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Abstract. The security of randomized message authentication code,
MAC for short, is typically depending on the uniqueness of random initial
vectors (IVs). Thus its security bound usually contains O(q2/2n), when
random IV is n bits and q is the number of MACed messages. In this
paper, we present how to break this birthday barrier without increasing
the randomness. Our proposal is almost as efficient as the well-known
Carter-Wegman MAC, uses n-bit random IVs, and provides the security
bound roughly O(q3/22n). We also provide blockcipher-based instantia-
tions of our proposal. They are almost as efficient as CBC-MAC and the
security is solely based on the pseudorandomness of the blockcipher.
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1 Introduction

Message Authentication Code. Message Authentication Codes (MACs) are
symmetric cryptographic functions used to ensure the authenticities of messages.
Its usage is as follows. When Alice wants to send a message M , she computes
a MAC function that accepts M and a secret key, K, and possibly an auxiliary
variable called IV (stands for initial vector), and obtains an authentication tag
T as an output. Then she sends (IV, M, T ) to Bob, who shares K. Bob verifies
if (IV,M, T ) is authentic or not by computing the MAC using (IV, M) and K
to obtain the local tag T ′, and see if T ′ matches T . If IV is a nonce, e.g., a
counter, the MAC is said to be stateful. If IV is random, the MAC is said to be
(stateless but) randomized. An adversary observes valid (IV, M, T ) tuples and
tries to make a forgery, i.e., a new tuple (IV ′,M ′, T ′) which is determined as
authentic by Bob. If this is hard, we say the MAC is strongly unforgeable [2].
Security of Hash-then-Mask. To build an IV-based MAC, a common ap-
proach is Carter and Wegman’s one [11]: it uses an ϵ-almost XOR universal (ϵ-
AXU, see Sect. 2) hash function H : {0, 1}∗ → {0, 1}π, and a pseudorandom func-
tion (PRF) F : {0, 1}n → {0, 1}π. It produces a π-bit tag T = F (IV ) ⊕ H(M)
for message M using n-bit IV. We call this structure Hash-then-Mask (HtM). It
is denoted by Πrnd

n,π,ϵ when IV is random, and Πctr
n,π,ϵ when IV is a nonce.

Let us take a close look at the security of HtM against attacks with q tagging
queries and qv verification queries (see Sect. 2), where the goal of attack is to



break the strong unforgeability. For Πctr
n,π,ϵ, it is well known that the probability

of a forgery is at most qvϵ for any q ≤ 2n [4][9], except a term for the compu-
tational security of F . However, in case of Πrnd

n,π,ϵ the probability of forgery is
degraded to q2/2n + qvϵ as IVs may collide with probability about q2/2n, that
is, the birthday bound1. In fact, it is easy to prove that the above bound is
tight for q (see Sect. 3). This degradation is non-negligible when n is relatively
small, say 64. In addition, as pointed out by many researchers [3][16] the use of
nonce is sometimes impractical. Hence it is natural to ask if we could break the
above-mentioned birthday bound without being stateful. A trivial solution is to
use a longer random IV. The randomized HtM with 2n-bit IV (Πrnd

2n,π,ϵ) provides
the bound q2/22n + qvϵ, where F is a PRF with 2n-bit inputs. However, this is
problematic since (1) long random IV forces increased communication cost and
sender’s effort for generating randomness, and (2) the need for 2n-bit-input PRF
instead of n-bit-input one limits the applicability.

The second problem can be avoided by using MACRX3 [3]. It uses three n-bit-
input PRFs and an ϵ-AXU hash of π-bit output, and achieves O(q3/23n + qvϵ)-
security2. Unfortunately, MACRX3 requires an even longer, 3n-bit random IV.
Thus it still fails to avoid the first problem. As solutions to the both problems,
RMAC [16] and FRMAC [17] are known. They use an n-bit random IV and an
n-bit blockcipher. The bound of RMAC is O(σ/2n) where σ is the total message
blocks for all tagging and verification queries. FRMAC has a similar bound.
However, their security proofs are based on a controversial assumption on the
internal block cipher [29][18].
Our Contribution. From above discussion, what is important is to build a
randomized MAC with n-bit IV and has security bound better than O(q2/2n)
based on the standard assumptions. For this purpose, we first allow us to use
2n-bit-input PRF, combined with a universal hash having n-bit output. Our
proposal, called RWMAC, is just a randomized version of a nonce-based MAC
called WMAC [8] (and almost the same as a function appeared in the proof of
FRMAC [17]). With n-bit random IV and π-bit tag, RWMAC has O(ϵq2/2n +
qv(ϵ + 1/2π))-security when the universal hash is ϵ-Almost universal (ϵ-AU).
As ϵ ≥ 1/2n, we can achieve O(q2/22n + qv/2n)-security at best. Although our
proposal itself is not so new, we think our security proof is new and non-trivial.

Naturally, the next step is to build a randomized MAC with n-bit random
IV and n-bit-input PRF, which appears much more challenging. We present
a solution, called Enhanced Hash-then-Mask (EHtM), which will be the main
contribution of this paper. EHtM is very efficient, as it uses only two calls of
n-bit-input PRFs and one call of an ϵ-AXU hash with n-bit output. Tag length π
can be set to any value up to the output length of PRF. In return for this excellent
property, the security bound is O(ϵq3/2n + qv(ϵ+2−π)), thus O(q3/22n + qv/2n)
at best (when ϵ = O(1/2n) and π = n). Hence, our scheme certainly provides a

1 “Birthday bound” is somewhat confusing since randomized MAC has many param-
eters, such as tag length, IV length, etc. In this paper, we exclusively use this word
to express the term O(q2/2n) in the bound of randomized MACs with n-bit IVs.

2 In the sense of weak unforgeability. See Sect.2 for definition.



security beyond the birthday bound, however, its bound is generally inferior to
that of RWMAC.

The profiles of randomized MACs3 are briefly summarized in Table 1. Table
1 clearly shows that the complexity (both computation and communication) of
EHtM is the closest to that of the original randomized HtM among others.
Mode of Operation. EHtM is a generic construction. This generality allows us
to various instantiations. Among them, we present two blockcipher modes called
MAC-R1 and MAC-R2. Their complexities are almost the same as that of CBC-
MAC. To prove its security, we only require that the underlying blockcipher is
a pseudorandom permutation (PRP). This is a crucial difference from RMAC,
which is also based on CBC-MAC but requires the ideal-cipher model for its
security, which is highly problematic as shown by, e.g., Knudsen and Kohno
[18]. The concrete bounds of MAC-R1 and MAC-R2 are slight worse than the
original EHtM using n-bit PRFs. Still, there is a remarkable gain from CBC-
MAC and its variants. We think our proposals will be good practical MACs
using 64-bit blockciphers, thus suited to resource-constrained environments. A
detailed, quantitative comparison will be given in Sect. 6.3.

