1 =T;

201 X = E(yi, β); Ext
∪← (y, X); 511 Else if O3(ci) = y 6= yi after Mi-

query

202 y′ = HO1(X), H
∪← (X, y′);z =

F(X);
512 then Badcomp =T;

203 L1
∪← X; c = z ⊕ y; F′[X] = c; 513 Else if O3(ci) = y 6= yi before Mi-

query
204 If y′ 6= y 514 then BadF2 =T;
205 then c = simE1[1, y]; 515 Else if O3(c) = yi after Mi-query,

c 6= ci

206 If y′ = y, O3(c) was queried 516 then BadE2 =T;
207 then BadF1 =T; c = simE1[1, y] 517 Else if O3(c) = yi before Mi-query,

c 6= ci

208 If y′ = y, O2(y
′′) = c was queried 518 then BadPI =T;

209 then c = simE1[1, y] 519 return ⊥;
210 E1[y] = c; return c;

Fig. 2. The oracles simulated by PrA adversary CA to response an PRO adversary A.
It has a finalization procedure which also sets some bad event true. Finish() which is
defined similarly as in Fig. 7.2. It mainly completes the PrA attack. It is easy to see
that whenever Finish() is being executed either we have a collision in HP or there is
some message M such that HP (M) = y, (y, M) 6∈ Ext.



3. All other bad events hold due to either the special outputs of F(M) (when
BadF1 = T or BadF2 = T , we apply the lemma 3) or the special outputs of
simE(c) (when BadE1 = T and BadE2 = T ). One can show the following:

Pr[BadE1∨E2∨F1∨F2 = T ] ≤ 2q0q3 + q2q0

2n − q0 − q2 − q3
+

(qH + q2 + q0)2

2n+1
.

We have used Lemma 3 to bound the bad event BadF1. The other bad event
probability calculations are straightforward. We leave details to readers.

The main theorem of the section follows from the above lemmas.

Theorem 1. For any indifferentiability adversary A making at most (q0, q1, q2,
q3) queries to its four oracles with bit-size lmax for the longest O0-query, there
exists a PrA (q, q2 + 1, t)-adversary CA with runtime t = Time(A) + O(q2 ·
Time(E) + q0 + q1 + (q2 + q0)NQ[lmax]) and

Advpro
F,S(A) ≤ Advpra

HP ,P,E(CA) + q3 ×AdvPI
HP (q, t) + δ,

where δ = q0q3ε + 2q0q3+q2q0
2n−q0−q2−q3

+ (qH+q2+q0)
2

2n+1 , HP (·) is preimage resistant and
(q∗, qH , ε)-computable message aware for an efficient computable message extrac-
tor Ecomp where q∗ = q1 + q2NQ[lmax].

4 Application of Theorem 1: PRO analysis of a variant of
Grøstl

As an application of Theorem 1 we prove the PRO analysis of a variant of
Grøstl hash function in which the output transformation is based on a per-
mutation independent of the permutations used in iteration. The compression
function fP,Q(z, m) = P (z ⊕ m) ⊕ Q(m) ⊕ z, where P and Q are invertible
permutations on n-bit modeled to be independent random permutations (ad-
versary can also have access to inverses). The hash function HP,Q of Grøstl
without output transformation is Merkle-Damg̊ard with strengthening (SMD)
and the output transformation is truncs(P (x)⊕ x). In case of the variant of the
hash function, the output transformation is same as the previous section, i.e.
OT (x) = E(x) ⊕ x where E is a random permutation independent with P and
Q. Since SMD preserves preimage awareness and preimage resistance of the un-
derlying compression function, we focus on the proof of the compression function
fP,Q to prove PrA and preimage resistance. The proof of the following lemmas
are straightforward are given in the full version of the paper [5].

Lemma 5. For any advise string αP and αQ of sizes (q1 + q2) and (q3 + q4)
(for (P, P−1) and (Q,Q−1) respectively) the number of computable messages is
at most qf ≤ (q1 + q2)(q3 + q4) and for any non-computable message (z, m),
Pr[fP,Q(z, m) = c|αP , αQ] ≤ 1

2n−max(q1+q2,q3+q4)
. Moreover there is an efficient

computable message extractor Ef
comp which can list all computable messages.



