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Abstract. Fast correlation attacks have considerably evolved since their
first appearance. They have lead to new design criteria of stream ciphers,
and have found applications in other areas of communications and cryp-
tography.
In this paper, a review of the development of fast correlation attacks
and their implications on the design of stream ciphers over the past two
decades is given.
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1 Introduction

In recent years, much effort has been put into a better understanding of the
design and security of stream ciphers. Stream ciphers have been designed to be
efficient either in constrained hardware or to have high efficiency in software. A
synchronous stream cipher generates a pseudorandom sequence, the keystream,
by a finite state machine whose initial state is determined as a function of the
secret key and a public variable, the initialization vector. In an additive stream
cipher, the ciphertext is obtained by bitwise addition of the keystream to the
plaintext.

We focus here on stream ciphers that are designed using simple devices like
linear feedback shift registers (LFSRs). Such designs have been the main tar-
get of correlation attacks. LFSRs are easy to implement and run efficiently in
hardware. However such devices produce predictable output, and cannot be used
directly for cryptographic applications. A common method aiming at destroy-
ing the predictability of the output of such devices is to use their output as
input of suitably designed non-linear functions that produce the keystream. As
the attacks to be described later show, care has to be taken in the choice of
these functions. Another well known method to destroy the linearity property
of LFSRs is to use irregular clocking, where the output of an LFSR clocks one
or more other LFSRs. All these are quite classical concepts. However they still
form a valuable model for recent designs, as the hardware oriented finalists of
the eSTREAM project illustrate, [41].

Several different cryptanalytic methods can be applied against stream ci-
phers. Amongst these methods, some only work for a specific cipher, whereas
quite a number of other methods are more general, including correlation at-
tacks, linear attacks, algebraic attacks, time/memory/data tradeoff attacks, and



resynchronization attacks. We restrict here mainly to (fast) correlation attacks,
and we comment on linear attacks. Beyond stream ciphers, methods similar to
fast correlation attacks are of interest, e.g., in satellite communications, in the
construction of a trapdoor stream cipher, [15], in digital watermarking [48], or
for the learning parity with noise problem, [16], [28]. The appearance of corre-
lation attacks has motivated various countermeasures in the form of criteria for
Boolean functions that should be chosen in order to provide some correlation
immunity.

This review is organized as follows. Section 2 describes the principles of cor-
relation attacks. Section 3 forms the main part, and describes different types of
fast correlation attacks. Sections 4 and 5 are aiming at countermeasures against
these attacks: Section 4 discusses correlation immune functions and Bent func-
tions, whereas Section 5 briefly deals with combiners with memory. In Section
6, linear attacks are discussed. They are viewed as a generalization of correla-
tion attacks, and can be efficient in quite general stream cipher constructions.
Finally, a few open problems are stated.

2 Correlation Attacks

The main targets of correlation attacks are filter generators and combiner gener-
ators. In a classical filter generator, the running device is a single binary LFSR.
The keystream is generated as the output of a nonlinear Boolean function whose
inputs are prespecified stages of a LFSR. The initial state of the LFSR is de-
rived from the secret key and the initialization vector. In a nonlinear combiner
generator, the keystream is generated as the output of a Boolean function whose
inputs are the outputs of several LFSRs. In more detail, suppose the outputs

a
(k)
i of s LFSRs, 1 ≤ k ≤ s, are used as input of a Boolean function f to produce

keystream bits zi for i = 1, 2, . . . ,

f(a
(1)
i , . . . a

(s)
i ) = zi.

Then the keystream sequence may be correlated to the output sequence of one
or more of the LFSRs.

Example 1. Let s = 3, and let f be the majority function,

y = f(x1, x2, x3) = x1x2 + x1x3 + x2x3.

Then Prob(y = xk) = 0.75 for k = 1, 2, 3.

In general, if such correlations exist, decoding techniques may be used to deter-
mine the state of the LFSRs in a divide-and-conquer manner. This is the subject
of correlation attacks.

