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Abstract. We present the first automatic search algorithms for the best
related-key differential characteristics in DES-like ciphers. We show that
instead of brute-forcing the space of all possible differences in the master
key and the plaintext, it is computationally more efficient to try only a
reduced set of input-output differences of three consecutive S-box lay-
ers. Based on this observation, we propose two search algorithms – the
first explores Matsui’s approach, while the second is divide-and-conquer
technique. Using our algorithms, we find the probabilities (or the upper
bounds on the probabilities) of the best related-key characteristics in
DES, DESL, and s2DES.
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1 Introduction

The Data Encryption Standard (DES) [8], adopted by the U.S. National Bureau
of Standards in 1977, was a block cipher standard for several decades. Some
of the design principles of DES were fully understood by the public only after
the first cryptanalysis presented by Biham and Shamir [2]. They introduced the
idea of differential analysis and differential characteristics, and showed that if
one encrypts with DES a pair of plaintexts with a specific XOR difference, then
the pair of corresponding ciphertexts will have some predictable difference with
a probability higher than expected.

In [7] Matsui showed that the differential characteristics found by Biham and
Shamir were indeed the best, i.e. they have the highest probability among all
characteristics. He was able to prove this fact by running a full search on the
space of all possible characteristics, using a special algorithm that speeds up
the search. Matsui’s algorithm was adopted and applied for search of the best
characteristics in LOKI and s2DES [10], Twofish [9], FEAL [1], and others. In
all of these cases, the search was targeting only single-key characteristics, i.e.
the characteristics that have a difference in the plaintext, but not in the master
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key. Biryukov and Nikolić in [4] showed that Matsui’s idea indeed can be used
to build a search algorithm that finds the best related-key characteristics (the
difference can be in the key as well as in the ciphertext) for some classes of byte-
oriented ciphers. To the best of our knowledge, there are no published results on
a search for related-key characteristics in any bit-oriented cipher.

Our contribution. We present algorithms for finding the best (with the high-
est probability) round-reduced related-key differential characteristics in DES and
DES-like ciphers. We show that instead of trying all differences in the key and in
the plaintext, which would result in a search space of size 2120, it is computation-
ally more efficient to try only a reduced set of input-output differences of three
consecutive S-boxes layers. Based on this observation, we are able to propose
two algorithms for automatic search of related-key differential characteristics in
DES-like ciphers – the first is based on Matsui’s approach, while the second is in
line with the technique of divide-and-conquer. We apply our algorithms to DES,
DESL [6], and s2DES [5] and find either the probabilities of the best round-
reduced related-key differential characteristics, or the upper bounds on these
probabilities. Interestingly, although for lower number of rounds these probabil-
ities are much higher than in the case of single-key characteristics, for higher
number of rounds, the best characteristics are single-key characteristics. We ob-
tain an interesting result regarding DES. By providing the probability of the
best related-key characteristic on 13 rounds, we show that Biham-Shamir attack
cannot be improved if one uses related-key characteristic (instead of single-key).
Moreover, the low probabilities of the best related-key characteristics on higher
rounds indicate that NSA did not introduce any weakness (or trapdoor) in the
key schedule of DES with regard to differential attacks. Although in this paper
we apply our algorithms only to the DES-like ciphers, we believe that our ap-
proaches can be used as well to search for high probability related-key differential
characteristics in any bit-oriented ciphers with linear key schedule.

2 Description of DES-like Block Ciphers

DES [8] is 64-bit block cipher with 56-bit key1. It is 16-round Feistel cipher with
additional permutations IP, IP−1 at the beginning and at the end. The 64-bit
plaintext, after the application of the initial permutation IP is divided into two
halves L0 and R0 - each half has 32 bits. Then, the halves are updated 16 times
with the round function:

Li = Ri−1

Ri = Li−1 ⊕ f(Ri−1,Ki),

where i = 1, . . . , 16 and Ki are 48-bit round keys, obtained from the initial key
K with some linear transforms (rotations that depend on the round number and
bit selection function PC-2). The ciphertext is defined as IP−1(R16||L16).
1 Officially, the key has 64 bits, but 8 bits are only used to check the parity, and then
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The round function f(R,Ki) takes 32-bit state R and 48-bit round key Ki

and produces 32-bit output. First it expands the 32-bit value of R to 48 bits
with the linear function E and then it XORs the values of E(R) and Ki to
produce some intermediate result, which we further denote as fi. This 48-bit
value is divided into 8 six-bit values, and each of these values goes through a
separate 6x4 S-box. Finally, the 32-bit output of the S-boxes goes through a bit
permutation P and the output f̃i of the round function is produced.