Let q = (q1, q2, q3, q4). Now given the computable message extractor one can
define a PrA extractor Ef as follows: Ef (y, αP , αQ) = (z,m) if there exists an
unique computable message (from the list given by Ef

comp) such that f(z, m) = y,
otherwise it returns any arbitrary message.

Lemma 6. AdvPI
HP,Q(q, t) ≤ AdvPI

fP,Q(q, t) ≤ (q1+q2)(q3+q4)
2n−max(q1+q2,q3+q4)

for any t.

Lemma 7. Let q = (q1, q2, q3, q4) and let fP,Q = P (h⊕m)⊕Q(m)⊕ h, where
P and Q are invertible ideal permutations. For any preimage awareness (q, e, t)-
adversary A making at most q queries to the oracles P , P−1,Q, Q−1, there exists
an extractor E such that

Advpra
fP,Q,P,Q,E(A) ≤ e(q1 + q2)(q3 + q4)

2n −max(q1 + q2, q3 + q4)
+

(q1 + q2)2(q3 + q4)2

2(2n −max(q1 + q2, q3 + q4))
,

Theorem 2. Let Grøstl′(M) = P ′(HP,Q(M))⊕HP,Q(M) where HP,Q is Grøstl
without the output transformation and P, Q, P ′ are independent random permu-
tations. Then for any adversary making at most q queries to all its oracles the
PRO-advantage is bounded by `maxq2q′2/2n−2 if If q′ = q1 +q2 +q3 +q4 + lmax ≤
2n−1.

Proof. The result follows from Lemma 9, 10, 11 and 12, and Theorem 1.

Remark 1. Our bound `maxq2q′2/2n−2 in the variant of Grøstl seems to be rea-
sonable as we indeed have collision on the compression function in 2n/4 com-
plexity i.e. the collision advantage is q4/2n. We believe the designers also noted
that and this is why they consider at least double length hash function. We also
strongly believe that the same bound can be achieved for original Grøstl. How-
ever to prove that we cannot apply Theorem 2 directly. This would be our one
of the future research work.

5 PRO Analysis of Hash Functions with PGV Output
Transformations

In the previous section, we considered the case that the finial output transfor-
mation is OT (x) = E(x)⊕ x. In this section, we consider 20 PGV compression
functions shown in Table 1 as candidates of the final output transformation
OT . Such 20 PGV hash functions based on them were proved to be collision
resistant in the ideal cipher model [4]. More precisely, we will consider the case
that FP,E(M) = OT (HP (M1),M2), where E is an ideal cipher, M = M1||M2,
HP (M1) corresponds to hi−1 and M2 corresponds to mi in Table 1. Except for
PGV 11, 13, 15-20 (See Example 2 and 3), Theorem 3 holds. The proof of the
Theorem 3 is same as Davis-Meyer case. However we give the proof idea so that
the reader could justify themselves.



Proof Idea for 1-10, 12 and 14: Like to the Davis-Meyer case we only need
to worry about the E−1 query since we have chosen those PGV compression
functions which behave like random oracle if adversary makes only E queries.
Note that 5-10 and 12 and 14 PGV have wi as keys. So given a E−1

w (y) query
simulator can make the list of all h which can be computed, i.e. HP (M) = h, and
guess m = h⊕w. Once simulator guesses m he can make F queries (M, m) and
obtains responses z’s. Now simulator can find a correct m if y is really obtained
by some F(M, m). If there is no such m, simulator can response randomly and
any bad behavior would be either bounded by the collision probability or by
the preimage attack. The same argument works for PGV 1-4 since HP (M) is
xor-ed with the the E() output. So simulator can verify the correct h among all
computable hash outputs.

Example 2. See PGV 15 in Table 1, which is Emi(wi)⊕v, where wi = hi−1⊕mi

and v is a constant. Now we want to give an indifferentiable attack on FP,E

based on PGV 15, even though HP is preimage aware, preimage resistant,
and (q, qH , ε)-computable message aware with feasible q and qH and negligi-
ble ε. Let HP be an Merkle-damg̊ard construction with strengthening, where
the underlying compression function is a preimage aware function based on the
ideal primitive P . As shown in [8, 9], SMD (Merkle-damg̊ard construction with
strengthening) preserves preimage awareness of the compression function. Also
SMD preserves preimage resistance. So, HP is also preimage aware and preim-
age resistant. We assume that HP is (q, qH , ε)-computable message aware with
feasible q and qH and negligible ε. Now we construct an indifferentiability ad-
versary A for FP,E(M) = OT (HP (M1),M2), where OT (x, y) = Ey(x ⊕ y) ⊕ v
is PGV 15, and v is a constant. First, A chooses a random query M = M1||M2