The original correlation attack was proposed by Th. Siegenthaler in [45].
Hereby, it is assumed that some portion of the keystream is known. Suppose
furthermore that the keystream sequence is correlated to the output of a LFSR,
i.e., P (ai = zi) 6= 0.5, where ai and zi are the i-th output symbols of the LFSR



and of the keystream generator, respectively. Besides the feedback connection
of the LFSR, no further knowledge is required on the explicit structure of the
generator.

Let the LFSR-length be n. For each of the 2n possible initial states of the
LFSR, the output sequence a = (a1, a2, .., aL) for a suitable length L > n is
generated, and the value α, defined as α = L − dH(a, z) is computed. Here
dH(a, z) denotes the Hamming distance between a and z, i.e., the number of
positions in which a and z are different.

Then it is shown in [45], that α will take the largest value for the correct
initial state with high probability, provided L in dependence of the correlation
probability is sufficiently large.

This concept can be generalized to the situation where the keystream se-
quence is correlated to the outputs of a set of more than one LFSR: Assume
that a keystream sequence is generated by a generator with several different
LFSR’s, and that a subset of LFSR-outputs are correlated to the keystream
sequence. Then one can try to find the initial states of these LFSR’s in a divide-
and-conquer type of attack, and to guess the remaining LFSR-states in a separate
phase.

Correlation attacks are often viewed as a decoding problem. For a LFSR of
length n consider all possible output sequences of a fixed length L > n. This
set of truncated output sequences can be viewed as a linear [n,L] block code
[29]. Thus the LFSR sequence a = (a1, a2, ..., aL) is interpreted as a codeword in
this code, and the keystream sequence z = (z1, z2, .., zL) as the received channel
output. The problem of the attacker can now be formulated as: Given a received
word z = (z1, z2, ..., zL), find the transmitted codeword. From coding arguments
[44] it follows that the length L should be at least L0 = L/(1−h(1−p)) for unique
decoding, where h(1 − p) is the binary entropy function, and p = P (zi = ai) is
the correlation probability.

3 Fast Correlation Attacks

A fast correlation attack is a correlation attack that is significantly faster than ex-
haustive search over the initial states of the target LFSR. In [32] two algorithms
for fast correlation attacks are presented. Instead of exhaustive search as orig-
inally suggested in [45], the algorithms are based on using certain parity-check
equations derived from the feedback polynomial of the LFSR. The algorithms
have two different phases: in the first phase, a set of suitable parity-check equa-
tions is found. In the second phase, these equations are used in a fast decoding
algorithm to recover the initial state of the LFSR. These algorithms have been
demonstrated to be successful for quite long LFSR’s (n = 1000 or longer), pro-
vided the number t of feedback taps is small (t < 10). However the algorithms
fail if the LFSR has many taps. Due to these fast correlation attacks, one usu-
ally avoids using LFSR’s with few feedback taps in stream cipher design. In [50],
based on earlier work in [49], the linear syndrome method from coding theory is



proposed for fast correlation attacks, with similar efficiency and limitations as
the algorithms in [32].

The two algorithms in [32] are described here in order. In a preparation phase,
parity check equations are determined by observing that for a given position j the
digit aj of the LFSR-sequence a satisfies a certain number m of linear relations
involving a fixed number t of other digits of a. Here t denotes the number of taps
of the LFSR. These linear relations are found by shifting and iterated squaring
of the LFSR-relation.

Example 2. Consider the LFSR of length n = 3 with feedback relation

aj = aj−1 + aj−3, j ≥ 3.

Then by squaring, the relation aj = aj−2 + aj−6 does hold as well. And by
shifting, one gets three relations for the same digit aj :

aj−3 + aj−1 + aj = 0
aj−2 + aj + aj+1 = 0

aj + aj+2 + aj+3 = 0

The digits of the known output sequence z are substituted in the linear relations
thus obtained. Some of the relations will still hold, some others will not. It has
been observed that the more relations are satisfied for a digit zj , the higher is the
(conditional) probability that zj = aj . Denote by p∗ the probability for zj = aj ,
conditioned on the number of relations satisfied.

