
Differential Cryptanalysis of Round-Reduced
PRINTcipher: Computing Roots of

Permutations

Mohamed Ahmed Abdelraheem, Gregor Leander, Erik Zenner

Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
{M.A.Abdelraheem,G.Leander,E.Zenner}@mat.dtu.dk

Abstract At CHES 2010, the new block cipher PRINTcipher was pre-
sented. In addition to using an xor round key as is common practice for
round-based block ciphers, PRINTcipher also uses key-dependent per-
mutations. While this seems to make differential cryptanalysis difficult
due to the unknown bit permutations, we show in this paper that this is
not the case. We present two differential attacks that successfully break
about half of the rounds of PRINTcipher, thereby giving the first crypt-
analytic result on the cipher.
In addition, one of the attacks is of independent interest, since it uses a
mechanism to compute roots of permutations. If an attacker knows the
many-round permutation πr, the algorithm can be used to compute the
underlying single-round permutation π. This technique is thus relevant
for all iterative ciphers that deploy key-dependent permutations. In the
case of PRINTcipher, it can be used to show that the linear layer adds
little to the security against differential attacks.

Keywords. symmetric cryptography, block cipher, differential crypt-
analysis, permutations

1 Introduction

After the establishment of Rijndael as AES, the need for new block ciphers has
greatly diminished. However, given that the future IT-landscape is supposed to
be dominated by tiny computing devices such as RFID tags or sensor networks,
the need for low cost security has grown substantially. This need opened up the
research field of light-weight cryptography. Quite a number of light-weight block
ciphers have been proposed in the last couple of years, examples among others
are PRESENT [3], HIGHT [7] and KATAN/KTANTAN [4].

PRINTcipher One recent proposal in this direction is the block cipher PRINT-
cipher presented at CHES 2010. PRINTcipher is an SP-network and comes
in two versions, PRINTcipher-48 and PRINTcipher-96 with block sizes of
48 and 96 bits. PRINTcipher is targeted at IC-printing and makes use of the
fact that this technology allows to make the circuit implementing the cipher key-
dependent. This allows PRINTcipher to be implemented with a considerably
smaller circuit compared to other light-weight ciphers. In order to maximize the

profit from a key-dependent circuit all round keys in PRINTcipher are iden-
tical. To increase the size of the key space beyond the block size, the key in
PRINTcipher consists not only of a (constant) round key xored to the state,
but also parts of the linear layer are made key-dependent.

Differential Cryptanalysis This attack, invented by Biham and Shamir [2],
is one of the most powerful and most general attacks on block ciphers known.
The main idea is to encrypt pairs of plaintexts and trace the evolution of their
difference through the encryption process. As most modern block ciphers are
round based, an attacker usually starts by analyzing one round of the cipher
with respect to difference propagation and extends to multiple rounds after-
wards. Under well established independence assumptions the probability that
a plaintext pair with a given difference α leads to a ciphertext pair with dif-
ference β can easily be computed by studying single rounds. Thus, differential
attacks are most often based on so-called differential characteristics, that is a
sequence of intermediate differences for all rounds together with their associated
probabilities.

Our Results In this paper we mount a differential attack on round-reduced
versions of PRINTcipher. The main technical problem while doing so is that
the differential characteristics are key-dependent, more precisely they depend on
the (key-dependent) choice of the linear layer. That is to say, without knowing
the key, we do not know the best differential characteristics. At first glance, this
seems to complicate a differential attack on PRINTcipher. There is another
way to look at this, though. If the differential characteristics are key-dependent,
then conversely, knowing the best differential one might be able to deduce in-
formation about the key. In general this dependency might be very complex.
However, in the case of PRINTcipher we show that given the best differen-
tials, computing the key-dependent linear layer can be reduced to computing
roots of permutations in S48 or S96. The remaining key bits, that is the constant
round key xored to the state, can then be recovered using a standard differential
attack, or, at a higher cost, simply by brute force.

Now, computing roots of permutations is a well-studied problem and our
attack will profit from known algorithms. However, note that a permutation can
have a huge number of roots and this causes two problems. First, this makes
algorithms computing all possible roots eventually slow and second, in the case
of PRINTcipher this means that many possible linear layers are proposed. We
explain how both problems can be overcome.

In particular, our results show that making the linear layer of PRINTcipher
key-dependent adds little to no additional security against differential attacks.

Related Work PRINTcipher is not the first block cipher with key-dependent
components. Other well known examples are Khufu [10], the Khufu variation
Blowfish [12] and Twofish [13]. Along with those proposals, several attempts to

cryptanalyze those block ciphers, see for example [5] for a differential attack on
Khufu or Vaudenay’s attack on round-reduced Blowfish [14] have been published.

