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Abstract. The hash function Blue Midnight Wish (BMW) is a candi-
date in the SHA-3 competition organized by the U.S. National Institute
of Standards and Technology (NIST). BMW was selected for the second
round of the competition, but the algorithm was tweaked in a number
of ways. In this paper we describe cryptanalysis on the original version
of BMW, as submitted to the SHA-3 competition in October 2008.
The attacks described are (near-)collision, preimage and second preim-
age attacks on the BMW compression function. These attacks can also
be described as pseudo-attacks on the full hash function, i.e., as attacks
in which the adversary is allowed to choose the initial value of the hash
function. The complexities of the attacks are about 214 for the near-
collision attack, about 23n/8+1 for the pseudo-collision attack, and about
23n/4+1 for the pseudo-(second) preimage attack, where n is the output
length of the hash function. Memory requirements are negligible. More-
over, the attacks are not (or only moderately) affected by the choice of
security parameter for BMW.

Keywords: hash function cryptanalysis, SHA-3 competition, Blue Mid-
night Wish, pseudo-attacks.

1 Introduction

On October 31, 2008, the “SHA-3 competition”, organized by the National Insti-
tute of Standards and Technology (NIST), was launched [1]. 64 algorithms were
submitted, and 51 of these were accepted for the first round of the competition.
On July 24, 2009, 14 candidates were chosen by NIST to advance to the second
round of the competition.

One of the candidates that made it to the second round is called Blue Mid-
night Wish [2], or BMW for short. BMW was tweaked for the second round
of the competition. Throughout this paper, unless explicitly stated otherwise,
we always refer to the original version of the hash function, i.e., the version
submitted to the competition before the October 31, 2008 deadline.

In this paper we describe some weaknesses in BMW. We show how to easily
find near-collisions in the compression function of BMW. By near-collisions we

? The author is supported by a grant from the Villum Kann Rasmussen Foundation.



mean a pair of inputs to the compression function for which the outputs only
differ in a few (pre-specified) bit positions.

We also show how to find collisions, preimages, and second preimages in the
compression function, faster than what is possible for an ideal compression func-
tion. This can be done by controlling 128, respectively 256 bits of the output
of the compression function of BMW-256, respectively BMW-512. By control-
ling we mean that the adversary can give these bits any value he wishes with
negligible effort. The complexity of these attacks corresponds to the complexity
for a 192-bit, respectively 384-bit ideal hash function in the case of BMW-256,
respectively BMW-512. Hence, for instance, pseudo-collisions can be found in
BMW-512 in time about 2192, which is to be compared to the expected 2256 for
an ideal 512-bit hash function. Memory requirements of all attacks are negligible.

We point out that the attacks described in this paper do not seem to apply
to the tweaked version of Blue Midnight Wish. In Section 5, we briefly describe
the tweaks and make some preliminary comments on these.

2 A Description of Blue Midnight Wish

Blue Midnight Wish is in fact a collection of four hash functions returning di-
gests of four different sizes: 224 bits, 256 bits, 384 bits, and 512 bits. The two
shortest digests are computed in the same way, except in the final step, which is
a truncation. Likewise for the two longest digests. The word size, denoted by w,
for the short variants is 32 bits, and for the long variants is 64 bits. Apart from
the word size, all four variants are very similar. A little-endian byte ordering is
assumed.

Blue Midnight Wish applies only four different types of operations: additions
modulo 2w, exclusive-ors (XORs), and bitwise shifts and rotations. In the fol-
lowing, all additions of words in the description of Blue Midnight Wish are to
be taken modulo 2w.

Blue Midnight Wish maintains a state of 16 words during the processing
of a message; only in the end, the 16 words are truncated down to 6, 7, or
8, depending on the digest size (truncation is done by throwing away the first
10, 9, or 8 words, respectively). Message blocks are also 16 words in length, and
Blue Midnight Wish operates with a compression function mapping 2×16 words
to 16 words. The compression function is iterated in a standard fashion [3, 4].
Hence, the message m of bitlength µ = |m| must be padded to a length that is a
multiple of 16w bits, which is done by first appending a ‘1’-bit, then appending
z = −µ − 65 mod 16w ‘0’-bits (this part of the padding will be called “10. . . ”
padding in the following), and finally appending a 64-bit representation of the
message length µ (length padding). We now turn to a description of the Blue
Midnight Wish compression function.