The DES-like block ciphers DESL [6] and s2DES [5], differ from DES only
in the definition of the S-boxes and the initial and final permutations. Since
these permutations have no cryptographic values, we can assume that the only
difference among the ciphers of the DES-family is in the S-boxes.

3 Automatic Search for Related-key Differential
Characteristics in DES-like ciphers

The best characteristic on r rounds, i.e. the best r round-reduced characteristic,
is the one that has the highest probability among all characteristics on r rounds
of the cipher. In this section we propose two methods for building efficient au-
tomatic search algorithms for finding the best round-reduced related-key differ-
ential characteristics in DES-like ciphers. When constructing these algorithms,
the main problem that has to be tackled is how to deal with the enormous
search space. There are 64 bits in the state and 56 bits in the key, hence in total
there are 2120 starting values for differential characteristics. However, in general,
this number can be reduced significantly. Our first method is based on Matsui’s
search tool applied for finding the best single-key round-reduced characteristics
in DES. The second method, which we call the split approach, can be used when
Matsui’s approach fails – to find characteristics on high number of rounds when
not all the characteristics on lower number of rounds are known.

Due to the complementation property of DES, there are related-key charac-
teristics (including round-reduced) that hold with probability 1. Further, we do
not consider these characteristics.

Considering the different rotation amounts in the key-schedule, the probabil-
ity of the best round-reduced related-key characteristic depends on the rounds
covered by the characteristic. For example, the best 5-round related-key charac-
teristic covering rounds 0-4, can have different probability from the best char-
acteristic that covers rounds 1-5. The best related-key characteristics in our
paper, always cover the last rounds, e.g. the characteristic on 7 rounds, covers
the rounds 9-15.

3.1 Matsui’s Approach for Single-key Characteristics

The search for the best single-key differential characteristics in DES was success-
fully performed by Matsui in [7]. Note that even in this case, when there is no
difference in the key, the search space is rather large – 264 starting differences.



However, Matsui presented several useful approaches how to deal with a large
number of starting differences and how to significantly reduce the search space.

A naive approach to search for the best n-round characteristic would be to
try all possible starting differences in the plaintext and try to extend each of
them to n rounds. The non-linearity of the S-boxes will introduce branching,
and a k-round characteristic (k < n) is extended for an additional round only
if its probability is higher than the probability P ∗

n of some known characteristic
on n rounds.

Matsui’s approach on the other hand, cuts out a large number of round-
reduced characteristics in the early stage. Given the probabilities P1, . . . , Pn−1

of the best characteristics on the first n− 1 rounds, and some estimate2 P ∗
n for

the probability of the characteristic on n rounds, the algorithm produces the
best characteristic on n rounds. Hence, the attacker can sequentially produce,
starting from 1 or 2-round reduced, characteristics on all rounds of DES. In short,
the attacker, as in the naive approach, tries all possible starting differences3. For
each of them he produces 1-round characteristic (there can be many one-round
characteristics, and the following procedure is repeated for each of them) that
holds with probability P1. Then, he tries to extend it to two rounds only if
P1 · Pn−1 > P ∗

n . This is because in order to extend 1-round characteristic to
n rounds, one should use an additional (n − 1)-round characteristic. Since the
best one has probability Pn−1, the total probability of the n-round characteristic
will be at most P1 · Pn−1 and this value should be better than the probability
P ∗

n of the best known characteristic on n-rounds. Similarly, if the attacker has
built k-round characteristic with probability Pk than he tries to extended for
an additional round only if Pk · Pn−k > P ∗

n . Note that in the naive approach,
the attacker only checks if Pk > P ∗

n . Therefore, Matsui’s approach stops the
extension of many round-reduced characteristics and that way speeds up the
search.

Now let us take a closer look how to reduce the number of possible starting
differences. Interestingly, the same approach as above can be used. First note
that a characteristic on the first two rounds (assuming this 2-round characteristic
is part of the best n-round characteristic) has a probability P2 such that P2 <
P ∗

n/Pn−2. The following observation is used to explore this property of 2-round
single-key characteristics.