2 A Short Description of PRINTcipher

This section holds a short description of PRINTcipher, focusing only on the
parts that are of interest for our analysis. For more details we refer to [8].
PRINTcipher-48 (resp -96) is an SP-network with a block size of b = 48 (resp
b = 96) bits and 48 (resp 96) rounds. The key size is 80 bits for PRINTcipher-
48 and 160 bits for PRINTcipher-96. It is closely related to the block cipher
PRESENT in the sense that both ciphers use small s-boxes and a simple bit
permutation as the linear layer. PRINTcipher uses a single 3 bit s-box shown
in the following table.

x 0 1 2 3 4 5 6 7

S[x] 0 1 3 6 7 4 5 2

In the non-linear layer the current state is split into 16 words of 3 bits for
PRINTcipher-48 and into 32 words of 3 bits for PRINTcipher-96 and each
word is processed by the s-box in parallel. The linear layer consists of a bit
permutation, where bit i of the current state is moved to bit position P (i) where

P (i) =

{
3i− 2 mod b− 1 for 1 ≤ i ≤ b− 1,
b for i = b,

where b ∈ {48, 96} is the block size.
The peculiar part of PRINTcipher is to have all rounds identical up to

adding a round constant on a small number of bits. Here identical has to be
understood as including the round key, in other words, all round keys are iden-
tical. As a simple round key xored to the state in each round limits the key
size to 48 resp 96 bits, an additional key-dependent permutation layer was intro-
duced. This permutation layer permutes the input bits of each s-box individually.
Out of 6 possible permutations on 3 bits, only four are valid permutations for
PRINTcipher.

For PRINTcipher-48 the 80-bit user-supplied key k is split into two subkeys
k = sk1||sk2 where sk1 is 48 bits long and sk2 is 32 bits long. The first subkey
sk1 is xored to the state at the beginning of each round. The second subkey sk2

is used to generate the key-dependent permutations in the following way. The
32-bits are divided into 16 sets of two bits and each two-bit quantity a1||a0 is
used to pick one of four of the six available permutations of the three input bits.
Specifically, the three input bits c2||c1||c0 are permuted to give the following
output bits according to two key bits a0||a1.

a1||a0
00 c2||c1||c0
01 c1||c2||c0
10 c2||c0||c1
11 c0||c1||c2

One round of PRINTcipher-48 is shown in Figure 1.

}
= P

} = K

xor sk1

xor rci

S S S S S S S S S S S S S S S S
p p p p p p p p p p p p p p p p

Figure1. One round of PRINTcipher-48 illustrating the bit-mapping between the 16
3-bit S-boxes from one round to the next. The first subkey is used in the first xor, the
round counter is denoted RCi, while key-dependent permutations are used at the input
to each S-box.

3 Using Differential Cryptanalysis To Recover the
Permutation Key

A classical differential attack against an SP-network finds an input difference α
that produces a certain output difference β with high probability (a so-called
differential). The attacker then analyses a large number of input pairs (x, x′)
with x⊕ x′ = α and their corresponding output pairs (y, y′), hoping to find the
expected difference β = y⊕ y′. Once this difference actually occurs, the attacker
learns something about the internal behaviour of cipher. In particular, he can
often use this knowledge to recover parts of the key.

For PRINTcipher, this attack can not be directly applied in a straightfor-
ward fashion, since finding good differentials requires the knowledge of the linear
layer, which for PRINTcipher is key-dependent and thus unknown. As already
pointed out, however, this disadvantage can also be turned into an advantage
for the attacker: It can be used to learn something about the part of the key
that defines the linear layer.

3.1 Optimal differential characteristic

We start our analysis by proving the following fact about the optimal PRINT-
cipher characteristic.

Theorem 1. Given an input difference α of weight one, the unique most prob-
able r-round differential characteristic is

α→ (PK)(α)→ (PK)2(α)→ (PK)r(α),

which will occur with probability (1/4)r.

∆y
000 001 010 011 100 101 110 111

000 8 - - - - - - -

001 - 2 - 2 - 2 - 2

010 - - 2 2 - - 2 2
011 - 2 2 - - 2 2 -

∆x
100 - - - - 2 2 2 2
101 - 2 - 2 2 - 2 -
110 - - 2 2 2 2 - -
111 - 2 2 - 2 - - 2

Table1. Difference distribution table for PRINTcipher S-box. Note that the difference
table is symmetric. 1-bit to 1-bit differences are marked with boxes.

Proof. The difference distribution table for the PRINTcipher S-box (see Table
1) shows that all occuring differences are equally probable (prob. 1/4) and that
for every 1-bit input difference, there exists exactly one 1-bit output difference.
From this, it follows that starting with a 1-bit input difference, a 1-bit differential
trail through r rounds of PRINTcipher occurs with probability (1/4)r. Note
also that this trail has the minimum possible number of r active S-boxes and
that no other S-box difference is more probable, meaning that this trail is the
most probable one.

Also note that the 1-bit output difference always occurs in the same bit posi-
tion as the 1-bit input difference. This means that if the 1-bit differential occurs,
the S-box does not permute the active bit - its position on the differential trail
is only influenced by the fixed permutation P and the key-dependent permuta-
tion K. Thus, the difference α is indeed mapped to (PK)r(α), which proves the
theorem. ut

The probability of the differential characteristic is based on assumptions,
in particular the assumption of independent round-keys. This assumption is
in particulary questionable for PRINTcipher as all round-keys are identical.
Therefore, we ran (limited) tests to see if the theoretical probability of (1/4)r is
actually met. Our experimental data depicted in Figure 2 suggest that indeed
the probability is slightly higher than expected.