2.1 The Blue Midnight Wish Compression Function

The Blue Midnight Wish compression function takes two 16-word inputs and
returns a single 16-word output. It applies three different sub-functions, which



are called P , f1, and f2. P is an efficiently invertible permutation1. f1 is a so-
called multi-permutation taking two inputs, meaning that by fixing one of the
inputs, the function is a permutation on the other input. Finally, f2 compresses
three inputs of 16 words to a single 16-word output, which is also the output of
the compression function.

The two 16-word inputs to the compression function will be called H and
M , H being the chaining variable, and M being the message block. Referring to
a single word in one of the inputs will be denoted by Hi or Mi, meaning word
number i, where counting starts from 0. Hence, (e.g.) M = M0‖M1‖ · · · ‖M15.

The input to the permutation P is H ⊕ M . The output of P is denoted
Y = Y0‖Y1‖ · · · ‖Y15. The inputs to f1 are Y and M . The output of f1 is denoted
Z = Z0‖Z1‖ · · · ‖Z15. The inputs to f2 are Y , Z, and M , and the output, which
is also the output of the compression function, is denoted H∗. See also Fig. 1.
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Fig. 1. The Blue Midnight Wish compression function.

Given Y and M , a matching H can easily be computed as P−1(Y )⊕M , since
P is efficiently invertible. Moreover, H is not used as input to any other sub-
function than P . Hence, in attacks on the compression function, the details of P
are irrelevant, and therefore we do not describe these in this paper; see instead [2].
We now describe the two other components of the compression function.

A Description of f1. As mentioned, the inputs to f1 are M and Y , and the
output is denoted Z. Let Q = Y ‖Z be a 32-word vector, and note that when f1
is called, Q contains 16 already computed words, and 16 “null” words. Then, f1
can be described as a shift register, that computes one word of Q at the time as
a function of the previous 16 words of Q.

There are two variants of the step function that computes each new word of
Q: a simple step function, and a more complex one. Since 16 words are computed
in f1, there are always 16 rounds, but the number of complex and simple rounds
1 In the Blue Midnight Wish specification, a mapping f0 : {0, 1}16w × {0, 1}16w →
{0, 1}16w is defined. Since f0 is a permutation on the XOR of its two inputs, we
choose to focus on this permutation and denote it P , i.e., f0(H, M) = P (H ⊕M).



depends on a tunable security parameter. By default, there are first two complex
rounds and then 14 simple rounds, and we shall generally assume that this is
the distribution of complex and simple rounds. However, all our attacks apply to
BMW using any value of the security parameter (in the case of the near-collision
attack, some modifications are required).

Both complex and simple rounds use a number of invertible sub-functions
s0, . . . , s5 and r1, . . . , r7, whose descriptions are postponed to Appendix A. Both
types of rounds also use the same “message schedule”: consider M to be a 16-
element column vector in Z2w , and define the matrix B as the circulant matrix
whose first row contains the 16 elements

[1, 0, 0, 1, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0].

Row i + 1 of B is row i cyclically shifted one position to the right. Note that
B is invertible for both word sizes; the inverses can be found in Appendix B.
Define W = B ·M mod 2w, with Wi referring to the ith word of W . We note
that this means that Wi = Mi + Mi+3 −Mi+10 mod 2w, where the indices are
to be reduced modulo 16. In round i of f1, Wi is involved in the computation of
Zi = Qi+16.