to O1, where (O1,O2,O3,O4) is (FP,E , P, E, E−1) or (F , SF1 , SF2 , SF3 ) for any
simulator SF = (SF1 , SF2 , SF3 ). A gets its response z from O1. And A hands
(M2, z ⊕ v) over to O4. Then, A gets its response h from O4. A makes a new
query (M ′

2, h ⊕M2 ⊕M ′
2) to O3. Then, A gets its response c from O3. Finally,

A hands (M1||M ′
2) over to O1 and gets its response z′. If (O1,O2,O3,O4) is

(FP,E , P,E, E−1), c ⊕ v = z′. On the other hand, since any simulator cannot
know M1, c ⊕ v 6= z′ with high probability. Therefore, FP,E based on PGV 15
is not indifferentiable from a VIL random oracle F . In the similar way, cases of
PGV 11, 13, and 16 are not secure.

Example 3. See PGV 17 in Table 1, which is Ehi−1(mi)⊕mi. Firstly, we define a
hash function HP (x) : {0, 1}∗ → {0, 1}n as follows, where c is any n-bit constant
and P is a VIL random oracle with n-bit output size.

HP (x) =
{

c, if x = c;
P (x), otherwise.

In the similar way with the proofs of Section 6, we can prove that HP is
preimage aware, preimage resistant, (q, qH(= q + 1), 1/2n)-computable mes-
sage aware, where qH is the number of computable messages obtained from



q input-output pairs of P . Now we want to give an indifferentiable attack on
FP,E based on PGV 17. We construct an indifferentiability adversary A for
FP,E(M) = OT (HP (M1),M2), where OT (x, y) = Ex(y) ⊕ y is PGV 17. First,
A chooses a query M = c||M2 to O1, where M2 is a randomly chosen one-block
message. A gets its response z from O1. And A hands (c, z ⊕M2) over to O4.
Then, A gets its response m from O4. If (O1,O2,O3,O4) is (FP,E , P, E, E−1),
m = M2. On the other hand, since any simulator cannot know M2, m 6= M2

with high probability. Therefore, FP,E based on PGV 17 is not indifferentiable
from a VIL random oracle F . In the similar way, cases of PGV 18-20 are not
secure.

Theorem 3. [PRO Construction via 12 PGVs]
Let FP,E(M) = OT (HP (M1),M2), where M = M1||M2, OT is any PGV con-
structions except for PGV 11, 13, 15-20, E−1 is efficiently computable, and
E is an ideal cipher. For any indifferentiability adversary A making at most
(q0, q1, q2, q3) queries to its four oracles with bit-size lmax for the longest O0-
query, there exists a PrA (q, q2 +1, t)-adversary CA with runtime t = Time(A)+
O(q2 · Time(E) + q0 + q1 + (q2 + q0)NQ[lmax]) and

Advpro
F,S(A) ≤ Advpra

HP ,P,E(CA) + q3 ×AdvPI
HP (q, t)

+q0q3ε +
2q0q3 + q2q0

2n − q0 − q2 − q3
+

(qH + q2 + q0)2

2n+1
,

where HP (·) is preimage resistant and (q∗, qH , ε)-computable message aware for
an efficient computable message extractor Ecomp where q∗ = q1 + q2NQ[lmax].

Proof. The proof is very similar to that of Theorem 1. It will be referred to the
full paper [5].