3.2 Targeting the xor key

In the following, we assume that the attacker has the full code book at his
disposal (i.e. 248 plaintext/ciphertext pairs for r rounds of PRINTcipher-48).
For every 1-bit input difference α1 = (100...0), α2 = (010...0), . . . , α48

= (000...1), the attacker now forms all 247 input pairs with x ⊕ x′ = αi and
checks whether the output difference also has weight one. If yes, he assumes

(a) 9 rounds (b) 10 rounds

(c) 11 rounds (d) 12 rounds

Figure2. Experimental vs. theoretical estimates for the optimal differentials. The x-
axis shows the number of pairs yielding the correct output difference within 22r+4 tries.
The y-axis shows the relative frequency.

that he has found the above optimal characteristic. It turns out that as long as
r ≤ 22, this is very likely to happen1.

Every successful 1-bit differential gives the attacker information about the
internal behaviour of the cipher which can be used to reconstruct part of the xor
key. Consider the first round of the cipher and note that according to [8], the
order of S-box and key-dependent permutation can be inversed by adding two
constants c and d that do not affect the differential. Thus, we can alternatively
consider one PRINTcipher round to consist of key addition, fixed permutation,
round constant, adding c, S-box, key-dependent permutation, and adding d. In
particular, for the purposes of differential cryptanalysis, we can assume the S-box
to follow directly after the key addition.

Now consider a successful differential with input difference α1 = (100...
0). Three key bits (with indices 1, 17 and 33) will affect the bits that go into the
first S-box. There are a priori 8 possible choices for these bits, generating all

1 We have 247 pairs and a success probability of (1/4)22 = 2−44, yielding a success
probability close to 1 for any single index i and of ≈ 0.984 for all 48 indices. When
increasing the number of rounds to r = 23, the success probability drops to 0.865
for any single index and to 0.001 for all 48 indices.

possible 3-bit S-box input pairs with difference α1. However, as shown in Table
1, only 2 of them will lead to a 1-bit output difference after running through the
S-box. Thus, only 1/4 of all keys meet the condition for the first S-box, reducing
the key entropy by 2 bit. Thus, finding 16 successful 1-bit to 1-bit differentials
(one for each S-box) will reduce the key entropy by 32 bit, leaving a brute-
force effort of 248 steps. This work factor could be reduced further, but without
greatly affecting the overall running time, which is dominated by the 248 steps
of computing the full code book anyway.

The false positive problem: The above description is a simplification since it does
not take false positives into account. For every 1-bit differential, trying out 247

plaintext pairs will yield 247 · 48248 = 24 false positives on average, i.e. 1-bit output
differences that occur accidentially and not as a result of the correct differential.
The question remains how they can be distinguished from the cases where the 1-
bit output differences really result from the desired differential. It turns out that
for 22 rounds, the probability that all 48 differentials are met at least three times
is 0.514, meaning that in more than half of the cases, the correct 1-bit difference
should be recognizable by occuring more often than the false positives, which
very rarely occur more than twice.

3.3 Targeting the linear layer

As it turns out, there is also a different way of using the above differential to
cryptanalyse PRINTcipher. Remembering that according to Theorem 1, every
1-bit to 1-bit characteristic is optimal and describes the mapping α→ (PK)r(α),
the following corollary immediately follows:

Corollary 1. Learning all optimal characteristics is the same as learning (PK)r.

If the attacker has the full code book available, he can form 247 plaintext pairs
for every 1-bit input difference. The probability that at least one example of all 48
1-bit differentials is found is 0.984, and as stated above, the probability that they
all can be distinguished successfully from false positives is 0.514. Thus, for up
to r = 22 rounds of PRINTcipher-48, the attacker can learn the permutation
(PK)r.

If he can find the r-th root of this permutation, then he has derived PK
and thus the linear layer key K. Once this has been done, the xor key can be
retrieved bitwise, using a simple divide-and-conquer attack similar to the one
described in Subsection 3.2. It turns out that here too, the overall running time
is dominated by computing the code book, i.e. the attack requires about 248

computational steps.
This type of differential attack is the dual to the one targeting the xor key

and is relevant for all SPN-like ciphers that use key-dependent permutations.
For this reason, it is not only interesting for the analysis of PRINTcipher, but
also for the understanding of key-dependent permutations in general. In the rest
of this paper, we will thus discuss the computation of permutation roots in more
detail.

4 Finding (PRINTcipher)-Roots of a Permutation

From the previous section, we see that our problem of finding the permutation
key can be reduced to the problem of finding the r-th roots of a given permutation
in the symmetric groups, S48 and S96, where r is the number of rounds.

Any permutation can be expressed as a product of disjoint cycles, and it
is this representation that is most useful when computing roots. In particular,
the permutation found through differential cryptanalysis can be expressed as a
product of disjoint cycles in S48 and S96.

Before describing how to find a root for a permutation in general, we outline
the basic ideas. For this, let us first see what happens when we raise a single
cycle to the power r.

Let c = (c0, c1, . . . , cl−1) be a cycle of length l in Sn. Then c2 will remain a
single cycle when l is odd, namely, c2 = (c0, c2, . . . , cl−1, c1, c3, . . . ,
cl−2), and will be decomposed into 2 cycles when l is even, namely, c2 =
(c0, c2, . . . , cl−2)(c1, c3, . . . , cl−1). In general, depending on l, cr will either remain
a single cycle or be decomposed into a number of cycles having the same length
(see Lemma 1). Each element ci will be in a cycle, say, (ci, ci+r, ci+2r, . . . , ci+(k−1)r),
where i+ kr ≡ i (mod l) and i+ jr is reduced modulo l for each j. So in order
to find the r-th root we have two cases, the first one is when cr is a single cy-
cle, and here cr equals exactly (c0, cr, c2r, . . . , c(l−1)r). The second case is when
cr consists of a number of disjoint cycles, and here we combine these disjoint
cycles into a single cycle in a certain way in order to get c (see the proof of
Theorem 2). To illustrate this, let us find the square root of the permutation
σ2 = (1, 3, 2)(4, 6, 7)(5)(8) in S8. According to the above explanation, we know
that cycles of the same length are either a decomposition of a single cycle in the
root σ or a reordering of a single cycle in the root σ. Considering cycles of length
1, (5) and (8), it is obvious that they arise from either (5)(8) or (5, 8).