Table 1. Profiles of randomized MACs. We set π = n for the compatibility with RMAC
and FRMAC. We assume ℓn-bit messages. Hu[i, j] (Hxu[i, j]) denotes ϵ-AU (ϵ-AXU)
hash function of i-bit input and j-bit output. F[i, j] denotes a PRF of i-bit input and j-
bit output, and P[i] denotes an i-bit keyed permutation, i.e., a blockcipher. In deriving
the bounds of RWMAC and RMAC, we use σ ≤ ℓ(q + qv) for simplicity. The symbol
N indicates that the security proof requires a stronger assumption than the PRP, such
as the ideal-cipher model, for P[n].

MAC Rand Efficiency Security

Randomized Hash-then-Mask n 1Hxu[ℓn, n] + 1F[n, n] O(q2/2n + qvϵ)

MACRX3 [3] 3n 1Hxu[ℓn, n] + 3F[n, n] O(q3/23n + qvϵ)

RMAC [16] n (ℓ + 1)P[n] NO(ℓ(q + qv)/2n)

FRMAC [17] n 1Hu[ℓn, n] + 1P[n] NO(ℓ(q + qv)ϵ)

RWMAC (this paper, similar to [8]) n 1Hu[ℓn, n] + 1F[2n, n] O(ϵq2/2n + qvϵ)

Enhanced Hash-then-Mask (this paper) n 1Hxu[ℓn, n] + 2F[n, n] O(ϵq3/2n + qvϵ)

2 Preliminaries

Basic Notations. A random variable and its sampled value are written by a
capital and the corresponding small letters. A sequence of random variables is
3 A randomized MAC of Dodis et al. [12] also aims at reducing the bound via small

randomness. However the scope is different from us. Their purpose is to reduce the
security degradation with respect to ℓ (not q) due to the use of non-optimal universal
hash. Their proposal still contains O(q2/2n) if n-bit universal hash is used.



written as Xi def= (X1, X2, . . . , Xi). {0, 1}n is denoted by Σn, and Σ∗ denotes
the set of all finite-length bit sequences, including the empty string ϕ (which is
a unique element of Σ0). The bit length of x is denoted by |x|, with |ϕ| = 0.
A concatenation of two binary sequences, x and y, is written as x∥y. For any x
and π ≤ |x|, chopπ(x) is the first π bits of x.

A keyed function is written by a capital letter, and if it has n-bit inputs and
m-bit outputs it is written as F : Σn → Σm, i.e., we omit the description of
key space. F (∗∥w) is a keyed function Σn−|w| → Σm. In particular, the uniform
random function (URF) : Σn → Σm is denoted by Rn,m. This is a random
function whose distribution is uniform over {f : Σn → Σm}. The n-bit uniform
random permutation (URP), denoted by Pn, is a random permutation with a
uniform distribution over all permutations of Σn.

Definition 1. Let H : Σ∗ → Σn be a keyed function. If Pr[H(x) = H(x′)] ≤
ϵ(ℓ) holds for any distinct x, x′ with max{|x|, |x′|} ≤ ℓn, where probability is
defined by H’s key, H is said to be ϵ(ℓ)-almost universal (ϵ(ℓ)-AU). In addition,
if Pr[H(x) ⊕ H(x′) = y] ≤ ϵ(ℓ) holds for any y ∈ Σn and distinct x, x′ with
max{|x|, |x′|} ≤ ℓn, H is said to be an ϵ(ℓ)-almost XOR universal (ϵ(ℓ)-AXU).
We also say H is universal (XOR-universal) if ϵ(ℓ) is minimum, i.e., when H
is 1/2n-AU (1/2n-AXU).

For any keyed function F , AdvprfF (q, τ) denotes the maximum advantage [1]
in distinguishing F from a URF having the same input/output domains using
q chosen-plaintext queries and computational complexity τ . Moreover, for any
keyed permutation E over Σn, AdvprpE (q, τ) denotes the maximum advantage in
distinguishing E from Pn.

Definition 2. A randomized MAC function with η-bit randomness and π-bit
tag is defined as a keyed function F : Ση × Σ∗ → Σπ. A query to the tagging
oracle (called a tagging query) is a message M ∈ Σ∗, and the corresponding
answer is (U, T ) ∈ Ση × Σπ, where U is independent and uniform over η bits,
and T = F(U,M). A query to the verification oracle (called a verification query)
is a tuple (Ũ , M̃ , T̃ ) and the corresponding answer, written as a binary digit B,
is 1 if T̃ = F(Ũ , M̃) and 0 otherwise.

Here, F does not produce U on its own. For any F we implicitly assume the
uniform distribution of U . In a verification query, Ũ can be arbitrarily chosen.
As mentioned in Introduction, the adversary’s goal is to create a forgery in the
sense of strong unforgeability [2] defined as follows.

Definition 3. A (q, qv, ℓ, τ)-forger, A, against a randomized MAC, F : Ση ×
Σ∗ → Σπ, is an entity that performs q tagging queries and qv verification queries,
where every message is at most ℓn-bit and A’s total computational complexity is
τ . We use subscripts to express the ordinal number of queries, e.g., Mi denotes
the i-th tagging query. If (Ũj , M̃j , T̃j) ̸= (Ui,Mi, Ti), i = 1, . . . , q, and Bj = 1
holds for some j ∈ {1, . . . , qv}, (Ũj , M̃j , T̃j) is called a successful forgery.



Note that Mi can depend on U i−1, M i−1, and T i−1 but not depend on Ui.
Strong and Weak Unforgeabilities. If we require a stricter condition that
M̃j ̸= Mi for i = 1, . . . , q, we call the corresponding security notion the weak
unforgeability. This notion is defined as (mere) unforgeability by Bellare et al.
[2]. See [2] for the technical differences in strong and weak unforgealibities.

Definition 4. For any forger A and randomized MAC F, the forgery probability
is the probability that A produces at least one successful forgery (in the sense
of Def. 3) for F. The maximum forgery probability for all (q, qv, ℓ, τ)-forgers is
denoted by FPF(q, qv, ℓ, τ). By omitting τ we mean the maximum information-
theoretic forgery probability, i.e., FPF(q, qv, ℓ) means FPF(q, qv, ℓ,∞).

As pointed out by [6], if we focus on the first successful forgery, we only
need to consider forgers that first perform q tagging queries and then per-
form qv verification queries. I.e., the game is divided into the consecutive two
phases; the tagging and verification phases. This restriction does not increase the
chance of single successful forgery. Also, the verification phase can be defined
as a batch process, i.e., (Ũj , M̃j , T̃j) is a (possibly non-deterministic) function of
(Uq,Mq, T q) and not dependent on (Ũ j−1, M̃ j−1, T̃ j−1, Bj−1). However, these
conventions will not work if we focus on other security notions, see [8][23].

3 Randomized WMAC

Limitation of Hash-then-Mask. Let us consider a randomized HtM with
n-bit IV, π-bit tag, defined as Πrnd

n,π,ϵ in Introduction. The components are H :
Σ∗ → Σπ which is ϵ-AXU and F : Σn → Σπ which is URF. Then we have

FPΠrnd
n,π,ϵ(ℓ)

(q, qv, ℓ) ≤ q2/2n+1 + ϵ(ℓ)qv, (1)

since the bound of Πctr
n,π,ϵ is ϵqv [9] and the forgery probability under random

IVs is at most the sum of forgery probability under distinct random IVs (i.e.,
nonce) and the probability of IV collision, which is at most

(
q
2

)
/2n ≤ q2/2n+1.