Observation 1 Given the input and the output differences (∆f1, ∆f̃1), (∆f2, ∆f̃2)
of the S-boxes layers in the first two rounds, one can find the difference in the
plaintext ∆P and the difference (∆L2, ∆R2) in state at the beginning of the third
round.

Proof. From the Feistel construction it leads that ∆R0 = E−1(∆f1) and
∆L0 = ∆f̃1 ⊕ E−1(∆f2). Then the difference ∆P in the plaintext is ∆P =

2 For example, the attacker can use the probability of the already known characteristic
on n rounds as an estimate.

3 We will see later, that this requirement can be omitted.



IP−1(∆R0||∆L0). Similarly, for the difference at the beginning of the third
round we get ∆R2 = ∆R0 ⊕∆f̃2 and ∆L2 = ∆L0 ⊕ E−1(∆f2)ut.

Therefore, instead of fixing all possible differences ∆P in the plaintext one
can fix only the input and the output differences to the S-boxes in rounds 1,2.
But, since the active S-boxes of the first round have to hold with a probability of
at least P ∗

n/Pn−1, and in the first and the second round with at least P ∗
n/Pn−2,

the number of 2-round characteristics is significantly reduced. For each such
characteristic, one can proceed with Matsui’s technique, and try to extend it to
n-rounds (since the difference at the beginning of round 3 is fixed).

3.2 Applying Matsui’s Approach for Related-key Characteristics

One can easily reconstruct Matsui’s algorithm to search for related-key charac-
teristics. Note that for a fixed difference in the key, the algorithm still works and
it finds the best characteristic with this specific difference. However, since the
key has 56 bits, this search has to be repeated 256 times and hence this naive
approach is not feasible. We can still run a so-called limited search for related-key
characteristics, by allowing low Hamming difference in the key. For example, to
find the best characteristic that has at most 2-bit difference in the key, we have
to rerun Matsui’s algorithm 1 + C1

56 + C2
56 = 1597 times.

Indeed, finding the best related-key characteristic using Matsui’s approach
can be done efficiently. We only have to find a way to efficiently limit the number
of possible differences in the key and in the plaintext. We want to reduce the
search space, yet to perform a full search of all possible related-key differential
characteristics. The following observation can be used for that purpose.

Observation 2 Given the input and the output differences (∆f1, ∆f̃1), (∆f2, ∆f̃2),
(∆f3, ∆f̃3) of the S-boxes layers in the first three rounds, one can find the dif-
ference in the plaintext ∆P , the difference (∆L3, ∆R3) in state at the beginning
of the fourth round, and all 28 values for the difference ∆K in the master key.

Proof. Again we use the property of the Feistel construction and the linearity
of the key schedule. From the definition of DES we get:

∆f1 = E(∆R0)⊕∆K1 (1)

∆f3 = E(∆R0 ⊕∆f̃2)⊕∆K3 (2)

Since E is linear, we get:

∆K1 ⊕∆K3 = ∆f1 ⊕∆f3 ⊕ E(∆f̃2)

The key schedule is linear, and both K1 and K3 are obtained from the master
K with some linear transformation. Therefore ∆K1 ⊕ ∆K3 can be expressed
as L(∆K), where L is a linear transformation. On the other hand, the input-
output differences of the S-boxes are given, and therefore, the value V = ∆f1 ⊕



∆f3 ⊕ E(∆f̃2) is known. Hence, the master key difference ∆K can be found as
∆K = L−1(V ). However, the key is 56 bits, while V only 48 bits. Therefore
we get an underdefined system of linear equations with 28 solutions. If we fix
a particular solution for the system, and thereby the difference in the key K,
we can easily find ∆K1, ∆K3 (and ∆K2). Then ∆R0 = E−1(∆f1 ⊕∆K1) and
∆L0 = E−1(∆f2⊕K2)⊕∆f̃1. Similarly can be found the differences ∆L3, ∆R3

ut.
The above observation clearly indicates how to reduce the search space. In-

stead of trying all possible differences in the key K and running Matsui’s al-
gorithm for each of them, one should only fix the input and the output differ-
ences to the S-box layers in the first three rounds. Due to restrictions on the
probability, all the active S-boxes in first, in the first and second, and in the
first, second and third round, should have a combined probability of at least
P ∗

n/Pn−1, P
∗
n/Pn−2, P

∗
n/Pn−3, respectively. Once the active S-boxes for the first

three rounds are fixed, one can easily find all 28 candidates for the difference in
the master key and the difference in the state after the third round and hence
produce 3-round differential characteristic with a fixed difference in the mas-
ter key. Further, Matsui’s approach can be used, and this characteristic can be
extended to any number of rounds. The pseudo-code of the whole algorithm is
given at Alg. 1.1.