Thus, there are two possibilities for cycles of length 1 in σ. Cycles of length 3,
(1, 3, 2) and (4, 6, 7), are either a decomposition of a single cycle in σ, this could
be (1, 4, 3, 6, 2, 7), (1, 6, 3, 7, 2, 4) or (1, 7, 3, 4, 2, 6); or a reordering of disjoint
cycles in σ and this could only be (1, 2, 3)(4, 7, 6). Summarizing, there are four
possibilities for cycles of length 3 in σ. So the total number of square roots for
the permutation σ2 is 8.

4.1 The General Case

The procedure for constructing an r-th root for a permutation, described in [15],
is based on the following basic fact in the theory of symmetric groups which can
be easily deduced from the previous explanation.

Lemma 1. Let C ∈ Sn be a cycle of length l and let r be a positive integer.
Then Cr consists of gcd(l, r) disjoint cycles, each of length l

gcd(l,r) .

The following theorem is due to A. Knopfmacher and R. Warlimont [15, p.
148]. We recall its proof, as the proof describes how to construct an r-th root.

Throughout the rest of this paper, we use the notation l-cycle to mean a cycle
of length l.

Theorem 2. [15,1] Let r = pi11 p
i2
2 . . . p

in
n , where p1, p2, . . . , pn are the prime

factors of r. A permutation Q ∈ Sn has an r-th root, iff for every integer l ≥ 1,
the number of l-cycles in Q is divisible by ((l, r)) :=

∏
{j:pj |l} p

ij
j .

Proof. (⇐): to prove this, we construct an r-th root, R, of Q. Let al be the
number of l-cycles in Q. Let g = ((l, r)). Then al = gm, where m is an integer,
so we can divide the l-cycles of Q into m groups where each group consists of

g l-cycles. Assume that we have the cycles, cij = (c
(0)
ij , c

(1)
ij , . . . , c

(l−1)
ij) where

1 ≤ i ≤ g and 1 ≤ j ≤ m. For each j, we construct a cycle of length gl, say

Rj = (c
(0)
1j , c

(0)
2j , . . . , c

(0)
gj , c

(d)
1j , c

(d)
2j , . . . , c

(d)
gj , . . .

, c
((l−1)d)
1j , c

((l−1)d)
2j , . . . , c

((l−1)d)
gj), where d = r

g and sd is reduced modulo l for
each 1 ≤ s ≤ l − 1. Now Rj is a cycle of length gl, so according to the previous

lemma, Rr
j consists of gcd(gl, r) cycles of length gl

gcd(gl,r) . Now, since g = ((l, r)),

then gcd(l, rg) = 1 and so gcd(gl, r) = g, which means that Rr
j consists of g

cycles of length l, namely, c1j , c2j , . . . , cgj . So
∏

j:1≤j≤mRj is an r-th root for
the l-cycles of Q. Repeating the same procedure for all l will yield an r-th root
of Q. For the proof of (⇒), see [1]. ut

In [6,9], a procedure to find all the roots of Q is described. Going back to the
previous theorem, we see that the main property that enables us to construct
an r-th root for the l-cycles of Q is having gcd(gl, r) = g. Repeating the same
procedure for all the g’s that satisfy gcd(gl, r) = g will allow us to find all the
possible roots that can come from the l-cycles. Note that g is bounded by al (the
number of l-cycles). To find all the roots, for each group consisting of l-cycles in
Q, we proceed as follows.

First we construct the set Gr(l, al) = {gi : gcd(gil, r) = gi and 1 ≤ gi ≤ al}.
Now, this tells us that the roots have cycles of length gil, but we do not know how
many of them. For this, we solve the following Frobenius equation for xi ≥ 0:

g1x1 + g2x2 + · · ·+ gkxk = al where k = |G| (1)

This equation will usually have more than one solution. Each solution cor-
responds to a possible cycle structure of the roots. For instance, the solution
x = (x1, x2, . . . , xk), tells us that each corresponding root for the l-cycles of Q
consists of xi cycles of length gil for 1 ≤ i ≤ k.

The efficiency of computing all roots is of course bounded by the total number
of roots. If a permutation has a huge number of roots, computing all of them is
very time consuming. It is therefore of interest to know the number of roots in
advance.

In [9], using the above information about the cycle structure of permutations
that have an r-th root, the following explicit formula2 for calculating the number
of all the possible roots is provided.

2 A more complicated formula was previously found by Pavlov in [11].

Theorem 3. [9] Let r be a positive integer and Q ∈ Sn. Let al be the number of
l-cycles in Q, where 1 ≤ l ≤ n. Let X(l, al) be the set of all the possible solutions
of equation (1). Then the number of r-th roots of Q is

∏
al 6=0

al!
(∑

x∈X(l,al)

k∏
i=1

l(gi−1)xi

gxi
i xi!