In fact, the above bound is tight as 2n/2 tagging queries are enough to break
Πrnd

n,π,ϵ. The attack is as follows:

1. Make j tagging queries with distinct M j where a collision Ui = Uj for some
i < j occurs.

2. Let Mj+1 = Mj . Check if Uj+1 ̸= Uj holds (otherwise try another query
with the same message).

3. Make a verification query as (Ũ , M̃ , T̃ ) = (Uj+1,Mi, Ti ⊕ Tj ⊕ Tj+1).

As Ti⊕Tj⊕Tj+1 = F (Uj+1)⊕H(Mi), T̃ is a valid tag for a new tuple (Uj+1,Mi)4.
The attack succeeds with probability almost 1 if we use 2n/2 queries in the step
4 Here we break the strong unforgeability: it is open if the bound is also tight for the

weak unforgeability.



1. Since the attack does not exploit any specific properties of H and F , it works
for any randomized HtM5. Hence, to break the bound O(q2/2n) while keeping
the n-bit random IV, we need a different structure from Hash-then-Mask.
Randomized WMAC. To avoid the above attack, a promising solution is to
process the n-bit hash value, S = H(M), and the n-bit random IV, U , together
with a 2n-bit-input PRF, G. More precisely, the tag T ∈ Σπ for M is generated
as T = G(U,H(M)), where H : Σ∗ → Σn is ϵ(ℓ)-AU and G : Σ2n → Σπ is a
PRF. This MAC is denoted by RWMAC[H, G] as it is a randomized version of
WMAC [8], a nonce-based MAC. Indeed, RWMAC offers a very high security,
since neither an S-collision nor a U -collision can be noticed by adversary, unless
both collisions occur simultaneously. The security bound is as follows6.

Theorem 1. If H is ϵ(ℓ)-AU and q ≤ min{2n−2,
√

2n · ϵ(ℓ)−1},

FPRWMAC[H,G](q, qv, ℓ, τ) = AdvprfG (q + qv, τ + O(q + qv))

+ q2 ϵ(ℓ)
2n+1

+ qv

(
2(n − 1)ϵ(ℓ) +

1
2π

)
.

The proof of Theorem 1 is in Appendix A. The structure of the proof is the
same as that of our main theorem (Theorem 2), but details are much simpler.

4 Enhanced Hash-then-Mask

Although RWMAC provides a very high security, a big problem still remains:
it needs G, a PRF with 2n-bit input, while the original HtM is based on a
PRF with n-bit input. One may try some domain extension scheme of an n-bit-
input PRF to obtain a 2n-bit-input PRF. However, most known schemes such
as CBC-MAC, are only O(q2/2n)-secure, thus can not be used for our purpose.
One workable scheme of Maurer [21] is a composition of a keyed function that
diffuses a 2n-bit input to a cn-bit output for some c ≥ 2 and an encryption
function consisting of c PRFs aligned parallel. The output is the sum of each
c PRFs’ outputs. The security bound is O(qc+1/2cn) [21]. However, it is still
cumbersome to implement this diffuse-encrypt-xor scheme, as the diffusion must
be 2c-locally-uniform [21], which is much costly than the universal hash functions
even for a small c.

Nevertheless, there seems a chance of a simpler domain extension scheme,
because inputs to G of RWMAC can not be arbitrarily chosen. We will prove
that this intuition is true: 2n-bit PRF of RWMAC can be safely substituted with
an extremely simple function using two n-bit PRFs. The concrete proposal and
its security bound is in the following.

5 This attack has some similarities to the L-collision attack by Semanko [26], though
the targets of attacks are different.

6 An equivalent to RWMAC was appeared in Lemma 4 of [17] and the bound O(σϵ(ℓ))
was claimed, though we did not scrutinize the proof.



Definition 5. Let H : Σ∗ → Σn and Fi : Σn → Σn for i = 1, 2. The en-
hanced hash-then-mask (EHtM) with π-bit tags (for some π ≤ n) is defined
as EHtM[H, F1, F2](U,M) def= chopπ(U,F1(U) ⊕ F2(H(M) ⊕ U)) for message
M ∈ Σ∗, where U ∈ Σn is independent and uniformly random.

Theorem 2. Let H : Σ∗ → Σn be ϵ(ℓ)-AXU. Let F1 and F2 be independently-
keyed instances of F : Σn → Σn. Then we have

FPEHtM[H,F1,F2](q, qv, ℓ, τ) ≤ 2AdvprfF (q + qv, τ ′)

+
q3

6

(
ϵ(ℓ)
2n

+
1

23n

)
+ qv

(
4ϵ(ℓ) +

1
2π

)
,

if q ≤ 3
(
ϵ(ℓ)/2n + 1/23n

)−1/3. Here τ ′ = τ + O(q + qv).

Hence, EHtM is secure if q ≪ (6 · 2n · ϵ(ℓ))−1/3 and qv ≪ min{2π, ϵ(ℓ)−1}
hold. In other words, EHtM guarantees about 2n/3-bit security for q and π-bit
security for qv, if ϵ ∼ 1/2n.

Tag T

F
1

n

F
2

H

chop

Message MRandom IV U

π

n

Fig. 1. Enhanced Hash-then-Mask.

5 Proof of Theorem 2

Overview. Let us denote two independent n-bit block URFs by R(1) and R(2).
We define EH as EHtM[H, R(1), R(2)] with an ϵ(ℓ)-AXU hash, H, and assume
some π ≤ n. We here prove a bound of FPEH(q, qv, ℓ). Computational counterpart
is easy, thus omitted.

We first provide an intuition for the proof. Let Si = Ui ⊕H(Mi) for i-th tag-
ging query. We observe that the finalization of EH, (U, S) → R(1)(U) ⊕ R(2)(S),
is indistinguishable from a 2n-bit-input URF, if set G = {(U1, S1), . . . , (Uq, Sq)}
satisfies two linear conditions. These conditions are related to the linear inde-
pendence of a characteristic vector matrix formed by G, but weaker than that.



Here, if we use the identical URF for processing of U and S, we need the linear
independence as in the proof of similar structures [3][21]. We show that, with
q ≈ 2n/2 tagging queries to EH the probabilities of violating these conditions
are negligible: the one is O(q3ϵ(ℓ)/2n) and the other is O(q2ϵ(ℓ)/2n). We also
show that, if the above-mentioned conditions are satisfied for tagging phase, the
forgery probability is O(qv(αϵ(ℓ) + 2−π)), where α is the size of largest class of
U (i.e. there is an α-collision but not (α + 1)-collision) in the tagging phase.
As Us are perfectly random, the probability of (α + 1)-collision is bounded by
O(qα+12−nα), thus taking α = 2 will suffice.
Setup. Let Hw(V) denote the Hamming weight of a binary sequence V, and let
Hw(V, V′) be (Hw(V),Hw(V′)) for a pair (V, V′). For x ∈ Σn, we use λ(x) ∈ Σ2n

to denote its characteristic vector (CV) by seeing x as an integer in [0, . . . , 2n −
1]. I.e., Hw(λ(x)) = 1 and the bit 1 is in the x-th coordinate of λ(x). For
Xq ∈ (Σn)q and I ⊆ {1, . . . , q}, we use

⊕
I λ(X) to denote

⊕
i∈I λ(Xi). Let

Q ⊆ {1, . . . , q} denote the index set of unique (U,M) pairs, i.e., for any i ̸= j,
i, j ∈ Q, (Ui, Mi) ̸= (Uj , Mj) holds. Note that, if i ̸∈ Q there exists j ∈ Q with
(Ui,Mi, Ti) = (Uj ,Mj , Tj), and thus all transcripts outside Q are useless for
forgers. Here, Q is a random variable whose probability is defined by EH and
the forger, and we assume Q is uniquely determined for any fixed (Uq,Mq) =
(uq,mq). We will use the following probabilistic events defined on {(Ui, Si)}i∈Q,
where Si = Ui ⊕ H(Mi) as mentioned.