Furthermore, 16 constants Ki are defined as b2w/3c · i. We can now describe
a complex round as

Qi+16 ← s1(Qi) + s2(Qi+1) + s3(Qi+2) + s0(Qi+3)
+s1(Qi+4) + s2(Qi+5) + s3(Qi+6) + s0(Qi+7)
+s1(Qi+8) + s2(Qi+9) + s3(Qi+10) + s0(Qi+11)
+s1(Qi+12) + s2(Qi+13) + s3(Qi+14) + s0(Qi+15)
+Wi +Ki,

for increasing i; for the default choice of the tunable security parameter, i in-
creases from 0 to 1. A simple round, covering the range of remaining values of i
up to and including 15, is described as

Qi+16 ← Qi + r1(Qi+1) +Qi+2 + r2(Qi+3)
+Qi+4 + r3(Qi+5) +Qi+6 + r4(Qi+7)
+Qi+8 + r5(Qi+9) +Qi+10 + r6(Qi+11)
+Qi+12 + r7(Qi+13) + s5(Qi+14) + s4(Qi+15)
+Wi +Ki.

Note that given M and 16 consecutive words of Q, the remaining 16 words
of Q can be computed; in particular, given M and Z, Y can be computed.
Likewise, given Y and Z (i.e., all of Q), M can be computed via W as M =
B−1 ·W mod 2w.

A Description of f2. The sub-function f2 takes as input M , Y , and Z. Let

XL = Z0 ⊕ Z1 ⊕ · · · ⊕ Z7 and
XH = Z0 ⊕ Z1 ⊕ · · · ⊕ Z15.



The output words H∗0 , . . . ,H
∗
15 are computed as follows.

H∗0 = (X�5
H ⊕ Z0

�5 ⊕M0) + (XL ⊕ Z8 ⊕ Y0)

H∗1 = (X�7
H ⊕ Z1

�8 ⊕M1) + (XL ⊕ Z9 ⊕ Y1)

H∗2 = (X�5
H ⊕ Z2

�5 ⊕M2) + (XL ⊕ Z10 ⊕ Y2)

H∗3 = (X�1
H ⊕ Z3

�5 ⊕M3) + (XL ⊕ Z11 ⊕ Y3)

H∗4 = (X�3
H ⊕ Z4 ⊕M4) + (XL ⊕ Z12 ⊕ Y4)

H∗5 = (X�6
H ⊕ Z5

�6 ⊕M5) + (XL ⊕ Z13 ⊕ Y5)

H∗6 = (X�4
H ⊕ Z6

�6 ⊕M6) + (XL ⊕ Z14 ⊕ Y6)

H∗7 = (X�11
H ⊕ Z7

�2 ⊕M7) + (XL ⊕ Z15 ⊕ Y7)

H∗8 = (H∗4 )≪9 + (XH ⊕ Z8 ⊕M8) + (X�8
L ⊕ Z7 ⊕ Y8)

H∗9 = (H∗5 )≪10 + (XH ⊕ Z9 ⊕M9) + (X�6
L ⊕ Z0 ⊕ Y9)

H∗10 = (H∗6 )≪11 + (XH ⊕ Z10 ⊕M10) + (X�6
L ⊕ Z1 ⊕ Y10)

H∗11 = (H∗7 )≪12 + (XH ⊕ Z11 ⊕M11) + (X�4
L ⊕ Z2 ⊕ Y11)

H∗12 = (H∗0 )≪13 + (XH ⊕ Z12 ⊕M12) + (X�3
L ⊕ Z3 ⊕ Y12)

H∗13 = (H∗1 )≪14 + (XH ⊕ Z13 ⊕M13) + (X�4
L ⊕ Z4 ⊕ Y13)

H∗14 = (H∗2 )≪15 + (XH ⊕ Z14 ⊕M14) + (X�7
L ⊕ Z5 ⊕ Y14)

H∗15 = (H∗3 )≪16 + (XH ⊕ Z15 ⊕M15) + (X�2
L ⊕ Z6 ⊕ Y15).

Here, x�s respectively x�s means x shifted left, respectively right by s bit
positions. Similarly, x≪s means x rotated left by s bit positions.

3 Near-collisions in the Compression Function

Attacks on the compression function of Blue Midnight Wish are not affected
by the permutation P , since this permutation can be inverted, and thereby the
chaining input can be computed.