)
(2)

where x = (x1, x2, . . . , xk) and {gi : 1 ≤ i ≤ k} are the elements of Gr(l, al).

To get a feeling of how many roots of a permutation can be expected for the
case of PRINTcipher-48, let us take the following permutation in S48, suppose
we have

τ24 =(1, 7, 47)(2, 19, 45)(3, 48, 17)(4, 9, 38)(5, 16)(6, 33, 32)(8, 28)(10, 35)

(11, 27, 18)(12, 20)(14, 19, 41)(15, 46)(21, 26, 30)(22, 34)(23, 36)(25,

42, 39)(40, 44)(13)(24)(31)(37)(43) (3)

So we have a1 = 5, a2 = 8, a3 = 9 and al = 0 for 4 ≤ l ≤ 48. G(1, a1) =
{1, 2, 3, 4}, X(1, a1) = {(0, 1, 1, 0), (1, 0, 0, 1), (1, 2, 0, 0), (2, 0, 1, 0), (3, 1, 0,
0), (5, 0, 0, 0)},G(2, a2) = {8},X(2, a2) = {(1)} andG(3, a3) = {3, 6},X(3, a3) =
{(3, 0), (1, 1)}. Plugging these values into equation (2), we find that the number
of roots is ' 251.3. Moreover, the case where τ22 is the Identity has ' 2192 roots
in S48.

Note that out of all 48!(96!) permutations only a tiny fraction of 232(264) per-
mutations actually correspond to a valid key in PRINTcipher-48(96). We can
therefore expect that in the above example out of the ' 251.3 only a very small
number will actually correspond to a PRINTcipher-permutation. In particular
there is only one root for equation (3) that corresponds to a PRINTcipher
permutation.

The main purpose of the next section is to describe a method that filters
out wrong candidates as soon as possible, allowing to considerably speed up the
computation of all valid PRINTcipher-roots.

4.2 PRINTcipher-Roots

As discussed in the last section, computing all the roots of (PK)r in order
to find the right permutation key is inefficient. In this section we describe a
method that finds the permutation roots PK belonging to the 232(264) possible
permutations in PRINTcipher-48(96). Throughout the rest of this paper, we
only discuss PRINTcipher-48 and unless mentioned explicitly, the assumption
is that everything about PRINTcipher-48 follows for PRINTcipher-96 with
a slight modification.

Our method uses the fact that when we apply the fixed permutation, P ,
for all 1 ≤ i ≤ 16, the 3 bits i, i + 16 and i + 32 go to the ith Sbox, where
depending on the permutation key, they are permuted to only four out of the six
possible permutations. So the result of applying the fixed permutation, P , and

then applying the keyed permutation, K, on a 48 bits plain text, is a permutation
PK that satisfies the following two properties:

1. Property 1: For all 1 ≤ i ≤ 48, PK(i) equals one of the following three
possible values depending on K,

PK(i) =

3i− 2 (mod 48 if 3i− 2 6= 48)

3i− 1 (mod 48 if 3i− 1 6= 48)

3i (mod 48 if 3i 6= 48)

2. Property 2: Only 4 out of the 6 possible 3-bit permutations are valid, namely,
PK(i), PK(i+ 16) and PK(i+ 32) are permuted to one of the four possible
permutations, i.e., for all 1 ≤ i ≤ 48, the following two permutations are not
allowed:

(a) PK(i) = 3i− 1, PK(i+ 16) = 3i and PK(i+ 32) = 3i− 2.
(b) PK(i) = 3i, PK(i+ 16) = 3i− 2 and PK(i+ 32) = 3i− 1.

Definition 1. A PRINTcipher permutation root is any permutation on 48
elements satisfying both Property 1 and Property 2.

Definition 2. A PRINTcipher permutation(cycle) is any permutation
(cycle) on less than 48 elements satisfying both Property 1 and Property 2.

To explain these definitions, consider the following two cycles (14, 41, 25,
26, 30, 42, 29, 39, 21) and (14, 42, 30, 41, 25, 26, 29, 39, 21). We want to investigate
whether these cycles are PRINTcipher cycles or not. The latter cycle satisfies
the two properties and so it is a PRINTcipher cycle, in other words it can be
part of a PRINTcipher permutation root, PK. The former cycle satisfies only
Property 1 but not Property 2 since we have PK(14) = 41 and PK(30) = 42
and therefore PK(42) = 40 , and this is one of the two disallowed permutations
(see item (a) in Property 2) and so it cannot be part of a valid PRINTcipher
permutation root, PK. Sometimes we can have a permutation consisting of two
or more cycles having same or different lengths, that satisfies Property 1 but not
Property 2. For example, the following permutation, (1, 2, 6, 17)(5, 15, 44, 34),
satisfies Property 1 but not Property 2 as we have PK(2) = 6 and PK(34) = 5
and therefore PK(18) = 4, which is an invalid PRINTcipher permutation (see
item (b) in Property 2).

Since the same cycles and permutations can be written in different ways,
our method adopts the notion that starts writing each cycle by its smallest
element and lexicographically order the disjoint cycles of the same length of a
permutation in order to avoid repetitions in the permutation roots of (PK)r.
Our method consists of two algorithms: the first one constructs a PRINTcipher
cycle of length gl and the second one uses the first algorithm to construct k
combined disjoint cycles, each of length gl. In what follows, we shall give a
detailed description of the two algorithms and end this section by showing how to
use Algorithm 2 to find the whole PRINTcipher permutation roots of (PK)r.