– Collision-freeness: cfq
def= [(Ui, Si) ̸= (Uj , Sj) for all distinct i, j ∈ Q].

– Linear independence:
lidq

def= [Hw(
⊕

I λ(U),
⊕

I λ(S)) ̸= (0, 0) for all I ⊆ Q, |I| = even ≥ 2].
– Non-two-vulnerability :

ntvq
def= [Hw(

⊕
I λ(U),

⊕
I λ(S)) ̸= (1, 1) for all I ⊆ Q, |I| = odd ≥ 3].

– The size of U ’s largest equivalent class is at most α:
eqs(α) def= [maxi ec(Ui) ≤ α], where ec(Ui) = |{j ∈ {1, . . . , q} : Uj = Ui}|.

For convenience, when |Q| = 1, cfq and lidq are defined as true. When |Q| ≤ 2,
ntvq is defined the same as lidq. With this convention, ntvq → lidq → cfq

holds true (proof for |Q| ≤ 2 is trivial, and proof for |Q| ≥ 3 is obtained via
taking contraposition). For a forger A and a MAC F, let PA⋄F denote the
probability space defined by A and F (following Defs. 2 and 3). Furthermore, we
define νq,qv,ℓ(F, E) def= maxA:(q,qv,ℓ)-forger PA⋄F(E) as the maximum probability
of event E . The maximum conditional probability of E given another condition
E ′ is similarly defined and denoted by νq,qv,ℓ(F, E|E ′). We also define a weak
form of adversary. If A’s tagging and verification queries are independent of T q,
i.e., Mi is made from U i−1M i−1 and (Ũj , M̃j , T̃j) is made from (Uq,Mq) for
all i ≤ q and j ≤ qv, A is said to be T -independent7. We define µq,ℓ(F, E) as
the maximum probability of E under all T -independent (q, qv, ℓ)-forgers. If E is
defined for tagging phase (that is, the probability of E is independent of the result
7 Here, T -independent forger is stronger than non-adaptive one, who determines Mq

independent of (Uq, T q).



of verification phase), we simply write νq,ℓ(F, E) or µq,ℓ(F, E). For i = 1, . . . , qv,
let suci denote the event Bi = 1 (see Def. 3) and let suc

def= suc1 ∨ · · · ∨ sucqv .
Now we have

FPEH(q, qv, ℓ) = νq,qv,ℓ(EH, suc)

≤ νq,qv,ℓ(EH, suc|eqs(α) ∧ ntvq) + νq,ℓ(EH,eqs(α)) + νq,ℓ(EH,ntvq). (2)

In the following, we analyze each of the three terms in the r.h.s. of Eq. (2).
Analysis of the Third Term. Let RW be an idealized RWMAC with n-bit IV
and π-bit tag, defined as RW(U,M) = R2n,π(U,U ⊕ H(M)), where H : Σ∗ →
Σn is the same as one used by EH. ntvq and cfq are similarly defined with
Si = Ui ⊕ H(Mi).

Proposition 1. Let Func ∈ {EH, RW}. Then for E ∈ {lidq,ntvq} we have

P Func(Tq = tq|Uq = uq,Mq = mq, T q−1 = tq−1, E) =
1
2π

(3)

holds for all possible arguments (tq, tq−1, uq,mq), as long as (uq,mq) ̸= (ui,mi)
for all i ≤ q − 1 (that is, q ∈ Q). Moreover,

νq,ℓ(EH,ntvq) = νq,ℓ(RW,ntvq) = µq,ℓ(RW,ntvq) holds. (4)

Proof. The proof is based on Maurer’s methodology [21]. See Appendix B.

Proposition 2. cfq ∧ ntvq is equivalent to the event that there exist distinct
i, j, k ∈ {1, . . . , q}, satisfying Ui = Uj ̸= Uk and Si ̸= Sj = Sk with Mi ̸= Mj ̸=
Mk (here Mi = Mk is possible), and does not exist distinct i′, j′ ∈ {1, . . . , q}
such that (Ui′ , Si′) = (Uj′ , Sj′) with Mi′ ̸= Mj′ .

Proof. See Appendix C.

Let T be the set of all T -independent (q, qv, ℓ)-forgers. Now we have

µq,ℓ(RW,ntvq) ≤ µq,ℓ(RW,cfq) + µq,ℓ(RW,cfq ∧ ntvq) (5)

= max
B∈T

PB⋄RW(∃distinct i, j ∈ {1, . . . , q} : Ui = Uj , Si = Sj , Mi ̸= Mj)

+ max
B∈T

PB⋄RW(∃distinct i, j, k∈ {1, . . . , q} : Ui = Uj , Sj = Sk,Mi ̸= Mj ̸= Mk),

≤
∑

1≤i<j≤q

max
B∈T

PB⋄RW(Ui = Uj ,H(Mi) = H(Mj),Mi ̸= Mj)

+
∑

distinct i,j,k
∈{1,...,q}

max
B∈T

PB⋄RW(Ui = Uj ,H(Mj) + Uj = H(Mk) + Uk,Mi ̸= Mj ̸= Mk),

(6)



where the first inequality follows from union bound, the second follows from the
definition of cfq and Proposition 2. Clearly, for any B ∈ T we have

PB⋄RW(Ui = Uj ,H(Mi) = H(Mj),Mi ̸= Mj),

= PB⋄RW(H(Mi) = H(Mj), Ui = Uj |Mi ̸= Mj) · PB⋄RW(Mi ̸= Mj),

≤ max
mi ̸=mj ,|mi|,|mj |≤nℓ

Pr(H(mi) ̸= H(mj)) ·
1
2n

≤ ϵ(ℓ) · 1
2n

, (7)

as B is T -independent (thus Ui, Uj ,Mi,Mj are independent of H’s key) and H
is ϵ(ℓ)-AXU, and that Ui, Uj are uniformly random. In addition, we observe that

PB⋄RW(Ui = Uj ,H(Mj) + Uj = H(Mk) + Uk,Mi ̸= Mj ̸= Mk)

= PB⋄RW(H(Mj) + Uj = H(Mk) + Uk|Ui = Uj ,Mi ̸= Mj ̸= Mk)

· PB⋄RW(Mi ̸= Mj ̸= Mk|Ui = Uj) · PB⋄RW(Ui = Uj), (8)

≤ max
mi ̸=mj ̸=mk,uj,uk,

|mi|,|mj |,|mk|≤nℓ

Pr(H(mj) + uj = H(mk) + uk) · 1
2n

≤ ϵ(ℓ) · 1
2n

(9)

from the same reason as above8. From Eqs. (4) to (9), we have

νq,ℓ(EH,ntvq) ≤
((

q

3

)
+

(
q

2

))
ϵ(ℓ)
2n

= (q3 − q)
ϵ(ℓ)
6 · 2n

. (10)

Analysis of the Second Term. Clearly, the probability of eqs(α) is bounded
as

νq,ℓ(EH,eqs(α)) ≤ Pr(∃distinct i1, i2, . . . , iα+1 : Ui1 = Ui2 = · · · = Uiα+1)

≤
(

q

α + 1

)
1

2nα
. (11)

Analysis of the First Term. We have the following lemma.