On the complexity and optimization of the search. Calculating the exact
time complexity of the whole search is complex and probably impossible. How-
ever, some estimate can be given, under a certain assumption. Our experiments
indicate that once the difference in the state (after the third round) and in the
key is fixed, extending the characteristic to n rounds becomes fairly easy and
computationally cheap task. The main complexity lies in generating all 3-round
related-key characteristics that have a certain probability. More precisely, from
observation 2 it follows that one should generate all active S-boxes in the first
round that hold with a combined probability P1 of not less than P ∗

n/Pn−1, then
all active S-boxes in the second round with a combined probability not less than
P ∗

n/(Pn−2 · P1) and all active in the third round with probability of not less
than P ∗

n/(Pn−3 · P2) (where P2 is the probability of the active S-boxes in the
first two rounds). Therefore, the number of all 3-round related-key characteris-
tics depends only on the values P ∗

n/Pn−1, P
∗
n/Pn−2 and P ∗

n/Pn−3 – higher the
values, less characteristics exist, and the search is faster.

The complexity of creating all these 3-round characteristics is not the same
(or proportional) as the number of such characteristics. This comes from the
fact that the linear transform E is not a surjective, since it has 32-bit input and
48-bit output. For example, after ∆K1 is found (see the proof of the observation
2), the value ∆R0 = E−1(∆f1 ⊕ ∆K1) exists only with a probability 2−16.
Similar holds for ∆L0. Hence, the optimal strategy for creating the 3-round
characteristics would be to:

1. Fix the probabilities of the first four active S-boxes in the first and the third
round and all the active S-boxes of the second round (that have the above



Algorithm 1.1. Search for RK differential characteristic

FullSearch()
{
// The first three rounds
for all ∆f1 → ∆f̃1|P (∆f1 → ∆f̃1)Pn−1 > P ∗

n do
for all ∆f2 → ∆f̃2|P (∆f1 → ∆f̃1)P (∆f2 → ∆f̃2)Pn−2 > P ∗

n do
for all ∆f3 → ∆f̃3|P (∆f1 → ∆f̃1)P (∆f2 → ∆f̃2)P (∆f3 → ∆f̃3)Pn−3 > P ∗

n

do
V = ∆f1 ⊕∆f3 ⊕ E(∆f̃2)
for all ∆K|L(∆K) = V do
∆K1 = PC2(rot(∆K, 1))
∆K2 = PC2(rot(∆K, 2))
if E−1(∆K1 ⊕∆f1) and E−1(∆K2 ⊕∆f2) then
∆R0 = E−1(∆K1 ⊕∆f1)
∆L0 = E−1(∆K2 ⊕∆f2)⊕∆f̃1
∆R3 = ∆L0 ⊕∆f̃1∆f̃3
∆L3 = ∆R0 ⊕∆f̃2
Call NextRound(∆L3, ∆R3, ∆K, P (∆f1 → ∆f̃1)P (∆f2 →
∆f̃2)P (∆f3 → ∆f̃3), 4)

end if
end for

end for
end for

end for
}

NextRound(∆L,∆R,∆K, p, round)
{
∆Kr = PC2(rot(∆K, round))
∆f = ∆Kr ⊕ E(∆R)
for all ∆f → ∆f̃ |P (∆f → ∆f̃) · p · Pn−round > P ∗

n do
∆Lnew = ∆R
∆Rnew = ∆L⊕∆f̃
if round == n then

if P (∆f → ∆f̃) · p > P ∗
n then

P ∗
n = P (∆f → ∆f̃) · p

end if
else

Call NextRound(∆Lnew,∆Rnew,∆K,P (∆f → ∆f̃) · p, round+ 1)
end if

end for
}

limitations ), without fixing the exact input-output differences. This can be
done by fixing only the possible values from the difference distribution tables
of the S-boxes.



2. Fix the input differences to the four S-boxes of round 1,3, and the output
differences of the S-boxes of round 2 (that correspond to the previously fixed
distribution values).