Case PGV Case PGV

1 Emi(hi−1)⊕ hi−1 11 Emi(hi−1)⊕ v

2 Emi(wi)⊕ wi 12 Ewi(hi−1)⊕ v

3 Emi(hi−1)⊕ wi 13 Emi(hi−1)⊕mi

4 Emi(wi)⊕ hi−1 14 Ewi(hi−1)⊕ wi

5 Ewi(mi)⊕mi 15 Emi(wi)⊕ v

6 Ewi(hi−1)⊕ hi−1 16 Emi(wi)⊕mi

7 Ewi(mi)⊕ hi−1 17 Ehi−1(mi)⊕mi

8 Ewi(hi−1)⊕mi 18 Ehi−1(wi)⊕ wi

9 Ewi(mi)⊕ v 19 Ehi−1(mi)⊕ wi

10 Ewi(mi)⊕ wi 20 Ehi−1(wi)⊕mi

Table 1. 20 Collision Resistant PGV Hash Functions in the Ideal Cipher Model [4].
(wi = mi ⊕ hi−1)



6 PRO Attacks on Hash Functions with Some DBL
Output Transformations

Here, we consider DBL (Double Block Length) output transformations. Unfor-
tunately, many constructions with DBL output transformations are not indif-
ferentiability secure, even though HP satisfies all requirements as mentioned
before.
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6.1 The case of OT (x) = f(x)||f(x ⊕ p)

There are several DBL compression functions of the form OT (x) = f(x)||f(x⊕p)
[19, 13] where p is a non-zero constant and f is any function. See Fig. 3, where
F1 was proposed by Nandi in [19] and F2 ∼ F7 were proposed by Hirose in [13].
In fact, the T in F1 Fig. 3 is a permutation without any fixed point and T 2 = id.
Here, we consider only T (x) = x⊕p, where p is a non-zero constant. We define a
hash function HP (x) : {0, 1}∗ → {0, 1}n as follows, where c is any n-bit constant
and P is a VIL random oracle with n-bit output size. 1n and 0n indicate the
n-bit one and zero strings.

HP (x) =





c⊕ p, if x = 0n;
c, if x = 1n;
P (x), otherwise.

The following theorems show that HP is preimage aware, qH is small (more
precisely computable-awareness) and preimage resistant. The proofs are given
in the full version [5].

Theorem 4. Let HP be the above hash function. For any preimage awareness
(q, e, t)-adversary A making at most q queries to the oracles P , there exists an
extractor E such that

Advpra
HP ,P,E(A) ≤ eq

2n
+

(q + 2)2

2n+1
, and qH ≤ q + 2.

Theorem 5. Let HP be the above hash function. Let q be the maximum number
of queries to P . For any preimage-finding adversary A with q queries to P ,
AdvPI

HP (A) ≤ 3+q
2n . For any n-bit y and any M not computable from any advise

string α which consists of q query-response pairs of P , Pr[HP (M) = y|α] ≤ 1/2n.

Indifferentiability Attack on F (M) = HP (M)||(HP (M)⊕ p).
Let (O1,O2,O3) be (FP,f , P, f) or (F , SF1 , SF1 ) for any simulator S. Now we
define an adversary A as follows. First, A makes query ‘0’ and ‘1’ to O1. Then,
A obtains responses (a1||a2) and (b1||b2). If O1 = F , then a1 = b2 and a2 = b1.
But, if O1 = F , a1 = b2 and a2 = b1 with the probability 1/2n. So, F is not
indifferentiably secure.

6.2 PRO Attack with OT (x) = Fi(x) for i = 8, 12, (Fig. 3)

In the case of F8 proposed by Lai and Massey in [15], which is called Tandem DM,
there is the following structural weakness. If for any a gi−1 = hi−1 = Mi = a
in F8 of Fig. 3, then hi ⊕ gi = a. We can show an indifferentiability attack on
F (M) = F9(HP (M)), where HP is preimage aware and qH is small. We define
a hash function HP (x) : {0, 1}∗ → {0, 1}n as follows, where c is any n/2-bit
constant and P is a VIL random oracle with n-bit output size.

HP (x) =
{

c||c, if x = 0;
P (x), otherwise.



We can easily show that HP is preimage aware, preimage resistant and (qP , qH(=
qP +1), 1/2n)-computable message aware, where qH is the number of computable
messages obtained from qP input-output pairs of P . and qH is small.

Then, we show that F (M1||M2) = F8(HQ(M1), M2) is not indifferentiable
from a VIL random oracle F as follows. A makes a query ‘(0||c)’ to O1 and get
its response z = (z1||z2). A checks if z1⊕ z2 = c. If O1 is F , z1⊕ z2 = c with the
probability 1/2n/2. On the other hand, if O1 is F , z1⊕z2 = c with probability 1.
So F is not indifferentiability secure. In the case of F12, which is called MDC-2,
if the values of Mi and hi−1 are fixed, the half of bits of the output of F12 is also
fixed regardless of what gi−1 is. Using this weakness, in a similar way as shown
in above, we also can construct HP such that F (M1||M2) = F12(HP (M1),M2)
is not indifferentiably secure.