Consider first a digit contained in one relation. Assume the digit a(0) = aj
at a given position j satisfies a linear relation involving t digits at some other
positions of the LFSR-sequence a,

a(0) + a(1) + a(2) + · · · a(t) = 0.

Denote by z(0), z(1), . . . z(t) the digits in the same positions of the output se-
quence. Then

z(0) = a(0) + b(0)

z(1) = a(1) + b(1)

. . . . . . . . . . . . . . . . .

z(t) = a(t) + b(t),

and for the perturbations, Prob(b(0) = 0) = . . . = Prob(b(t) = 0) = p. Denote
s = Prob(b(1) + . . . + b(t) = 0) : s = s(p, t). Then s(p, t) can be computed
recursively:

s(p, 1) = p, s(p, t) = ps · (p, t− 1) + (1− p)(1− s(p, t− 1)) for t > 1.



Next assume that a specified digit a = aj is contained in m relations, each
involving t other digits. For a subset S of relations, denote by E(S) the event
that exactly the relations in S are satisfied. Then for z = zj ,

Prob((z = a), andE(S)) = p · sh(1− s)m−h,

Prob((z 6= a) andE(S)) = (1− p)sm−h(1− s)h,

where h = |S| denotes the number of relations in S. Hence the conditional
probability p∗ = Prob(z = a|E(S)) is given by

p∗ =
p · sh(1− s)m−h

p · sh(1− s)m−h + (1− p)sm−h(1− s)h
.

The probability distributions for the number h of satisfied relations are Binomial
distributions. There are two cases. If the digit z is correct, i.e., if z = a,

p1 =

(
m

h

)
sh(1− s)m−h.

Alternatively, if z 6= a,

p0 =

(
m

h

)
sm−h(1− s)h.

It is intuitively clear that a digit a can be more reliably predicted the more the
two distributions are separated. In [32] it is shown that the average number m
of relations involving a that can be checked in the given output stream z is:

m = log2

(
L

2n

)
(t+ 1).

Example 3. Assume a correlation probability p = 0.75, a number t = 2 of taps,
LFSR-length n = 100, and a length of L = 5000 known bits of z. Then m = 12
relations are available (in average), and s = 0.752 + 0.252 = 0.625. The value of
the probability p∗ conditioned on the number h of relations satisfied is:

relations satisfied probability

12 0.9993

11 0.9980

10 0.9944

Based on these considerations, two algorithms, Algorithms A and B for fast
correlation attacks are described in [32].



Algorithm A essentially chooses a set I0 of approximately n digits of the known
output stream z that satisfy the most relations. The digits in I0 are taken as
a reference guess of a at the same positions. Thereafter, the initial state of the
LFSR is found by solving a system of linear equations.

As the selected digits in I0 are only correct with some probability, the correct
guess of the initial state is found by testing modifications of I0 of Hamming
distance 1, 2, . . . by correlation of the corresponding LFSR-sequence with the
given sequence z. Thus Algorithm A has exponential complexity, of order O(2cn),
0 < c < 1. The parameter c is a function of the correlation p, the number of taps
t, and the ratio L/n.

Example 4. Let p = 0.75, t = 2, and L/n = 100. Then c = 0.012. The search
complexity is of significantly reduced order O(20.012n) compared to O(2n) in case
of exhaustive search.

Algorithm B is described step by step as follows:

Algorithm B

1. Assign the correlation probability p to every digit of z.
2. To every digit of z assign the new probability p∗. Iterate this step a number

of times.
3. Complement those digits of z with p∗ < pthr (for a suitable threshold pthr).
4. Stop, if z satisfies the basic relation of the LFSR, else go to 1.