3. Find 28 bits of∆K, then find 28 bits of∆K1 and check if there exist preimage
of 24 bits of ∆f1⊕∆K1 for E. This can be done, since the left and the right
28-bit halves of the key are independent.

4. If exists, fix the probabilities of the last four active S-boxes in the first and
the third round.

5. Fix the input differences to these 8 S-boxes.
6. Find the rest 28 bits of ∆K, then of ∆K1 and check if there exist preimage

of last 24 bits of ∆f1 ⊕∆K1 for E.
7. If exists, find ∆K2, fix the input difference to the S-boxes in the second

round and check if there exist a preimage of ∆f2 ⊕K2 for E.
8. If exists, fix the output differences for the S-boxes of round 3 (it is not

necessary to fix the outputs of S-boxes of round 1).

Although we cannot give a precise estimate for the complexity of creating all 3-
round characteristics, we can give such estimates for some particular fixed values
of P ∗

n ,Pn−1,Pn−2, and Pn−2. For example, when P ∗
n/Pn−1 = 2−3, P ∗

n/Pn−2 =
2−6, P ∗

n/Pn−3 = 2−9, then steps 1-8 are repeated 216.7, 228.9, 232.9, 227.3, 230.8,
234.9, 227.6, 220.3 times, respectively, leading to a total complexity of around 235.
On the other hand, when P ∗

n/Pn−1 = 2−3, P ∗
n/Pn−2 = 2−7, P ∗

n/Pn−3 = 2−10,
then steps 1-8 are repeated 218.7, 232.4, 236.4, 230.8, 234.3, 238.4, 230.9, 222.6 times,
respectively, and hence the complexity is around 239, while there exist around
222.6 (step 8) good 3-round related-key characteristics.

3.3 The Split Approach

To build the best n-round characteristic Matsui’s approach requires first to build
the best characteristics on 1, 2, . . . , n−1 rounds because it uses the probabilities
of these characteristics. One may be able to skip building the characteristics on
some rounds and to assume that they have the same probability as the charac-
teristic on lower number of rounds. Under this assumption, the algorithm still
works and finds the best characteristic on n rounds, however the time complexity
usually suffers significantly.

Avoiding building all round-reduced characteristics can be done with a dif-
ferent approach. Let us assume we search for characteristic on n rounds that
has a probability of at least P ∗

n . This n-round characteristic can be seen as a
concatenation of two n/2-round characteristics, with a combined probability of
at least P ∗

n . Therefore, one of these two characteristics has a probability of at
least

√
P ∗

n . Indeed we can split the n-round characteristic on any (reasonable)
number of k characteristics, each on n/k rounds, and claim that at least one of
them has a probability of k

√
P ∗

n .
Now, let us assume that n = 3k, and the n-round characteristic has been

split into k three-round characteristics. One of these characteristics (we do not
know exactly which), has to have a probability of at least k

√
P ∗

n . Since it is



on three rounds, and it has a bound on its probability, we can use our previous
method (observation 2), to build all such characteristics. However, unlike in Mat-
sui’s approach, where each of the three rounds has some bound on probability,
now we build 3-round characteristics that only have the bound on the combined
probability (of all three rounds). Once we have built all such the 3-round char-
acteristics we try to extend them to n rounds (recall that if the difference in the
state and in the key is fixed, then it is easy to extend it to more rounds – the
difficulty lies in creating all such 3-round characteristics). Interestingly, when
extending the three round characteristics, we can use the bounds from Matsui’s
approach.

For example, let us assume we want to build a characteristic on 9 rounds
with a probability at least 2−24. Then we know that one of the three 3-round
characteristics has a probability of at least 2−8. First we assume that this is the
characteristic on the first three rounds. We build all first 3-round characteristics
with probability at least 2−8, i.e. P3 ≥ 2−8, and then try to extend them 6 rounds
forward, thus obtaining a characteristic on 9 rounds. If we have the probabilities
P1, . . . , P6 for the best characteristics on the last 6 rounds, then for rounds 4-9,
we can use Matsui’s approach, e.g. for 4 rounds we take only those with P4 such
that P4 · P5 ≥ 2−24, for 5 rounds P5 · P4 ≥ 2−24, etc. If we do not have the best
probabilities than for each round i (i ≥ 4) we only check if Pi ≥ 2−24. Then
we assume the characteristic on rounds 4-6 has a probability of at least 2−8.
Again, we build all 3-round characteristics with at most 2−8 and extend them
three rounds forward and three backwards (by using Matsui’s bounds). Finally,
we assume this is the 3-round characteristic on the last three rounds (7-9). We
build all such characteristics and extend them 6 rounds backwards (again we
can use Matsui’s bounds if we have the best probabilities for the first 6 rounds).
Among all 9-round characteristics we have produced in these three iterations,
we take the one with the highest probability. If such characteristic exist than it
is the best characteristic on 9 rounds and it has a probability at least 2−24. If it
does not exist then it means all the characteristics on 9 rounds have probability
lower than 2−24.