Lemma 1. If νq,ℓ(EH,eqs(α) ∧ ntvq) ≤ 1/2,

νq,qv,ℓ(EH, suc|eqs(α) ∧ ntvq) ≤ qv

(
2αϵ(ℓ) +

1
2π

)
.

The proof of Lemma 1 is in Appendix D.
Combining Terms. From Eqs. (2), (10), (11), and Lemma 1, FPEH(q, qv, ℓ) ≤(

q
α+1

)
1

2nα + (q3 − q) ϵ(ℓ)
6·2n + qv

(
2αϵ(ℓ) + 1

2π

)
for any positive integer α ≥ 2, if

νq,ℓ(EH,eqs(α) ∧ ntvq) ≤
(

q
α+1

)
1

2nα + (q3 − q) ϵ(ℓ)
6·2n ≤ 1/2. By setting α = 2 we

conclude the proof.
8 At a glance, p = PB⋄RW(H(Mj) + Uj = H(Mk) + Uk|Ui = Uj , Mi ̸= Mj ̸= Mk)

seems 1/2n irrespective of H as Ui, Uj , and Uk are independent and uniform. This
is wrong if i < k < j and H is (e.g.) identity function for n-bit inputs: by choosing
Mk = Ui and Mj = Uk, p is 1. Moreover p is 1 if H is (a special class of) AU but
not AXU. Thus being AU is not the sufficient condition for H.



6 Blockcipher-based Instantiations

6.1 A CBC-based Mode

The generality of our EHtM allows us to derive various concrete instantiations.
Here, we present two blockcipher modes of operation. They look similar to
RMAC [16]. However they are provably secure on the pseudorandomness of the
blockcipher whereas RMAC needs the ideal-cipher model (ICM). Our modes use
CBC-MAC and a collision-free message padding, pad : Σ∗ →

∪
i=0,1,...(Σ

n)i.
For input x, pad appends 10|x| mod n−1 to x if |x| mod n ̸= 0, otherwise appends
10n−1, then partitions the appended x into n-bit blocks. For empty string ϕ,
we define pad(ϕ) = 10n−1. Let CBC[EK ] :

∪
i=1,...(Σ

n)i → Σn be CBC-MAC
using EK : Σn → Σn. For x = (x1, . . . , xℓ) ∈ (Σn)ℓ, CBC[EK ](x) = Yℓ, where
Yi = EK(xi ⊕ Yi−1) for i ≥ 1 and Y0 = 0n.

Our first proposal, MAC-R1, uses two blockcipher keys and is as follows.

Definition 6. The mode MAC-R1 generates the π-bit tag, T , for message M ∈
Σ∗, using (n − 1)-bit random IV, U , as T = chopπ(EK2(U∥0) ⊕ EK2(S∥1)),
where S denotes U ⊕ chopn−1(CBC[EK1 ](pad(M))). Here K1 and K2 are two
keys of an n-bit blockcipher, EK .

Fig. 2 depicts MAC-R1, where an internal chop is substituted with a logi-
cal OR. One may wonder if this really keeps the security beyond the birthday
bound, as the use of PRP-PRF switching lemma will bring O(q2/2n) into the
bound. However, this problem is circumvented by the use of Bernstein’s lemma
[7] instead of the switching lemma9. The security bound of MAC-R1 is as follows.

K1 E

M[0]

K1 E

M[1]

K1 E

M[L]||10n-|M[L]|-1

… …

Tag T

n-1

chop

Random IV U

π

n

K2 E K2 E

||0

0n-11

n

Message

n

Fig. 2. MAC-R1 when the last message block is partial.

9 Bernstein’s lemma is useful to derive a bound for the ratio (rather than the difference)
of two game probabilities where one involves URP and the other involves URF.



Corollary 1. Let ϵcbc(ℓ)
def= 2d(ℓ + 1)/2n + 64(ℓ + 1)4/22n, where d(x) denotes

the maximum number of positive integers that divide h, for all h ≤ x. Let δ(a) def=(
1 − a−1

2n

)− a
2 . Then, we have

FPMAC-R1[EK1 ,EK2 ](q, qv, ℓ, τ) ≤ 2AdvprpE (q∗1 , τ + O(q + qv))

+
{

q3

3

(
2ϵcbc(ℓ + 1)

2n
+

4
23n

)
+ qv

(
8ϵcbc(ℓ + 1) +

1
2π

)}
· δ(q∗2),

where q∗1 = (q + qv)(ℓ + 1), q∗2 = 2(q + qv), if q3 ≤ 1.5
(

2ϵcbc(ℓ+1)
2n + 4

23n

)−1

.

Proof. Let P(1)
n and P(2)

n be independent n-bit URPs. Using Bernstein’s lemma
(Theorem 2.2 of [7]), we have

FP
MAC-R1[P

(1)
n ,P

(2)
n ]

(q, qv, ℓ) ≤ FPR1PR(q, qv, ℓ) · δ(q∗2), (12)

where R1PR denotes MAC-R1[P(1)
n , Rn,n] (recall Rn,n is an n-bit block URF). As

a pair of functions (Rn,n(∗∥0), Rn,n(∗∥1)) is equivalent to a pair of independent
URFs : Σn−1 → Σn, R1PR is a complete instantiation of EHtM with (n − 1)-
bit random IV (and hash value). We then need to analyze the hash function
of R1PR, namely HR1PR = chopn−1 ◦ CBC[P(1)

n ] ◦ pad. From Bellare et al. [4]
and its extension [24], CBC[Pn] is ϵcbc(ℓ)-AXU, and thus HR1PR is 2ϵcbc(ℓ + 1)-
AXU. Combining this observation and Theorem 2 proves that FPR1PR(q, qv, ℓ)
is at most q3

3

(
2ϵcbc(ℓ+1)

2n + 4
23n

)
+qv

(
8ϵcbc(ℓ + 1) + 1

2π

)
. From this and Eq. (12),

we prove the information-theoretic version of Corollary 1. The computational
counterpart is easy.