The number of iterations in 2. and the probability threshold in 3. have to be
adequately chosen to obtain maximum correction effect. In 2. the formula for
recomputing conditional probabilities has to be generalized to the case where
assigned probabilities for each involved digit are different. After a few iterations,
a strong separation effect can be observed between digits having probability p∗

close to 0 or close to 1. Algorithms B is essentially linear in the LFSR-length
n. The success of this algorithm has extensively been verified experimentally
for various correlation probabilities, LFSR-lengths and numbers of taps t <
10. Iterative methods similar to Algorithm B have been applied in decoding.
In [17], R. G. Gallager has developed a decoding scheme, where the decoder
computes all the parity checks and then changes any digit that is contained
in more than some fixed number of unsatisfied parity-check equations. Using
these new values, the parity-checks are recomputed, and the process is repeated.
The method in [32] contrasts to this approach in that the process of assigning
conditional probabilities to every digit is iterated rather than just changing digits
according to the number of parity-check equations satisfied.

As these algorithms work only if the LFSR has few feedback taps, i.e., if
the feedback polynomial is of low weight, the problem persisted, how to design
algorithms that are efficient even if the number of taps is arbitrary.

A first approach is to look for polynomial multiples of the feedback polyno-
mial: If the recursion is not of low weight, consider multiples of the feedback
polynomial that are of low weight.



Example 5. ([30]) Consider the connection polynomial g(x) over GF (2) of degree
7 and of weight 5:

g(x) = x7 + x6 + x4 + x+ 1.

g(x) has a polynomial multiple (a trinomial)

f(x) = g(x)m(x) = x21 + x3 + 1

with a polynomial m(x) of degree 14.

Fast correlation attacks can likewise be applied to the linear recursion of sparse
polynomial multiples, [4]. There are quite different methods on how to find low
weight polynomial multiples. These methods differ in the weight and degree of
an attempted sparse multiple, and in the required memory and computing time,
see, e.g., [18], [47]. In particular, a feedback polynomial of a LFSR of length n
can be shown to have a polynomial multiple of weight 4 (i.e., with 3 taps) of
expected length about 2n/3.

Low weight multiples of feedback polynomials are of more general interest, as
they often allow for distinguishing attacks on LFSR-based stream ciphers, e.g.,
[23], [12], [13]. In these attacks, the primary aim is not to recover the key, but
to distinguish the known keystream from random.

Apart from investigation of sparse multiples of the connection polynomial,
there is vast literature dealing with improvements of the initial algorithms. A
major improvement concerns fast correlation attacks on LFSR’s with an arbi-
trary number of feedback taps. It appears that the algorithms as proposed in [24]
and [35] are amongst the most efficient known thus far. Based on these methods,
in [6], the algorithmic steps have been improved to accelerate the attacks in [24]
or [35]. As to be expected, the complexity of these algorithms depends on the
length n of the target LFSR as well as on the correlation probability p. A version
of one of these algorithms is briefly sketched:

As opposed to other fast correlation attacks, the use of parity-checks is combined
with a partial exhaustive search over a subset B of the initial state of the targeted
LFSR. As predictions are true only with some probability, D > n targeted bits of
the LFSR-output are predicted by evaluating and counting a number of parity-
check equations. As before, the parity-checks are found in a preprocessing phase.
In [6], an elaborate match-and-sort algorithm is described how to generate many
parity-checks. In an example case, the parity-checks involve a number of bits in
the set B, the target bit ai at position i of the LFSR-sequence a to be predicted,
and two other bits at some positions j and m in the known output stream z.
The procedure is informally as follows:

– For each of the D target bits, evaluate a large number of parity-checks sub-
stituted into the output stream z and the guessed bits of B, and count the
number of parity-checks satisfied, Ns, and the number of parity-checks Nu

not satisfied.
– If the expression |Ns − Nu| is larger than a threshold, predict ai = zi if
Ns > Nu, else ai = zi + 1.