One may also observe that by choosing the same (XOR) differences in H and
M , there is no input difference in P , and therefore also no output difference.
By ensuring that only the last few words of the expanded message W contain a
difference, we see that no difference is involved in a large part of f1. Combined
with the fact that diffusion is not very effective in f2, this observation leads to
near-collisions in the compression function.

Hence, a strategy to find the best (lowest weight) near-collision in the com-
pression function is to search for difference patterns of the last few words of
W , such that these differences do not spread too much in the last few rounds
of f1 and in f2. Note that the inverse message schedule must be applied to W
in order to be able to compute f2, and this message schedule will cause some
diffusion of differences in W ; however, differences in the most significant bits



(MSBs) will remain in the MSB positions after the inverse message schedule is
applied. Therefore, an obvious choice is to search for difference patterns in W
that only affect the MSBs of words of W .

3.1 An Example

In the case of both BMW-256 and BMW-512, the search mentioned showed that
a good difference pattern in W has differences in the MSBs of W13, W14, and
W15 only. The inverse message schedule causes differences in the MSBs of M0,
M1, M3, M4, M7, M9, and M13. Hence, there are 7 bit differences in M , which
are introduced in the function f2.

A difference in W13 is propagated directly to Z13 in the 13th round of f1.
Hence, Z13 obtains the difference 100 . . . 0 (in binary). In round 14, the function
s4 is applied to Z13 yielding the difference 1100 . . . 0 (see Appendix A), and a
difference in the MSB of W14 is also introduced. The end result is the difference
0100 . . . 0 in Z14 with probability 1/2. Finally, in round 15, the function s5 is
applied to Z13 yielding the difference 10100 . . . 0, the function s4 is applied to
Z14 yielding the difference 01100 . . . 0, and a difference in the MSB of W15 is
also introduced. Optimally, these differences result in the difference 1100 . . . 0 in
Z15, since then ∆Z13 ⊕∆Z14 ⊕∆Z15 = 0 (∆Zi meaning the difference on Zi),
which means that in f2, the variables XL and XH will contain no difference.
The total probability of this characteristic is about 2−3. See Table 2.

Table 2. The desired binary differences in the last three words of Z.

Word Desired XOR difference (binary)

Z13 100...0

Z14 010...0

Z15 110...0

In f2, as mentioned, the desired bit differences in Z yield no difference in XL

and XH . Hence, in the output words H∗0 , H
∗
1 , H

∗
3 , H

∗
4 , there are only differences

in the MSBs, and these come from the message M . There is no difference in H∗2 .
In H∗5 , the MSB difference in Z13 is inherited, and there are no other differences.
In H∗6 , the difference 0100 . . . 0 in Z14 is inherited and with probability 1/2 does
not propagate. In H∗7 , the MSB difference in M7 cancels the MSB difference in
Z15, and the resulting difference is 0100 . . . 0, which does not propagate with
probability 1/2.

One may investigate in a similar way the effects on the words H∗8 , . . . ,H
∗
15.

This shows that as few as 17 bit differences remain in the best case, and this has
a total probability of around 2−14. See Table 3. Note that in a pseudo-attack,
only the last 6, 7, or 8 words are part of the output.



Table 3. Output differences in the near-collision attack on the BMW compression
function. Applies to all variants.

Word XOR difference (binary)

H∗
0 100 . . . 00000000000000000

H∗
1 100 . . . 00000000000000000

H∗
2 000 . . . 00000000000000000

H∗
3 100 . . . 00000000000000000

H∗
4 100 . . . 00000000000000000

H∗
5 100 . . . 00000000000000000

H∗
6 010 . . . 00000000000000000

H∗
7 010 . . . 00000000000000000

H∗
8 000 . . . 00000000100000000

H∗
9 100 . . . 00000001000000000

H∗
10 000 . . . 00000001000000000

H∗
11 000 . . . 00000010000000000

H∗
12 000 . . . 00001000000000000

H∗
13 000 . . . 00010000000000000

H∗
14 010 . . . 00000000000000000

H∗
15 010 . . . 01000000000000000

3.2 Other Difference Patterns

We note that the difference in Z may be slightly different, and still give the same
results as those described. For instance, the difference patterns of Z14 and Z15