Finding single PRINTcipher cycles Given al cycles of length l, the following
algorithm constructs all the possible PRINTcipher cycles of length gl beginning
with an element called first specified in the input (must be one the the first
elements in one of these al cycles). The algorithm performs a depth first search
to find all the other possible g− 1 cycles with minimal elements larger than first
and can be combined with the cycle containing first as described in Theorem 2
in order to form a PRINTcipher cycle (or just reorder the given cycle in the
case g = 1 as described previously).

Algorithm 1 finds a PRINTcipher cycle of length gl
find-cycle(cycle, current, g, l-cycles)

Require: l-cycles numbered from 1 to al where al ≥ g
Require: current = first, cycle = first
Ensure: cycle is a PRINTcipher cycle of length gl
1: for count=0 to 2 do
2: next = 3 × current - count
3: if next ∈ l-cycles then
4: if next > first and next.cycleno 6= first.cycleno and cycle.length < g then
5: if next.cycleno 6= the cycleno of all the elements of cycle then
6: Add next to cycle
7: current = next
8: Perform again this algorithm on cycle, find-cycle(cycle, current, g, l-

cycles)
9: end if

10: else if cycle.length = g and next.cycleno = first.cycleno then
11: Complete the construction of cycle by combining the g different cycles to

get a single cycle of length gl as shown in the proof of Theorem 1 (when
g = 1, reorder the cycle containing first as described previously and assign
it to cycle)

12: if cycle satisfies Property 2 then
13: cycle is a PRINTcipher cycle of length gl
14: end if
15: end if
16: end if
17: end for

Plugging all the 2-cycles of equation (3) and setting first = 5 and g = 8 will
produce the following PRINTcipher cycle of length 16

(5, 15, 44, 36, 12, 35, 8, 22, 16, 46, 40, 23, 20, 10, 28, 34).

Algorithm 1 enables us to find a PRINTcipher permutation consisting of only
one cycle of length gl but note that some of the xi’s in equation (1) can be
more than 1. So we need another algorithm which can find a PRINTcipher
permutation consisting of k disjoint cycles where k ≥ 1.

Finding k combined PRINTcipher cycles Given al cycles of length l, the
following algorithm constructs a permutation beginning with an element called
first specified in the input (must be the first element in one of these al cycles)
and consisting of k combined and disjoint cycles ordered lexicographically. It
basically performs a recursive depth first search. The recursive algorithm begins
by invoking Algorithm 1 which outputs single cycles of length gl beginning with
first. It then proceeds from each cycle found by Algorithm 1 and concatenates
it with the previously i − 1 concatenated disjoint cycles found after the ith
recursive call and if the concatenation satisfies Property 2, it recursively calls
itself a number of times, each time with a different first element to begin the
required permutation with as this will enable us to find all the possible i + 1
disjoint cycles, on a reduced number of l-cycles (exactly al−gi cycles) consisting
of all the l-cycles except the gi cycles involved on the i concatenated disjoint
cycles (in each invocation first is set to the smallest element on one of the
currently available al− gi cycles). Each recursive call stops when i = k, or when
Algorithm 1 returns nothing, or when each concatenation of i cycles does not
satisfy Property 2.

Using Algorithm 1 for all the possible g’s along with all the possible first
values and setting a1 = 48, we can find all the possible PRINTcipher cycles.
For instance, when g = 1 and a1 = 48, Algorithm 1 returns four 1-cycles when
trying all the possible values for first, namely, (1), (24), (25) and (48). When
g = 2 and a2 = 48, we found that there are six possible 2-cycles, namely, (6, 18),
(7, 19), (12, 36), (13, 37), (30, 42) and (31, 43). When g = 3, we found there are
eight possible 3-cycles. This information enables us to reduce the size of the cycle
structure of the roots by removing any structure containing more than four 1-
cycles, six 2-cycles and eight 3-cycles. It also enables us to easily find some roots,
for example, knowing all PRINTcipher cycles of length 1 and 2, we can easily
find that (24)(13, 37)(30, 42) is a PRINTcipher permutation that is a root for
the 1-cycles of equation (3).

Moreover, using Algorithm 2 we find that we cannot have a permutation
consisting of more than 6 disjoint cycles of length 5 in PRINTcipher-48 and
not more than 9 cycles of length 4, 12 cycles of length 5, 13 cycles of length 6
and 12 cycles of length 7 in PRINTcipher-96. This will generally reduce the
number of solutions of equation (1) and therefore the size of the cycle structure
which will speed up the process of finding PRINTcipher permutations roots.