Provided this majority poll is decisive for D target bits of the LFSR-sequence,
the initial state can be easily recovered. Estimates of the complexity of this
algorithm suggest that it is possible to attack LFSRs of length n about 100 in
practice, provided p is not too close to 0.5. In [36] and [26], a large part of the
state of the art in fast correlation attacks is found.

Fast correlation attacks have been applied successfully to concrete construc-
tions: In [21], a fast correlation attack is applied to the summation generator.
In [25], the stream cipher LILI-128 has been cryptanalysed by such methods.
More recently, in [2] the initial version of the eSTREAM finalist Grain with a
key of 80 bits was broken. This motivated a careful tweak, Grain v1, which is
an eSTREAM finalist, [41].

4 Towards correlation immunity

In many (fast) correlation attacks, the correlations are deduced as linear ap-
proximations of nonlinear output functions in stream ciphers. The existence of
correlation attacks has thus led to new design criteria for Boolean functions
used in stream ciphers, [46], [33]. In particular, combining (or filter) functions
should have no statistical dependence between any small subset of inputs and
the output.

More formally, let X1, X2, . . . Xn be independent binary variables which are
balanced (i.e., each variable takes the values 0 and 1 with probability 1

2 ). A
Boolean function f of n variables is m-th order correlation immune if for each
subset of m random variables Xi1, Xi2, . . . , Xim the random variable

Z = f(X1, X2, . . . , Xn)

is statistically independent of the random vector (Xi1, Xi2, . . . , Xim). There ex-
ists a tradeoff between the order of correlation immunity and the algebraic degree
of Boolean functions, [46]. Low algebraic degree conflicts with security: Due to
the Berlekamp-Massey algorithm, [31], and due to algebraic attacks, [8], the de-
gree of output functions of combining or filter generators should not be low.
Finally, to prevent good statistical approximations of the output function f by
linear functions, f should have large distance to all affine functions. In this re-
gard, early work by D. Chaum and J.-H. Evertse, [5], [14] on the cryptanalysis of
the DES block cipher motivated a different trail concerning cryptographic prop-
erties of Boolean functions and S-boxes: In [33], a class of Boolean functions,
coined perfect nonlinear functions, was studied, which turned out to coincide
with the class of Bent functions, [42]. These functions have been used in the
context of coding theory, [29]. Bent functions are not balanced, but otherwise
they share a number of desirable properties: They have maximum nonlinearity,
i.e., they have largest possible distance to affine functions, and they satisfy good
correlation resistance. In addition, they have optimum differential properties. In
a series of papers, K. Nyberg has studied Boolean functions and S-boxes related
to Bent functions, starting with [39], [40]. A prominent example of such a vecto-
rial Boolean function is the multiplicative inverse map in the finite field GF (28)



which is used in the S-box of the AES block cipher. The study of Boolean func-
tions with good cryptographic properties has been an ongoing topic, see, e.g.,
the book [9].

5 Combiners with Memory

The tradeoff between correlation immunity and algebraic degree as noticed in
[46] can be avoided if the combining function is allowed to have memory. Results
on combiners with memory have first been published by R. Rueppel, [43].

A (k,m)-combiner with k inputs and m memory bits is a finite state machine
which is defined by an output function

f : {0, 1}m × {0, 1}k → {0, 1}

and a memory function

ϕ : {0, 1}m × {0, 1}k → {0, 1}m.

For a given stream (X1, X2, . . .) of inputs, Xt ∈ {0, 1}k, and an initial assignment
C1 ∈ {0, 1}m of the memory, an output bitstream (z1, z2, . . .) is defined according
to

zt = f(Ct, Xt).

and
Ct+1 = ϕ(Ct, Xt)

for all t > 0. For keystream generation, the stream of inputs (X1, X2, . . .) is
produced by the output of k driving devices. The initial states are determined
by the secret key. Often, the driving devices are LFSRs.