What is the real advantage of this approach compared to related-key Matsui’s
approach? To find this out, we have to compare the number of possible 3-round
related-key characteristic built in the two approaches. In Matsui’s algorithm, this
number depends on the values P ∗

n/Pn−1, P ∗
n/Pn−2 and P ∗

n/Pn−3, while in the
split approach, the number depends only on P ∗

n . Hence, when the probabilities
Pn−1, Pn−2, Pn−3 are really high, then it is computationally cheaper to build
the n-round characteristic with the split approach.

4 The Case of DES

The notion of (single-key) differentials and differential characteristics was intro-
duced in the seminal paper of Biham and Shamir [2] on cryptanalysis of DES,
where the authors presented characteristic on 15 rounds of DES with a prob-
ability higher than 2−56. Later in [3], the authors used 13-round characteristic



to give the first attack on all 16 rounds of DES. By performing a full search,
Matsui [7] has shown that the characteristics found by Biham and Shamir were
actually the best round-reduced single-key characteristics for DES. It is well
known that S-boxes and the permutation used in the round function of DES are
very carefully chosen to avoid single-key differential cryptanalysis and even sub-
tle changes in them can weaken the cipher [3]. Our study of related-key attacks
on DES is motivated by the fact that differences in the subkeys could violate
some of the design principles and this could lead to new attacks on DES.

We would like to run a full search of the space of all related-key differen-
tial characteristics in DES by using the approaches of the previous section. We
start with the related-key version of Matsui’s algorithm and try to find the best
related-key characteristics on as many rounds as possible. Although our search
will always find the best characteristics, we should keep in mind that we have
a limited computational power. For example, if we try to find the best n-round
related-key characteristic that holds with a probability at least P ∗

n , then the
time complexity of the search mostly depends on the probability Pn−3 of the
best characteristics on (n − 3) rounds (but also depends on Pn−1, Pn−2). Our
experimental results show that when P ∗

n/Pn−3 < 2−12 ∼ 2−14 we do not have
the resources to perform the search, hence if for some n this holds, then we will
switch to the split approach and continue further with this approach. Note that
even in the case of single-key characteristics a similar limitation holds when for
some n the ratio P ∗

n/Pn−2 is too low.

We start the search by finding the best related-key characteristic on 3 rounds
(we assume that P0 = P1 = P2 = 1). We fix P ∗

3 (the probability of the best
related-key 3-round characteristic) to 2−1 and then gradually decrease by a fac-
tor of 2−1 if we do not find a characteristic that holds with this probability.
There is always a lower bound on this probability – the case of the single-key
characteristic (our tool does not make distinction between these two cases, and
searches for both). Hence, we can be sure that P ∗

3 cannot be lower than 2−4

(this is the probability of the best single-key characteristic on 3 rounds). Having
found the highest P ∗

3 , we fix P3 = P ∗
3 , and then search for P4. We fix P ∗

4 to P3,
i.e. we assume that the characteristic on 4-rounds has the same probability as
the best characteristic on 3 rounds, and then gradually decrease this probability
by a factor 2−1 each time when we cannot find 4-round characteristic with such
probability. Up to P6 we could easily perform the search. However, when search-
ing for P7 we could not find anything even when P ∗

7 was set up to 2−18. We
knew that P7 could not be lower than 2−23.6 (the probability of the single-key
characteristic on 7 rounds), however if we set P ∗

7 = 2−23.6, then P ∗
7 /P4 = 2−19

which is lower than our maximal computational limit of 2−12 ∼ 2−14. Therefore,
we switched to the split approach for finding the best 7-round related-key char-
acteristic. We started with all possible 3.5-round characteristic (with the first
3.5 rounds and the last 3.5 rounds) with probability of at least 2−11 and tried to
extend it to 7 rounds, thus we allowed a probability of 2−22. The split approach
found that the best related-key characteristic on 7 rounds has a probability of
2−20.38.