Finding PRINTcipher permutations Now, when given al cycles of length
l, Algorithm 2 enables us to find PRINTcipher permutations beginning with
a specified element and consisting of k cycles, each of length gl. But in or-
der to find the rth permutation roots for all the l-cycles we use Algorithm 2
together with the elements of the sets G(l, al) and X(l, al). Each entry xj =
(xj1, xj2, . . . , xjk) ∈ X(l, al) where k = |G(l, al)|, represents the cycle struc-
ture of many rth roots for the l-cycles and it might correspond to few or none
PRINTcipher permutations, so for each xj ∈ X(l, al), we try to find all the
possible PRINTcipher permutations beginning with a specific element called

Algorithm 2 finds a PRINTcipher permutation that has k disjoint gl-cycles
find-k-cycles(C, current, k, g, l-cycles)

Require: l-cycles numbered from 1 to al where al ≥ g
Require: current = first
Require: C = {}
Ensure: k disjoint PRINTcipher gl-cycles, or return {} if there is no k disjoint

PRINTcipher cycles
1: Invoke Alg. 1 on the current l-cycles
2: if number of cycles found by Alg. 1 > 0 then
3: if the number of disjoint cycles in C consists of k − 1 disjoint cycles then
4: for each permutation cycle found by Alg. 1 do
5: C = C ∪ cycle
6: if C satisfies Property 2 then
7: return C
8: else
9: return {}

10: end if
11: end for
12: else
13: for each cycle found by Alg. 1 do
14: C = C ∪ cycle
15: if C satisfies Property 2 then
16: Delete all the l-cycles involved in C from the al cycles of length l
17: for each cycle ∈ currently available l-cycles do
18: {Perform again this algorithm on the current l-cycles to find the other

k − 1 cycles}
19: current = first element in cycle
20: find-k-cycles(C, current, k, g, l-cycles)
21: end for
22: end if
23: end for
24: end if
25: else
26: return
27: end if

first (must be the first element in one of these al cycles) and that can be roots
for the l-cycles by applying Algorithm 2 through all the nonzero entries of xj .
Trying all the possible values for first gives us all PRINTcipher permutations
that are roots for all the l-cycles.

Now, assume that we find all the possible PRINTcipher permutations for
each l, say σli , for 1 ≤ i ≤ ηl where ηl is the number of permutation roots of
the l-cycles of (PK)r, so all the possible products

∏
al>0 σli where 1 ≤ l ≤ 48

and 1 ≤ i ≤ ηl, represent the PRINTcipher permutation roots which are the
possible values for PK and by brute forcing these PK values we can recover the
permutation key, K.

Let us try to find PRINTcipher permutations that are roots for the nine 3-
cycles in equation (3). We have G(3, a3) = {3, 6} and X(3, a3) = {(3, 0), (1, 1)}.
We start with, x1 = (3, 0), here we only need to apply Algorithm 2 using any
possible first because the 3 disjoint cycles of length 9 would come from all the
9 cycles. Setting first = 1 and applying Algorithm 2 doesn’t give us 3 dis-
joint cycles of length 9, so we conclude that there is no root having the cy-
cle structure x1. So we go to the next cycle structure, x2 = (1, 1), we start
with x21 = 1 and use Algorithm 2 on all the possible first values. Setting
first = 1, 2, 3, 4, 6 and 11 doesn’t yield a single cycle of length 9, while first
= 14 yields the cycle (14, 42, 30, 41, 25, 26, 29, 39, 21), we save it and continue
to the next element x22 = 1 where we use Algorithm 2 on the 6 cycles that
are not involved in the previous found cycle. Now we want to construct a cy-
cle of length 18, so all the 6 cycles would be involved in it, setting first = 1,
yields (1, 2, 4, 11, 33, 3, 7, 19, 9, 27, 32, 48, 47, 45, 38, 18, 6, 17). Concatenating this
cycle with the previous found cycle, we get (14, 42, 30, 41, 25, 26, 29,
39, 21)(1, 2, 4, 11, 33, 3, 7, 19, 9, 27, 32, 48, 47, 45, 38, 18, 6, 17) which satisfies Prop-
erty 2. This means that it is a PRINTcipher permutation that is a root for all
the 3-cycles in equation (3). Now, we have found the roots for all the l-cycles
in equation (3). Concatenating them together gives us the following PRINTci-
pher permutation root: (1, 2, 4, 11, 33, 3, 7, 19, 9, 27, 32,
48, 47, 45, 38, 18, 6, 17)(5, 15, 44, 36, 12, 35, 8, 22, 16, 46, 40, 23, 20, 10, 28, 34)
(14, 42, 30, 41, 25, 26, 29, 39, 21)(13, 37)(30, 42)(24).

5 Experimental Verifications

To demonstrate the efficiency of our attack we implemented the above algo-
rithms. Experiments show that (PK)r could yield more than one PRINTci-
pher root when (PK)r contains several 1-cycles, but in most cases there was
exactly one PRINTcipher root.

To derive bounds for the number of PRINTcipher permutations roots, we
computed the number of all PRINTcipher permutation roots for (PK)r =
Identity where 2 ≤ r ≤ 22. This seems the worst case that could happen for any
r since a1 = 48, which is a1’s largest value, and as shown in Table 2, the number
of PRINTcipher roots when r = 22 is 222.04. These roots are found within less
than 3 hours on a standard PC.