Example 6. The basic summation generator with k = 2 inputs is a combiner
with m = 1 bit memory, which coincides with the usual carry of addition of
integers: Write Xt = (at, bt). The functions f and ϕ are defined by

zt = f(ct, at, bt) = at ⊕ bt ⊕ ct
and

ct+1 = ϕ(ct, at, bt) = atbt ⊕ atct ⊕ btct.

The function f in this summation generator is 2nd-order correlation immune.
Correlations in combiners with one bit memory have been studied in detail in
[34].

Example 7. The stream cipher E0 used in Bluetooth, [3], is a combiner with
k = 4 inputs and m = 4 bit memory. The stream of inputs is produced by the
outputs of 4 LFSRs of length 128 in total.

More recent (word-oriented) stream ciphers with memory are, e.g., SNOW, [11],
the eSTREAM finalist SOSEMANUK, [41], or ZUC, [37]. A concept related to
combiners with memory are feedback with carry shift registers (FCSRs) as intro-
duced in [27]. A synthesis based on FCSRs enabled to cryptanalyze summation
generators.



6 Linear attacks

A correlation attack may be successful, if there are found linear relations that
hold with nonnegligible probabilities, between single output bits and a subset
of state bits of the LFSR’s involved. A linear attack is more general, as it seeks
for “good linear approximations” of the output stream, i.e., for correlations be-
tween linear functions of several output bits and linear functions of a subset of
the LFSR-state bits involved. This type of attacks may be successful for both,
key recovery as well as for distinguishing the output from random. Linear at-
tacks have been developed by Golić, [19]. If there are strong enough correlations,
a number of equations, each of which does hold with some probability, may be
derived. There are fairly efficient methods (reminiscent to fast correlation at-
tacks) to solve such systems of equations, provided the known output stream
is long enough, i.e., provided there are many more equations than unknowns
(see [22] for an attack of this type on the Bluetooth stream cipher algorithm).
The distinction between correlations of a single output bit to linear functions of
state bits of the LFSR’s as opposed to correlations of linear functions of several
output bits to linear functions of state bits of the LFSR’s becomes relevant if
the non-linear combining system contains m bit memory: Consider a block of M
consecutive output bits, ZM

t = (zt, zt−1, ..., zt−M+1) as a function of the corre-
sponding block of M consecutive inputs XM

t = (Xt, Xt−1, ..., Xt−M+1) and the
preceeding memory bits Ct−M+1. Here Xt denotes the bit vector at time t of the
state bits of the LFSRs involved, and similarly, Ct−M+1 denotes the bit vector
of the m memory bits at time t −M + 1. Assume that XM

t and Ct−M+1 are
balanced and mutually independent. Then, according to [20], if M ≥ m, there
must exist linear correlations between the output and input bits, but they may
also exist if M < m. This shows that correlations cannot be easily defeated, even
in presence of memory. Besides key recovery attacks, powerful distinguishing at-
tacks using linear approximations of quite diverse stream cipher constructions
have become known, e.g. a linear distinguisher on the initial version of the stream
cipher SNOW, [7], or a distinguisher on the cipher Shannon, [1].

7 Open Problems

The topic of (fast) correlation attacks has considerably evolved over time. How-
ever, some open problems in this area are identified. A first question is how to
devise fast correlation attacks in an algorithmically optimal way. Important steps
in this direction have been taken in [6] and [10]. In a second direction, various
word-oriented stream ciphers use LFSRs over a binary extension field of GF (2)
rather than over GF (2). In this case, the established methods seem infeasible. It
would be of interest to see fast correlation attacks for LFSRs, e.g, over GF (232).
This question has been addressed initially in [26]. Finally, it was observed that
correlations cannot be easily avoided in whatever construction is used in the
design of a stream cipher. In a complexity-theoretic context, it has been shown
that there exist pseudorandom generators with low computational requirements



so that in a specified sense each linear distinguisher of the output stream has a
bias that can provably be upper bounded, [38]. It would be interesting to come
up with cryptographically secure constructions with similar properties.
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