The results of the split search on 7 rounds can be used to find if 8-round
characteristic with 2−22 exist, which in our case was negative. If we try to apply
the related-key Matsui’s approach for 8 rounds and allow P ∗

8 = 2−22, then
P ∗

8 /P5 = 2−22/2−7.6 = 2−14.4, which is low. Hence, for 8 rounds we could not
use neither Matsui’s nor the split approach. However, we noted that the best
characteristics of the first 7 rounds have a difference only in a few bits of the
key. Hence, we ran a limited search for 8-round characteristic by allowing only
a few bit difference in the key. The limited search gave us a characteristic with
a probability 2−29.75 – better than the best single-key characteristic with 230.8.

For higher rounds, the related-key Matsui’s approach could not work because
of the low probabilities (P ∗

n/Pn−3 < 2−12 ∼ 2−14). However, if we assume that
the 8-round characteristic found by the limited Matsui’s approach is the best,
then we can still run related-key Matsui’s algorithm for the characteristic on 11
rounds. We found that if this holds, then the best related-key characteristics on
11 rounds is the best single-key characteristics.

For finding the best related-key characteristics on 9, 12, and 13 rounds we
used our split approach. For 9 rounds, we allowed the 3-round characteristics
to have at least 2−10.55 (because (2−10.55)3 = 2−31.65 and the best single-key
on 9 rounds has 2−31.48). The search found that the best 9-round related-key
characteristic is the best single-key characteristic. For 12 and 13 rounds, we
allowed the starting 3-round characteristics with probability at least 2−11.85

(because (2−11.85)4 = 2−47.4 and the best single-key on 13 rounds has 2−47.22).
Again, we obtained similar results – the best related-key characteristics on 12 and
13 rounds have no difference in the key, i.e. they are the single-key characteristics.

The result for the 13-round4 related-key characteristic is especially interesting
since Biham-Shamir analysis uses it for the attack on the whole DES. This
means that if the attacker uses related-key characteristics, he cannot improve
the complexity of Biham-Shamir attack.

The summary of our findings is presented in Tbl. 1. The related-key charac-
teristics for 7 and 8 rounds are given in the Appendix (Fig. 1, 2).

5 The Case of DESL

DESL [6] uses a single S-box instead of eight different S-boxes as in DES. This
S-box has a special design criteria to discard high probability (single-key) differ-
ential characteristics. Indeed, our initial analysis for single-key differential char-
acteristics in DESL confirmed this result. Moreover, we could not find the best
single-key differential characteristics (using the original Matsui’s tool) for DESL
for higher rounds (the absence of the probabilities for the best round-reduced
single-key differential characteristics in the submission paper of DESL [6] seems
to confirm our findings). Therefore, even the original Matsui’s tool cannot be
used (it is infeasible) for finding single-key characteristics, when they hold with
low probabilities.

4 We rerun the search for characteristics that cover rounds 1 to 12.



Table 1. Comparison of the probabilities of the best round-reduced differential single-
key and related-key characteristics for DES.

rounds Single-key Related-key Method used

3 2−4.0 20 RK Matsui’s

4 2−9.6 2−4.61 RK Matsui’s

5 2−13.21 2−7.83 RK Matsui’s

6 2−19.94 2−12.92 RK Matsui’s

7 2−23.60 2−20.38 Split

8 2−30.48 2−29.75 ≤ P8 < 2−22 Limited Matsui’s

9 2−31.48 2−31.48 Split + Matsui’s

10 2−38.35 ≤ P9

11 2−39.35 2−39.35 if P8 = 2−29.75 RK Matsui’s

12 2−46.22 2−46.22 Split + Matsui’s

13 2−47.22 2−47.22 Split + Matsui’s

14 2−54.09 ≤ P13

15 2−55.09 2−55.09 RK Matsui’s

16 2−61.97 ≤ P15

Our related-key Matsui’s search algorithm, however, did find the best related-
key characteristics for up to 7 rounds. Interestingly, the probabilities of these
related-key characteristics are higher in DESL, than in DES (see Tbl. 2). For
more rounds, we used the split approach as well. Nonetheless, for these char-
acteristics, we were able to find only the upper bounds on their probabilities.
For example, for 9-round related-key characteristic we used the split approach
with 3-round probability of 2−10. After running the search for the first, middle,
and third three rounds, the algorithm did not return any characteristic. This
means, there are no related-key characteristics on 9 rounds with probability at
least 2−30. Similarly, we used the split approach for finding the upper bound
on the probability of the best characteristics for 12-rounds, and the related-key
Matsui’s approach for the bounds on 10,13, and 15 rounds. Our findings are
presented in Tbl. 2.