7 Conclusion

In this paper we extend the applicability of preimage-awareness in those hash
functions whose output transformation cannot be modeled as a random oracle.
We choose Davis-Meyer as an output transformation based on a random permu-
tation and show that the hash function is PRO if HP is PrA, preimage resistant
and computable message aware. The computable message awareness is a new
notion introduced here similar to PrA. However this is not same as PrA as we
can see the separation among these notions. As an application to our result we
prove the PRO property of a variant of Grøstl hash function. We similarly prove
that 12 PGV compression function out of 20 collision resistant PGV hash func-
tions can be employed as output transformation with the similar assumption on
HP . However, some the popular double length hash function can not be used
as we have shown PRO attacks. In summary, we study the choice of output
transformation beyond the random oracle model and found both positive and
negative results.
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Appendix A. Revisiting the Proof of
“RO(PrA(·)) = PRO(·)”
In [8, 9] it was proved that FR,P (M) = R(HP (M)) is indifferentiable from a
VIL random oracle F , where R : {0, 1}m → {0, 1}n is a FIL random oracle, P



is an ideal primitive, and HP : M→ {0, 1}m is preimage-aware. The result can
be used to prove the indifferentiable security of any hash function which uses a
post-processor defined independently from the underlying iteration function P .
In the course of our studies we have found that the proof given in [8, 9] is not
completely correct (though the claims remain correct). We have reported this in
a limited distribution abstracts on February and May 2010 (recently in October
2010, a correction on the e-print version has appeared by the original coauthors,
further confirming our findings). Let us review the issues. There are two main
flaws (to be described below) in the proof, and we need to provide alternative
definitions of simulator and preimage-aware attacker to fix them. (We note that
while somewhat technical, the revision is crucial). Let NQ[l] be the number of P -
queries required for the computation of HP (M) for |M | = l. We denote Time(·)
and STime(·) to mean the run time and simulation run time of an algorithm.
Now we restate the Theorem 4.1. in [8, 9] (in terms of our PrA terminologies)
and provide a sketch of the proof given in [8].

Theorem 4.1 of [8, 9]
For any given efficient extractor E , there exists a simulator S = (S1, S2) with
Time(S) = O(q1 · STime(P ) + q2 · Time(E)). The simulator makes at most
q2 F-queries. For any indifferentiability adversary AO0,O1,O2 making at most
(q0, q1, q2) queries to its three oracles with bit-size lmax for the longest O0-
query, there exists a (q1+q0 ·NQ[lmax], q2+1, t)-PrA adversary BP

A with runtime
t = Time(A) + O(q0 · NQ[lmax] + q1 + q2Time(E)) such that

Advpro
F,S(A) ≤ Advpra

HP ,P,E(BA).

Outline of Proof of Theorem 4.1. of [9]. Let E be an arbitrary extractor
for H. Then S = (S1; S2) works as follows. It maintains an internal advice
string α (initially empty) that will consist of pairs (u; v) corresponding to A’s
queries to P (via S1). When A queries u to S1, the simulator simulates v ←
P (u) appropriately, sets α ← α‖(u; v), and returns v. For a query Y to S2, the
simulator computes X ← E(Y ; α). If X = ⊥ then the simulator returns a random
point. Otherwise it simulates Z ← F(X) and returns Z to the adversary. The
games R0, I1, G0, G1 and BA have been defined in [9] and the authors claimed
the following:

(1) G1 ≡ I1 ≡ (F , S1, S2), (2) G0 ≡ R0 ≡ (FP,R, P,R).

Due to the above claim the PRO-advantage of any adversary A is nothing
but |Pr[AG0 = 1] − Pr[AG1 = 1]. From the pseudocodes of games G0 and
G1, it is easy to see that they are identical-until-Bad. Hence Advpro

F,S(A) ≤
Pr[AG1 sets Bad true]. The proof proceeds by defining a PRA-adversary BA

which makes preimage-aware attack successfully whenever BA sets Bad true.
Since BA sets Bad true only if it finds a collision of HP or finds a message
M such that E(α, Y ) 6= M where Y = HP (M). So Pr[BA sets Bad true] ≤
Advpra

HP ,P,E(BA). The theorem follows immediately from the following claim:

(3) Pr[AG1 sets Bad true] ≤ Pr[BA sets Bad true].