Inside the Bound. We confirmed that δ(q∗2) is well approximated via the first-
order approximation, (1 + (q∗2)2/2n+1), when q∗2 ≤ 2n/2. Thus MAC-R1’s bound
is about q3ϵcbc(ℓ)/2n + qv(ϵcbc(ℓ) + 1/2π) when q + qv ≤ 2n/2−1. Here, ϵcbc(ℓ)
grows much slower than ℓ/2n (see [4]). When q∗2 exceeds 2n/2, δ(q∗2) rapidly
grows and the bound quickly reaches 1. From this, the bound is almost 1 when
q = 2n/2+c for a small positive constant c. This seemingly contradicts with our
proposition, but the bound is still negligibly small when q = 2n/2. This can be
verified by numerical results given in Fig. 3.

6.2 CBC-based, More Secure Mode

As mentioned, the bound of MAC-R1 quickly reaches one as q exceeds 2n/2. To
overcome this problem, we consider a different finalization : (Σn−2)2 → Σn as

DTWIN[EK ](x, x′) def= EK(x∥00) ⊕ EK(x∥10) ⊕ EK(x′∥01) ⊕ EK(x′∥11). (13)

Definition 7. The mode MAC-R2 generates the π-bit tag, T , for message M ∈
Σ∗, using (n− 2)-bit random IV, U , as T = chopπ(DTWIN[EK2 ](U, S)), where
S is n − 2 bits and defined as U ⊕ chopn−2(CBC[EK1 ](pad(M))).



To derive a bound, we define TWIN[EK ] : Σn−1 → Σn as TWIN[EK ](x) =
EK(x∥0)⊕EK(x∥1). Here DTWIN[EK ](U, S) corresponds to TWIN[EK ](U∥0)⊕
TWIN[EK ](S∥1), and Lucks [20] proved AdvprfTWIN[Pn](q) ≤ 4q/2n + q3/3 · 22n−1.
Hence, the concrete bound of MAC-R2 can be derived without Bernstein’s
lemma, which is as follows.

Corollary 2.

FPMAC-R2[EK1 ,EK2 ](q, qv, ℓ, τ) ≤ 2AdvprpE (2q∗1 , τ + O(q + qv))

+
q3

3

(
8ϵcbc(ℓ + 1)

2n
+

64
23n

)
+ qv

(
16ϵcbc(ℓ + 1) +

1
2π

)
+

8(q + qv)
2n

+
16(q + qv)3

3 · 22n

if q3 ≤ 1.5
(

2ϵcbc(ℓ)
2n + 4

23n

)−1

, where ϵcbc(ℓ) and q∗1 are as defined by Corollary
1.

From Corollary 2, the dominant term of MAC-R2’s bound is ϵcbc(ℓ)q3/2n (with-
out the restriction q + qv < 2n/2−1). Thus, MAC-R2 provides the same level of
security as that of EHtM with n-bit PRFs.

6.3 A Detailed Comparison

Table. Table 2 presents a detailed comparison of MAC-R1, MAC-R2, and pre-
vious MAC modes. Presenting the table is not a straightforward task because of
the differences in MAC types, security notions, and parameters. We tried to do
a fair comparison while keeping the simplicity. We chose CMAC (a.k.a. OMAC
[13]), RMAC, EMAC [10], and MAC-R1 and MAC-R2 with π = n, where n-bit
blockcipher is used. The bounds are shown without minor terms. For CMAC
and EMAC, only their prf-advantages are published [4][13][14]. For them we
have used Proposition 7.3 of [2] to get the bounds of FP. RMAC has several
versions, and we employ one defined in [16]. The RMAC proof is based on the
ideal-cipher model. For CMAC and RMAC, the bounds using σ (total message
blocks of queries) are also known. As σ ≤ ℓ(q+qv) holds we can always translate
a bound using σ into one using (ℓ, q, qv). The difference is small unless message
length distribution has very long tails. We note that one call (two calls) of block-
cipher in MAC-R1 (MAC-R2) can be done only with random IV. Hence, when
such precomputation is feasible they will be even faster in practice.
Graph. It is still difficult to see the bound shapes from Table 2. Hence, we also
perform exact bound computations for n = 64 and 128. The log2 FP – log2 q
graphs are shown in Fig. 3. We assume qv = q1/2, but the bound shape is almost
unchanged if qv is larger, e.g., qv = q. The difference of CMAC and EMAC’s
bounds is due to the recent advance in the collision analysis of CBC-MAC [4],
and will be smaller if ℓ is smaller (or, one can use a result of Nandi [25]). To
compute d(ℓ), we used that d(ℓ) < lg2 ℓ for ℓ < 225, shown by [4].

This graph enables us to see how much queries or data are acceptable to
restrict the forgery probability being smaller than 2−γ , where γ works as a
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Fig. 3. log2 FP – log2 q graphs with qv = q1/2. (left) n = π = 128, ℓ = 220 (right)
n = π = 64, ℓ = 210.

security parameter10. For example, if we set γ = 20, the maximum acceptable
data amount for n = 64 and ℓ = 210 is about 14.6 Mbyte for CMAC, 3.2 Gbyte
for EMAC, 512.9 Gbyte for RMAC, 40.4 Tbyte for MAC-R1 and 65.6 Tbyte for
MAC-R2. In this case, our proposal is even superior to RMAC; it is due to a
relatively large constant of RMAC bound ((4n + 6)σ/2n is presented in [16]),
and the difference in growths of q/2n and q3/22n.

Table 2. Detailed Comparison of MAC Modes.

MAC Key Rand Blockcipher Calls Security Bound

CMAC 1 − ⌈|M |/n⌉ + 1 (precomp) σ2/2n [14] or ℓ2(q + qv)2/2n [13]

EMAC 2 − ⌈(|M | + 1)/n⌉ + 1 d(ℓ)(q + qv)2/2n [4]

RMAC 2 n ⌈(|M | + 1)/n⌉ + 1 σ/2n [16] or ℓ(q + qv)/2n (with ICM)

MAC-R1 2 n − 1 ⌈(|M | + 1)/n⌉ + 2 (d(ℓ)q3/22n + d(ℓ)qv/2n) · δ(2q + 2qv)

MAC-R2 2 n − 2 ⌈(|M | + 1)/n⌉ + 4 (d(ℓ)q3 + q3
v)/22n + (q + d(ℓ)qv)/2n

10 If we say “it has b-bit security” or “it is secure if q ≪ 2b”, we implicitly assume
γ = 0. This is a simple, conventional way. However, it is sometimes too weak to
grasp the actual values: q2/2n can be much smaller than q/2n/2 but both mean
n/2-bit security.
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A Proof of Theorem 1

We abbreviate RWMAC[H, R2n,n] to RW′. Let U ∈ Σn be the random value,
and let V = H(M) ∈ Σn be the hash value for message M . Then it is trivial to
see that the uniqueness of (Ui, Vi) for all i ∈ Q (see Sect. 5 for definition of Q),
denoted by cf′

q, provides the uniform distribution of tags, T q ∈ (Σπ)q. From
this, we easily obtain

FPRW′(q, qv, ℓ)

≤ νq,qv,ℓ(RW′, suc|cf′
q ∧ eqs(α)) + νq,ℓ(RW′,cf′

q) + νq,ℓ(RW′,eqs(α))