Furthermore, we tried 104 random PRINTcipher-48 permutation keys ex-
cluding the ones that yield (PK)r = Identity. Note that, for a random key, the

probability for the worst case is 222.04

232 = 0.001 for 22 rounds and less than that
for r < 22. These experiments took a few seconds on average on a standard PC
and they show that most of the time there is a unique PRINTcipher permuta-
tion root. Table 2 shows the number of keys (nk), out of the 104 random keys,
that yield more than one PRINTcipher permutation root. It also shows the
number of PRINTcipher permutation roots in the worst case (nw) for each
number of rounds.

r log2 nk log2 nw r log2 nk log2 nw r log2 nk log2 nw

2 - - 9 7.66 8.58 16 10.80 18.95
3 - - 10 8.33 11.90 17 8.71 -
4 6.11 2 11 7.94 9.31 18 11.16 20.67
5 2 - 12 11.46 17.39 19 8.77 -
6 9.30 4.17 13 8.47 - 20 10.68 21.54
7 3.70 - 14 9.10 16.27 21 9.18 18.73
8 9.59 10.07 15 9.77 16.63 22 9.59 22.04

Table2. Results of the 104 trials and the worst case for 2 ≤ r ≤ 22, nk ≡ the number
of keys that yield more than one PRINTcipher permutation root, nw ≡ the number
of PRINTcipher permutation roots in the worst case.

6 Conclusions

We have described two differential attacks against 22 rounds of PRINT
cipher-48, requiring the full code book and about 248 computational steps.
While this is far from breaking the full 48 rounds of the cipher, it is the best
currently known result against the cipher. Similar results can be obtained for
the 96-bit version of the cipher.

One of the attacks is a new technique targeting the key-dependent permuta-
tions used in PRINTcipher. Since such key-dependent permutations are cur-
rently not well-studied, the attack is of importance to past and future designs
that use them. We introduced a novel technique for computing permutation
roots, making it possible to retrieve the key-dependent single-round permuta-
tion π given nothing but the r-round permutation πr and the cipher description.
While our technique so far applies only to the case where the linear layer is a
(key-depended) bit permutation, future designers of cryptographic primitives us-
ing key-dependent permutations should be aware of this technique when choosing
parameters like round numbers or S-box layout for their algorithms.

References

1. Scott Annin and Trenton Jansen. On kth roots in the symmetric and alternating
groups. Pi Mu Epsilon Journal, 12(10):581–589, 2009.

2. Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems.
In Alfred Menezes and Scott A. Vanstone, editors, CRYPTO, volume 537 of Lecture
Notes in Computer Science, pages 2–21. Springer, 1990.

3. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and Charlotte Vikkelsø.
PRESENT: An ultra-lightweight block cipher. In Pascal Paillier and Ingrid Ver-
bauwhede, editors, Cryptographic Hardware and Embedded Systems – CHES 2007,
Proceedings, volume 4727 of Lecture Notes in Computer Science, pages 450–466.
Springer, 2007.

4. Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and
KTANTAN - a family of small and efficient hardware-oriented block ciphers. In
Christophe Clavier and Kris Gaj, editors, CHES, volume 5747 of Lecture Notes in
Computer Science, pages 272–288. Springer, 2009.

5. Henri Gilbert and Pascal Chauvaud. A chosen plaintext attack of the 16-round
Khufu cryptosystem. In Yvo Desmedt, editor, Advances in Cryptology – CRYPTO
’94, Proceedings, volume 839 of Lecture Notes in Computer Science, pages 359–368.
Springer, 1994.

6. Anja Groch, Dennis Hofheinz, and Rainer Steinwandt. A practical attack on the
root problem in braid groups. In Algebraic methods in cryptography, volume 418,
pages 121–132. American Mathematical Society, 2006.

7. Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok
Koo, Changhoon Lee, Donghoon Chang, Jaesang Lee, Kitae Jeong, Hyun Kim,
Jongsung Kim, and Seongtaek Chee. HIGHT: A new block cipher suitable for
low-resource device. In Louis Goubin and Mitsuru Matsui, editors, CHES, volume
4249 of Lecture Notes in Computer Science, pages 46–59. Springer, 2006.

8. Lars R. Knudsen, Gregor Leander, Axel Poschmann, and Matthew J. B. Robshaw.
PRINTcipher: A block cipher for IC-printing. In Stefan Mangard and François-
Xavier Standaert, editors, CHES, volume 6225 of Lecture Notes in Computer Sci-
ence, pages 16–32. Springer, 2010.

9. Jesús Leaños, Rutilo Moreno, and Luis M. Rivera-Mart́ınez. A note on the number
of m-th roots of permutations. Arxiv preprint arXiv:1005.1531, 2010.

10. Ralph C. Merkle. Fast software encryption functions. In Alfred Menezes and
Scott A. Vanstone, editors, Advances in Cryptology – CRYPTO ’90, Proceedings,
volume 537 of Lecture Notes in Computer Science, pages 476–501. Springer, 1991.

11. A. I. Pavlov. On the number of solutions of the equation xk = a in the symmetric
group Sn. Mathematics of the USSR-Sbornik, 40(3):349–362, 1981.

12. Bruce Schneier. Description of a new variable-length key, 64-bit block cipher (Blow-
fish). In Ross J. Anderson, editor, Fast Software Encryption 1993, Proceedings,
volume 809 of Lecture Notes in Computer Science, pages 191–204. Springer, 1994.

13. Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and Niels
Ferguson. Twofish: A 128-bit block cipher. Submitted as candidate for AES.
Available: http://www.schneier.com/paper-twofish-paper.pdf (2010/02/05).

14. Serge Vaudenay. On the weak keys of Blowfish. In Dieter Gollmann, editor, Fast
Software Encryption 1996, Proceedings, volume 1039 of Lecture Notes in Computer
Science, pages 27–32. Springer, 1996.

15. Herbert S. Wilf. Generatingfunctionology. Academic Press, 1993.