7.1 Problems in Proof of Theorem 4.1. of [9]

In this section we explain the flaws we observe in the proof of Theorem 4.1. of
[9]. To understand it one needs to go through the definitions of the games G0,
R0, G1 and G(B) (the tuple of three oracles simulated by B) described in [9].2

Flaw 1. G0 is not equivalent to R0.
If O0 in G0 has not been queried before (so the Bad event in G0 would not
occur) then the output of O2(Y ) query is F(X) whenever X = E(Y, α) 6= ⊥,
otherwise it returns R(X) where F and R perfectly simulate two independent
random oracles F and R respectively. We show that O2 cannot be equivalent to
a random oracle. Suppose E is an extractor which returns a special message M∗

whenever the advise string α is empty. If A makes first two successive distinct
O2 queries Y2,1 and Y2,2 then X2,1 = X2,2 = M∗ and hence the outputs of O2

in game G0 are identical (same as F[M∗]).
To get rid of the above problem, we can do the following steps in O2 (also in

simulator S2) immediately after it obtains X = E(Y, α): Compute HP (X) = Y ′

and check whether it is the same as Y or not. If extractor returns a correct mes-
sage, i.e. Y = Y ′, then S2 or O2 returns F(M). Otherwise, it returns randomly.
To compute HP (X) one might need to simulate some P outputs (in case of G0)
or make P -queries (in case of O2 of B).

Flaw 2. G(B) 6≡ G1 and G1, G(B) are not identical-until-Bad.
We first observe that the advise string α in G1 is not the same as that of B since
the advice string α is updated whenever A has access to the oracle O1 in Game
G1, but the advice string is updated whenever A has access to the oracle O0 and
O1 of B in Fig 3 of [9]. For example, let E(Y, α) return a message M whenever
HP (M) = Y is “computable’ from α otherwise return ⊥. Any adversary which
can guess HP (M) correctly and turn it to O2 query then OB

2 (Y |τ) returns z.
However, OG1

2 (Y |τ) returns a random string R[Y ] since α is the empty string in
AG1. So G(B) 6≡ G1. One can similarly show that G1, G(B) are not identical-
until-Bad.

A possible attempt is to update the advise string for O0 queries in all games,
in particular G1. However, if we do so then the simulator is not independent of F-
queries (since the advise string is updated whenever there is a O0-query and the
advise string is used to define the response of S2). On the other hand, we cannot
ignore the HP (M) computation in B for O0 queries of A. This computation
is essential to making PrA attack successfully. It seems impossible to handle
the advise string so that it is updated in the same way for all games as well
as HP (·) computations are made for O0-queries. We can solve the problem if
we postpone the computation of HP until all queries of A are made.
So we need a finalization procedure in B which essentially does all HP (M)
computations of O0(M)-queries.

2 We have defined the revised version of these games in the paper. We refer readers
to [9] to see the original definitions to understand the flaws.



7.2 Revised Proof of Theorem 4.1 of [9]

We state the corrected version of theorem 4.1. below. The revised version of B :=
BA, simulators and the games G0 and G1 are defined in Fig. 1. The adversary
BA has a subroutine called Finish() which is defined trivially. It mainly completes
the PrA attack. It is easy to see that whenever Finish() is being executed either
we have a collision in HP or there is some message M such that HP (M) =
y, (y, M) 6∈ Ext. For simplicity we ignore the details of the subroutine. Let q =
q1 + (q0 + q2) · NQ[lmax].

Lemma 8. G1 ≡ (OBA
0 ,OBA

1 ,OBA
2 ) ≡ (F , S1, S2). Games G0 and G1 are

identical-until-Bad.

The Lemma is obvious from the games described in Fig. 1. We leave read-
ers to verify. The following lemma essentially says that G0 is equivalent to
(R(HP ), P,R). The proof of the lemma is easy to verify and we skip it for
the full version.