≤ qv · νq,1,ℓ(RW′, suc1|cf′
q ∧ eqs(α)) + µq,ℓ(RW′,cf′

q) + µq,ℓ(RW′,eqs(α))

≤ qv · νq,1,ℓ(RW′, suc1|cf′
q ∧ eqs(α)) +

(
q

2

)
ϵ(ℓ)
2n

+
(

q

α + 1

)
1

2nα
, (14)

where event definitions (suc, suc1, and eqs(α)) and probability definitions (ν
and µ) are the same as Sect. 5. For forgery attempt (Ũ , M̃ , T̃ ), let Ṽ = H(M̃).
We define col′ as the event that (Ũ , Ṽ ) = (Ui, Vi) for some i ∈ Q. Now we
observe

νq,1,ℓ(RW′, suc1|cf′
q ∧ eqs(α)) ≤ νq,1,ℓ(RW′,col′|cf′

q ∧ eqs(α))

+ νq,1,ℓ(RW′, suc1|col′ ∧ cf′
q ∧ eqs(α)). (15)



Here the last term is 1/2π since the real tag for (Ũ , M̃) is completely unpre-
dictable given col′ ∧ cf′

q ∧ eqs(α) (the same as Eq. (24)). The remaining task
is to evaluate the first term of the r.h.s. of Eq. (15). We have

νq,1,ℓ(RW′,col′|cf′
q ∧ eqs(α)) = µq,1,ℓ(RW′,col′|cf′

q ∧ eqs(α)), (16)

≤ µq,1,ℓ(RW′,col′|eqs(α))
1 − µq,1,ℓ(RW′,cf′

q ∧ eqs(α))
. (17)

We assume the denominator being at least 1/2. The numerator is clearly at most
α · ϵ(ℓ) as the target forgers are T -independent and any Ui’s equivalent class is
of size at most α. Thus, we have

FPRW′(q, qv, ℓ) ≤
(

q

2

)
ϵ(ℓ)
2n

+
(

q

α + 1

)
1

2nα
+ qv

(
2α · ϵ(ℓ) +

1
2π

)
, (18)

if
(
q
2

) ϵ(ℓ)
2n +

(
q

α+1

)
1

2nα ≤ 1/2, for any α ≥ 2. If q ≤ 2n−2 and α = n − 1, we have(
q

α+1

)
1
2α < 1

2n . Thus, the above implies q2ϵ(ℓ)/2n+1 + qv (2(n − 1) · ϵ(ℓ) + 1/2π)
when q ≤ min{2n−2,

√
2n · ϵ(ℓ)−1}. This concludes the information-theoretic

part of the proof. The computational part is trivial.

B Proof of Proposition 1

For simplicity, we assume π = n and Q = {1, . . . , q} (i.e., all (ui,mi)s are
distinct) throughout the proof; proving under this setting is enough to prove
other settings. Let FNL : (Σn)2 → Σn be the finalization of EH, i.e. FNL(u, s) =
R(1)(u)⊕R(2)(s). Note that FNL(u, s) is equivalent to Rn+1,n(U∥0)⊕Rn+1,n(S∥1).
Then, a pair of CV (λ(U), λ(S)) can be expressed as Λ(U, S) = λ(U∥0)⊕λ(S∥1),
where λ(U∥0) and λ(S∥1) are 2n+1 bits CVs. Here Λ(U, S)’s weight is always
2, as U∥0 and S∥1 never collide. Then, from Sect. 5.2 of [21] (or [3]), when the
set {Λ(U1, S1), . . . , Λ(Uq, Sq)} is linearly independent the outputs of FNL are
perfectly random. Since this condition is equivalent to lidq, we have

P FNL(Tq = tq|Uq = uq, Sq = sq, T q−1 = tq−1, E) = 1/2n (19)

for all possible arguments, when E = lidq. When E = ntvq, Eq. (19) also holds
since ntvq → lidq and that ntvq is defined over (Uq, Sq) as well as lidq. As
Tq’s distribution in Eq. (19) is independent of actual values of Uq and Sq, we
immediately obtain

P EH(Tq = tq|Uq = uq,Mq = mq, T q−1 = tq−1, E) = 1/2n (20)

for all possible arguments, and for both E = lidq and ntvq. This proves Eq. (3)
for Func = EH. When Func = RW, the proof follows from the fact that both
ntvq and lidq includes cfq, which assures the uniform distribution of Tq given
Uq = uq,Mq = mq, and T q−1 = tq−1.



We proceed to the proof of Eq. (4). From Eq. (19) it is clear that

P FNL(Tq = tq,ntvq|Uq = uq, Sq = sq, T q−1 = tq−1,ntvq−1)

= PR2n,n(Tq = tq,ntvq|Uq = uq, Sq = sq, T q−1 = tq−1,ntvq−1) (21)

holds for all possible arguments (recall that we assumed unique (uq, sq)). From
Lemma 4 of [21], this equality also holds true for FNL ◦ Pre and R2n,n ◦ Pre, for
any independently-keyed pre-processing Pre : (Σn)2 → (Σn)2. Thus, by defining
the pre-processing as (U,M) → (U,U ⊕ H(M)), we obtain

P EH(Tq = tq,ntvq|Uq = uq,Mq = mq, T q−1 = tq−1,ntvq−1)

= PRW(Tq = tq,ntvq|Uq = uq,Mq = mq, T q−1 = tq−1,ntvq−1). (22)

From Lemma 6 of [21], the above implies νq,ℓ(EH,ntvq) = νq,ℓ(RW,ntvq). In
RW, the q tags are independently random as long as ntvq is satisfied, thus
the maximum probability of ntvq can be achieved without seeing tags, that
is, by T -independent forgers (this is a simple extension of Corollary 1 (iv) of
[21]: the difference is that Corollary 1 (iv) of [21] only considers chosen inputs
with no randomness while in our case a part of input is independently random).
Therefore, we have νq,ℓ(EH,ntvq) = νq,ℓ(RW,ntvq) = µq,ℓ(RW,ntvq), which
concludes the proof of Eq. (4).

C Proof of Proposition 2

Let E = E1 ∧ E2, where E1
def= [∃i, j, k ∈ Q, Ui = Uj ̸= Uk ∧ Si ̸= Sj = Sk] and

E2
def= [∀i′, j′ ∈ Q, (Ui′ , Si′) ̸= (Uj′ , Sj′)]. Note that E2 ≡ cfq. Also, it is easy to

see that E1 is equivalent to [∃i, j, k ∈ {1, . . . , q}, Ui = Uj ̸= Uk ∧ Si ̸= Sj =
Sk,Mi ̸= Mj ̸= Mk]. Using this, what we need to prove is cfq ∧ ntvq ≡ E .
This equivalence trivially holds when |Q| ≤ 2, as both sides are false in this
case. When q̄

def= |Q| ≥ 3, w.l.o.g. we assume the set {(Ui,Mi)}i=1,...,q̄ consists of
unique elements (i.e., Q = {1, . . . , q̄}).