may be swapped.
Moreover, there are in fact slightly better message difference patterns than

the one described above. As an example, a difference in the MSB of W13 and
in the second-most significant bit of W15 yields—with a high probability—a
near-collision in all but 14 bits of the compression function output. However,
the corresponding message difference in M has a higher Hamming weight, and
specifically there are differences in the words M14 and M15, which (in a pseudo-
attack on the hash function) are reserved for padding. We did not find simple
difference patterns with differences only in the last few words of W that lead to
full collisions with high probability.

With a value of the security parameter above 13, the above characteristic has
a low (if not zero) probability. However, even with a value of 16, a high proba-
bility characteristic exists producing near-collisions of total Hamming weight as
low as 24 for the 16 output words of the compression function (see [5]).



3.3 A Pseudo-near-collision in BMW-256

In the attack described above, there are no differences in M14 and M15, which in
BMW-256 are the words containing length padding. This means we can extend
the near-collision attack on the compression function to a pseudo-near-collision
attack on the BMW-256 hash function. Moreover, one of the colliding messages
may start from the correct initial value of BMW-256; the other initial value
will be different from the correct one in the same 7 bit positions as those which
contain differences in M .

As an example, the bit sequence of length 447 bits starting with the three
bytes f3 8b 01 and ending with (423) ‘0’-bits follows the characteristic described
above (with chaining input equal to the BMW-256 initial value). Further details
can be found in the full version of this paper [6].

4 Pseudo-attacks

A second observation on the BMW compression function leads to improved
pseudo-collision, -preimage, and -second preimage attacks: if Zi = 0 for all i,
0 ≤ i < 16, then we get the following greatly simplified description of f2.

H∗0 = M0 + Y0

H∗1 = M1 + Y1

H∗2 = M2 + Y2

H∗3 = M3 + Y3

H∗4 = M4 + Y4

H∗5 = M5 + Y5

H∗6 = M6 + Y6

H∗7 = M7 + Y7

H∗8 = (M4 + Y4)≪9 +M8 + Y8

H∗9 = (M5 + Y5)≪10 +M9 + Y9

H∗10 = (M6 + Y6)≪11 +M10 + Y10

H∗11 = (M7 + Y7)≪12 +M11 + Y11

H∗12 = (M0 + Y0)≪13 +M12 + Y12

H∗13 = (M1 + Y1)≪14 +M13 + Y13

H∗14 = (M2 + Y2)≪15 +M14 + Y14

H∗15 = (M3 + Y3)≪16 +M15 + Y15.

4.1 Controlling Output Words – A First Example

Some output words of the compression function can be controlled by an attacker
after fixing Z = 0. The idea is to fix some words of M and some words of Y
in such a way that a number of output words obtain an arbitrary value chosen
by the attacker, and such that f1 can be computed backwards, i.e., one may



compute Y15 from Z, then Y14, etc. Words of M can be fixed directly, since
they are part of the input to the compression function. Words of Y can be fixed
indirectly via words of W , which, as mentioned, depend on M . There is enough
freedom to fix some words of M and some words of W at the same time. More
details follow. Note that this attack is independent of the value of the security
parameter, since both simple and complex rounds are invertible.

Consider as an example the “new” definition of H∗11 when Z = 0:

H∗11 = (M7 + Y7)≪12 +M11 + Y11.

By fixing M7, Y7, M11, and Y11, one has effectively controlled H∗11. Message
words are part of the input to the compression function. Words of Y can be
controlled to some extent via words of W ; after having fixed Z, we are able to
compute words of Y in the backward direction, i.e., we compute Y15 first, then
Y14 etc., all the way down to Y0. Alternatively, we can compute the value of
Wi needed to get some desired value of Yi, for any i such that Yj is already
computed for all j > i. Thereby, we indirectly control Yi.