Lemma 9. G0 ≡ (R(HP ), P,R), i.e. for any distinguisher A, the output dis-
tribution of AG0 and AR(HP ),P,R are identically distributed.

Lemma 10. Whenever AG1 sets Bad true, BA sets Bad true and BA makes
PrA attack successful. So we have Pr[AG1 sets bad] ≤ Pr[BA sets bad] ≤
Advpra

HP ,P,E(BA).

Proof. We already know from Lemma 8 that G1 is equivalent to the oracles
simulated by BA. However, the two games defined bad event in different man-
ners. The game G1 sets bad during the computation of responses whereas the
adversary BA sets bad after all responses of the queries. AG1 sets bad true in
line 209, 003 and in line 206, 005. We can see that if the conditional statements
written in 209 and 003 in game G1 hold then we have a collision in HP (there
exist M 6= X such that HP (M) = HP (X)). So we have PrA attack which is
taken care of in 401 in the second step of BA. For the lines 205 and 005 we have
M such that HP (M) = y and Ext[y] 6= M , i which case PrA attack is possible
due to incorrect guess of the extractor. This has been taken care of in 403.

By using the above lemmas the theorem follows immediately

Theorem 6 (Ro domain extension via PrA). For any given extractor E we
can construct a simulator S = (S1, S2) with Time(S) = O((q1 + q2 · NQ[lmax]) ·
STime(P )+q2 ·Time(E)). For any indifferentiability adversary AO0,O1,O2 making
at most (q0, q1, q2) queries to its three oracles with bit-size lmax for the longest
O0-query, there exists a (q, q2 + 1, t)-adversary B with runtime t = Time(A) +
O(q2 · Time(E) + q0 + q1 + (q2 + q0)NQ[lmax]) and

Advpro
F,S(A) ≤ Advpra

HP ,P,E(B),



Game G0 and G1 Adversary BP
A and Simulator SF =

(S1, S2)

Initialize : H = R2 = R0 = φ; Initialize : H = R2 = R0 = L = β = φ;
i = 1, Bad =F;

L = β = φ, i = 1, Bad =F; Run A and respond queries of A’s as fol-
lows:

200 On O2 - query y := yi, i = i + 1 200 On O2 (or S2)-query y := yi, i = i + 1

201 X = E(yi, β); Ext
∪← (y, X); 201 X = E(yi, β); Ext

∪← (y, X);
202 y′ = HP (X) and update β; 202 y′ = HP (X) and update β;
203 If y′ 6= y 203 If y′ 6= y
204 then z = R(y); 204 then z = R(y);
205 If y′ 6= y ∧ (M, y) ∈ H

206 then Bad =T; z = R0[y];

207 If y′ = y 207 If y′ = y
208 then z = F(X); 208 then z = F(X);
209 If y′ = y ∧ (M, y) ∈ H ∧M 6= X

210 then Bad =T; z = R0[y];

211 R2
∪← (y, z); return z; 211 R2

∪← (y, z); return z;

100 On O1 - query u 100 On O1 (or S1)-query u

101 v = P (u); β
‖← (u, v); 101 v = P (u); β

‖← (u, v);
102 return v; 102 return v;

000 On O0 - query M 000 On O0 (or F)- query M

001 z = F(M); L ∪← M ; 001 z = F(M); L ∪← M ;

002 y = HP (M); H
∪← (M, y); 002 R0

∪← (y, z); return z;

003 If R0[y] 6= ⊥ 400 Finalization: (after A finishes
queries.)

004 then Bad = T; z = R0[y]; 401 If ∃M 6= M ′ ∈ L, HP (M) =
HP (M ′)

005 Else if R2[y] 6= ⊥ ∧ (y, M) 6∈ E 402 then bad =T, Finish();

006 then Bad = T; z = R2[y]; 403 If ∃M ∈ L, (y, X) ∈ E, X 6= M ,
HP (M) = y

007 R0
∪← (y, z); return z; 404 then bad =T, Finish();

405 return ⊥;

Fig. 4. G0 executes with boxed statements whereas G1 executes without these. Clearly
G0 and G1 are identical-until-Bad and whenever G1 set bad true the adversary BP

A set
also bad true. In this case, Finish() subroutine executes which makes PrA successful.
The tuple of simulated oracles of BA is equivalent to (F , S1, S2).