The related-key characteristics that we have found can be used to launch
boomerang attacks on the round-reduced cipher. For example, we can launch a
related-key boomerang attack on 12 rounds (from round 4 to round 15), with
two characteristics on 6 rounds – the first on rounds 4-9, the second on 10-
15. The probability of the first characteristic is 2−14.68 (it is lower because we
consider rounds 4-9), while the probability of the second is 2−12.09. Therefore,
the probability of the whole boomerang is 2−2·14.68−2·12.09 = 2−53.54.



Table 2. Probabilities of the best round-reduced related-key differential characteristics
for DESL.

Round Probability

3 20

4 2−4.67

5 2−7.24

6 2−12.09

7 2−19.95

8 ≤ P7

9 < 2−30

10 < 2−31

11 ≤ P10

12 < 2−40

13 < 2−41

14 ≤ P13

15 < 2−50

16 < 2−51

6 The Case of s2DES

Another variant of DES called s2DES was proposed in [5]. The search for the
best single-key differential characteristics in s2DES was performed in [10]. For
this purpose the authors used Matsui’s tool. This analysis showed that the
best round-reduced differential characteristics in s2DES have higher probabil-
ities than in DES.

We ran our search for related-key characteristics using only our related-key
approached based on Matsui’s algorithm. We noted that for each single-key
characteristic on n-rounds, the value Pn/Pn−3 is at least 2−12.75 (for n = 8, see
Tbl. 3), hence building all 3-round related-key characteristic might be feasible.
However, the values Pn−3 for different n could be updated, because they were
the probabilities in the single-key scenario (the probability in the related-key
scenario is not less than in the single-key). Indeed, the probabilities of the round-
reduced related-key characteristics for the first 6 rounds, were higher than the
probabilities of the single-key characteristics. This made P5 to be 2−8 instead
of 2−9.22 as in the single-key case. Hence, for the related-key characteristic on 8
rounds, we had to allow P8/P5 = 2−22/2−8 = 2−14 for the active S-boxes in the
three rounds, instead of the previous 2−12.75. However, we were able to perform
the search for this 7-round characteristic but with a significant computational
cost – the search took around 3 weeks on 64 CPU cores.

After the sixth round, we found that all the best related-key characteristics
have the same probability as the single-key (indeed they are single-key). The



probabilities of the best single and related-key round-reduced characteristics are
given in Tbl. 3.

Table 3. Comparison of the probabilities of the best round-reduce differential single-
key and related-key characteristics for s2DES.

rounds Single-key Related-key

3 2−4.39 20

4 2−6.8 2−5.19

5 2−9.22 2−8.0

6 2−14.35 2−12.61

7 2−17.03 2−17.03

8 2−21.96 2−21.96

9 2−22.71 2−22.71

10 2−27.35 2−27.35

11 2−28.39 2−28.39

12 2−34.07 2−34.07

13 2−34.07 2−34.07

14 2−39.75 2−39.75

15 2−39.75 2−39.75

16 2−45.42 2−45.42

7 Conclusions

We have presented the first algorithms for automatic search of the best round-
reduced related-key differential characteristics in DES-like family of ciphers,
DES, DESL, and s2DES. We have shown that there is no significant differ-
ence between the probabilities of the best related-key and the best single-key
characteristics on higher number of rounds of DES, and thus, the key schedule
of DES has no notable weakness regarding differential attacks.

We believe our algorithms can be applied to similar 64-bit state and 64-
bit key bit-oriented ciphers with linear key schedule. Moreover, our approaches
can be used to search for high probability (up to 2−20) related-key differential
characteristics in any bit oriented ciphers with linear key schedule.
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A Related-key Characteristics for DES
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Fig. 1. The best related-key differential characteristic (with probability 2−20.38) on the
last 7 rounds of DES.
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Fig. 2. Related-key differential characteristic (with probability 2−29.75) on the last 8
rounds of DES.