As a simple example for BMW-256, assume we want H∗11 to obtain the value
α. To do this, we may choose (e.g.) M7 = Y7 = Y11 = 0 and M11 = α. We obtain
Y7 = Y11 = 0 by controlling W7 and W11. Note that once Y and M are fixed, we
compute H as described in Section 2.1. How to control words of M and words
of W at the same time is now described.

Sticking to the example, assume we want to be able to control M7, M11, W7,
and W11. Compute W = B·M with (initially) all words of M as free parameters.
As an example, one gets W15 = M2−M9+M15. Now, make W15 free by replacing
everywhere M15 by W15−M2 +M9. Now W15 is freed, but M15 is no longer free.

Since W14 = M1−M8 +M14, we can make W14 free by replacing everywhere
M14 by W14−M1 +M8. We may continue like this, freeing all Wi down to i = 7
(incl.), without making M7 or M11 dependent. Since M13, M14, and M15 contain
padding, we might want to keep these three words of M free as well. This way,
one obtains (e.g.)

W0 = −M1 +M3 + 2M7 −M13 −W7 +W13

W1 = 2M1 −M7 −M11 +M13 +W7 −W10

W2 = 2M1 −M3 + 3M11 + 3M14 +M15 − 2W8 −W9 −W11 − 2W14 −W15

W3 = −M1 + 2M3 −M11 −M13 −M14 +W8 +W9 −W12 +W14 +W15

W4 = M1 +M13 −M14 +W7 −W10

W5 = M1 +M11 + 2M14 −M15 −W11 −W14

W6 = M3 −M7 +M13 +M15 +W9 −W12 −W13.

All words appearing on the right hand sides are free, and all other words are
dependent.

By computing the words Yi in the backward direction, or choosing Yi and
computing the required Wi for i from 15 down to 7, we can control all the words
Y15, Y14, . . . , Y7. In particular, we can make sure that Y7 = Y11 = 0. Since M7



and M11 are free, we can also choose these two message words as we want; in
particular, we can choose M7 = 0 and M11 = α, so that we obtain H∗11 = α.
Since we indirectly also control H∗7 , we can obtain H∗7 = β for any β of our
choice via a proper choice of, say, M7.

Note that in order to compute Y1 and Y0, s1 must be inverted (see Sec-
tion 2.1). This is slightly more complicated in practice than computing s1 in
the forward direction, but it can also be done efficiently (with some additional
memory requirements) by pre-computing and storing all inverses.

The reason for choosing to control H∗11 is that Y7 is involved in its compu-
tation. This means we have to make only a few words of W free (W15 down to
W7), and there is still a large amount of freedom in the choice of a number of
words of M . This will be useful in extensions of the attack.

4.2 Controlling Additional Output Words

There are many degrees of freedom left. These can be used to control additional
output words. For instance, we may control H∗6 and H∗10 via M6, W6, M10, and
W10. We again keep M14 and M15 free as above, but M13 is not free. We shall
obtain correct “10. . . ” padding in M13 probabilistically; the probability is about
1/2 if we assume only a single bit of “10. . . ” padding (hence, the message length
is 512 − 65 = 447 bits). We set M6 = M7 = M10 = M11 = 0 (for the sake of
simplicity), and now we want to free all Wi for i from 15 down to 6, since we need
to be able to control Y6. Using the same method as in the previous examples,
we obtain

W0 = 2M14 +M15 −W6 − 2W7 − 2W8 −W9 +W12 − 2W14 − 2W15

W1 = −M14 −M15 +W6 +W8 −W10 +W13 +W14 +W15

W2 = 2M14 +M15 −W7 −W8 −W11 −W12 −W14

W3 = 2M14 +M15 −W6 − 2W7 − 2W8 −W9 +W12 −W13 − 2W14 − 2W15

W4 = −2M14 −M15 +W6 +W7 +W8 −W10 +W13 +W14 +W15

W5 = 2M14 −M15 −W7 −W11 −W14.

We now control the four output words H∗6 , H∗7 , H∗10, and H∗11 via W6, W7,
W10, and W11. The time complexity of this attack is about 2, since we need
correct “10. . . ” padding in M13, but we have no (direct) control over this message
word.

4.3 Other Variants of BMW

The same technique as described above for BMW-256 can be applied to BMW-
512. In fact, for BMW-512, length padding takes up only one message word,
and therefore we have enough freedom to ensure correct “10. . . ” padding with
probability 1.

Obviously, the attacks also apply to BMW-224 and BMW-384, since these
differ from BMW-256 and BMW-512 (respectively) only in the initial value and
the final truncation.



4.4 Applications

After truncation, two out of eight (or out of six or seven in the case of BMW-384
and BMW-224, respectively) output words can be given any value chosen by the
attacker. This control can be used to carry out pseudo-attacks, i.e., attacks in
which the attacker is free to choose the initial value of the hash function. Ex-
ample pseudo-attacks are pseudo-collision, pseudo-preimage, and pseudo-second
preimage attacks. The time complexities of these attacks on BMW correspond
to brute force attacks on 3/4 of the output bits (or 2/3 or 5/7 in the case of
BMW-384 and BMW-224, respectively). Hence, the time complexity is reduced
compared to an ideal hash function. Table 5 summarizes the attack complexi-
ties for the three types of attack on the four variants of Blue Midnight Wish.
Memory requirements are negligible.

As mentioned, pseudo-attacks are attacks in which the attacker is free to
choose the initial value of the hash function. In the case of pseudo-collision
and pseudo-second preimage attacks, the two colliding messages will generally
assume two different initial values.

Table 5. Pseudo-attack complexities on the four Blue Midnight Wish variants (in
brackets, birthday/brute force complexities).

Variant Pseudo-collision Pseudo-(second) preimage

BMW-224 281 (2112) 2161 (2224)

BMW-256 297 (2128) 2193 (2256)

BMW-384 2128 (2192) 2256 (2384)

BMW-512 2192 (2256) 2384 (2512)

4.5 Available Degrees of Freedom

Clearly, in these attacks we do not have to choose Z to be all-zero, we can choose
it to be anything we want. Also, we have lots of freedom in the choice of M6, M7,
M10, M11, H∗6 , and H∗7 to get the desired values of H∗10 and H∗11. The choices
we made in the examples above were only to simplify expressions. The available
degrees of freedom may be useful in extensions of the attacks; however, so far
we did not succeed in doing this.

4.6 Examples

For examples demonstrating the attack, see the full version of this paper [6].

5 The Tweaked Blue Midnight Wish

For the second round of the SHA-3 competition, Blue Midnight Wish was tweak-
ed in three ways [7]:



1. The function f0(H,M), which in the original BMW was defined as P (H⊕M),
is now defined as P (H ⊕M) +H≪w mod 2w.

2. The message expansion in f1 is changed. The terms Mi + Mi+3 −Mi+10 +
Ki, as they appeared in the original BMW, are replaced by (Mi

≪1+i +
Mi+3

≪1+(i+3 mod 16) −Mi+10
≪1+(i+10 mod 16) +Ki mod 2w)⊕Hi+7.

3. In the tweaked version, after the processing of the message, the compres-
sion function is invoked again, using a constant value for H and using the
intermediate hash of the message as M .

The first tweak means that it is still easy to compute M given H and Y , but now
it appears to be hard to compute H given M and Y (as needed in the attacks
described above). The second tweak seems to imply that one needs to choose
H before f1 can be computed, in contrast with the original case, where H did
not have to be chosen until the complete attack on the compression function
had been carried out. The last tweak makes it harder to turn some compression
function attacks into pseudo-attacks.

Some preliminary thoughts with respect to cryptanalysis of the tweaked
BMW follow.

– Collisions in f0 with constant M may now exist, since it is no longer guar-
anteed that f0 is a multi-permutation.

– Since each output word of f0 depends on only six words of H, one can find
an input H (for arbitrary M) such that eight out of 16 output words of f0
have any desired value. The complexity of this “attack” is 1, and it allows
the attacker to choose eight words of H arbitrarily.

– f1 is still a multi-permutation, i.e., given two out of three inputs and the
output, the last input can be (efficiently) computed. It may be of particular
interest that given any M,Y,Z, a matching H in f1 is easy to compute.

Aumasson [8] found a distinguisher for the Tweaked Blue Midnight Wish
compression function requiring 219 unknown input pairs with a fixed difference.
The distinguisher detects a strong bias on the least significant bits of the output
word H∗0 . Similarly, Guo and Thomsen [9] provided input differences to the
tweaked BMW compression function such that with a limited amount of message
modification, a single or a few output bits contain a difference with probability 0
or 1 (depending on the difference chosen). These distinguishers do not threaten
the security of the hash function.

Acknowledgments. I would like to thank Guo Jian and my colleagues at
DTU Mathematics for useful feedback and encouragement, and the anonymous
reviewers for helpful comments.

6 Conclusion

We have described a number of weaknesses in the original version of the Blue
Midnight Wish hash function.



The weaknesses lead to attacks in which the adversary is allowed to choose the
initial value of the hash function. It is by no means straightforward to extend the
attacks to full-blown attacks using the given initial values of the BMW variants.
Meet-in-the-middle attacks also do not seem possible since BMW uses an internal
state that is at least twice as large as the output of the hash function.

The attacks, as they are described in this paper, apparently do not apply to
the tweaked version of BMW.
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A Sub-functions used in f1

The sub-functions si, 0 ≤ i ≤ 4, and ri, 1 ≤ i ≤ 7, used in f1 are defined as
follows.

BMW-224 and BMW-256 BMW-384 and BMW-512
s0(x) = x�1 ⊕ x�3 ⊕ x≪4 ⊕ x≪19 s0(x) = x�1 ⊕ x�3 ⊕ x≪4 ⊕ x≪37

s1(x) = x�1 ⊕ x�2 ⊕ x≪8 ⊕ x≪23 s1(x) = x�1 ⊕ x�2 ⊕ x≪13 ⊕ x≪43

s2(x) = x�2 ⊕ x�1 ⊕ x≪12 ⊕ x≪25 s2(x) = x�2 ⊕ x�1 ⊕ x≪19 ⊕ x≪53

s3(x) = x�2 ⊕ x�2 ⊕ x≪15 ⊕ x≪29 s3(x) = x�2 ⊕ x�2 ⊕ x≪28 ⊕ x≪59

s4(x) = x�1 ⊕ x s4(x) = x�1 ⊕ x
s5(x) = x�2 ⊕ x s5(x) = x�2 ⊕ x
r1(x) = x≪3 r1(x) = x≪5

r2(x) = x≪7 r2(x) = x≪11

r3(x) = x≪13 r3(x) = x≪27

r4(x) = x≪16 r4(x) = x≪32

r5(x) = x≪19 r5(x) = x≪37

r6(x) = x≪23 r6(x) = x≪43

r7(x) = x≪27 r7(x) = x≪53

B Inverses of the matrix B used in f1

The matrix B is introduced in Section 2.1. This matrix is circulant, meaning
that each row is equal to the row above rotated one position to the right. The
inverses modulo 232 and 264 are also circulant. The first row of B−1 mod 232 (in
hexadecimal) is

[abababac, c6c6c6c7, bdbdbdbe, c0c0c0c1, 15151515, 4e4e4e4e, 90909090,
cfcfcfd0, babababb, 6c6c6c6d, dbdbdbdc, 0c0c0c0c, 51515151, e4e4e4e5,

09090909, fcfcfcfd].

The first row of B−1 mod 264 is

[abababababababac, c6c6c6c6c6c6c6c7, bdbdbdbdbdbdbdbe,
c0c0c0c0c0c0c0c1, 1515151515151515, 4e4e4e4e4e4e4e4e,
9090909090909090, cfcfcfcfcfcfcfd0, babababababababb,
6c6c6c6c6c6c6c6d, dbdbdbdbdbdbdbdc, 0c0c0c0c0c0c0c0c,
5151515151515151, e4e4e4e4e4e4e4e5, 0909090909090909,

fcfcfcfcfcfcfcfd].