If a subset I ⊆ {1, . . . , q̄} whose size is an odd number ≥ 3 satisfies that
Hw(

⊕
I λ(U, S)) = (1, 1) and any I ′ ⊂ I whose size is an odd number ≥ 3 has

Hw(
⊕

I′ λ(U, S)) ̸= (1, 1), I is called the minimal index set. When cfq ∧ ntvq

holds, there exists at least one minimal index set, which will be denoted by I∗

(it may not be unique). The set {Ui}i∈I∗ is uniquely partitioned into equivalent
classes, i.e. the sets of identical elements. We say Ui is odd-colliding (even-
colliding) if the size of Ui’s equivalent class in I∗ is odd (even). We use the
same definition for {Si}i∈I∗ . If Ui and Si are both odd-colliding, we say (Ui, Si)
is an odd-odd pair. In {(Ui, Si)}i∈I∗ , there is a unique equivalent class of U
whose size is odd, and a unique equivalent class of S whose size is odd, too.
Here multiple odd-odd pairs do not exist in {(Ui, Si)}i∈I∗ , as this implies cfq.
Moreover, any odd-odd pair does not exist; if it exists when |I∗| = 3, cfq occurs
by the remaining two pairs, and when |I∗| > 3 (as |I∗| must be odd, we have
|I∗| ≥ 5 ), removing the unique odd-odd pair and an even-even pair will result



in an index set I ′ ⊂ I∗ satisfying Hw(
⊕

I′ λ(U, S)) = (1, 1), thus contradicting
to the minimality of I∗. Therefore, we must have at least one odd-even or even-
odd pair in I∗. Let us assume that (Ui, Si) is such an odd-even pair. As Si is
even-colliding, there exists j ̸= i, j ∈ I∗ such that Si = Sj . This implies Uj ̸= Ui

as Uj = Ui means a (U, S)-collision. From Uj ̸= Ui, we know Uj is even-colliding,
and thus there exists k ∈ I∗ \{i, j} such that Uj = Uk. Then Sk ̸= Sj holds from
cfq. The case that there exists one even-odd pair holds true from the symmetry.
This proves the direct part, cfq∧ntvq → E . The converse clearly holds true, and
thus we have cfq ∧ ntvq ≡ E . From the definition of E , the proof is completed.

D Proof of Lemma 1

First, we have

νq,qv,ℓ(EH, suc|eqs(α) ∧ ntvq) ≤ qv · νq,1,ℓ(EH, suc1|eqs(α) ∧ ntvq),
≤ qv · νq,1,ℓ(EH, lidq+1|eqs(α) ∧ ntvq)
+ qv · νq,1,ℓ(EH, suc1|lidq+1 ∧ eqs(α) ∧ ntvq),

(23)

where lidq+1 denotes the event that {(λ(Ui), λ(Si))}i∈Q∪{(λ(Ũ), λ(S̃))}, where
S̃ = Ũ ⊕ H(M̃), is linearly independent. Obviously, (Ũ , M̃) ̸= (Ui,Mi) for any
i ≤ q. Let Treal = EH(Ũ , M̃) be the real tag for (Ũ , M̃). If lidq+1 occurs, Treal

is uniform and independent of previous transcripts. Hence, Treal is completely
unpredictable. This means that

νq,1,ℓ(EH, suc1|lidq+1 ∧ eqs(α) ∧ ntvq) = 1/2π. (24)

To see νq,1,ℓ(EH, lidq+1|eqs(α) ∧ ntvq), the occurrence of lidq+1 indicates
Hw(

⊕
I λ(U) ⊕ λ(Ũ),

⊕
I λ(S) ⊕ λ(S̃)) = (0, 0) for an index set I ⊆ Q. Thus

we have Hw(
⊕

I λ(U),
⊕

I λ(S)) = (1, 1). As we have ntvq in the conditional
clause, this is impossible if |I| ≥ 3, and also impossible if |I| = 2 (as any index
set of even size can not produce (1, 1)). The only possibility is |I| = 1. This
corresponds to the event col

def= [∃i ∈ Q, (Ũ , S̃) = (Ui, Si)]. Thus we obtain

νq,1,ℓ(EH, lidq+1|eqs(α) ∧ ntvq) = νq,1,ℓ(EH,col|eqs(α) ∧ ntvq). (25)

Note that col is a function of H’s key, (Ũ , M̃), and (Uq,Mq). When ntvq

occurs, any information on H’s key, K, cannot be obtained from T q, as they
are independent of K (from Prop. 1). Thus, the maximum of the conditional
probability of col given ntvq can be achieved by T -independent forgers. Thus,



by defining T as the set of all T -independent (q, qv, ℓ)-forgers, we have11

νq,1,ℓ(EH,col|eqs(α) ∧ ntvq) = µq,1,ℓ (EH,col|eqs(α) ∧ ntvq)

= max
B∈T

PB⋄EH (col|eqs(α) ∧ ntvq)

≤ max
B∈T

PB⋄EH(col|eqs(α))
PB⋄EH(ntvq|eqs(α))

,

≤ max
B∈T

PB⋄EH(col|eqs(α))
1 − PB⋄EH(ntvq ∧ eqs(α))

, (26)

≤ maxB∈T PB⋄EH(col|eqs(α))
1 − maxB′∈T PB′⋄EH(ntvq ∧ eqs(α))

≤ µq,1,ℓ(EH,col|eqs(α))
1 − νq,ℓ(EH,eqs(α) ∧ ntvq)

, (27)

as T -independent forger is a subclass of normal forger. If µq,1,ℓ(EH,col|eqs(α))
is achieved by some B∗ ∈ T, we have

µq,1,ℓ(EH,col|eqs(α)) = PB∗⋄EH(col|eqs(α))

≤
∑

PB∗⋄EH(col|Uq = uq,Mq = mq, Ũ = ũ, M̃ = m̃,eqs(α))

· PB∗⋄EH(Uq = uq,Mq = mq, Ũ = ũ, M̃ = m̃|eqs(α))

≤ max P EH(∃i : H(m̃) = H(mi), ũ = ui|Uq = uq,Mq = mq, Ũ = ũ, M̃ = m̃),

≤ max
∑

i∈Q:ũ=ui

PH(H(m̃) = H(mi)) ≤ αϵ(ℓ), (28)

where the first sum and two maximums are taken for (uq,mq, ũ, m̃) such that
(uq,mq) satisfies eqs(α) and (ũ, m̃) ̸= ∀(ui,mi). The third inequality follows
from that Uq,Mq, Ũ and M̃ are independent of H’s key (as B∗ is T -independent),
and the last inequality follows from that |{i : ũ = ui}| ≤ α as eqs(α), and that
H is ϵ(ℓ)-AXU. From Eqs. (23), (24), (27), (28), we have

νq,qv,ℓ(EH, suc|eqs(α) ∧ ntvq) ≤ qv (2αϵ(ℓ) + 1/2π) , (29)

with the assumption νq,ℓ(EH,eqs(α) ∧ ntvq) ≤ 1/2. This concludes the proof.

11 Here we derive an upper bound of the probability of a “bad” event B conditioned by
a “good” event G. For a (randomized) HtM we need a similar analysis where B is
the hash collision between verification and tagging queries, and G is the uniqueness
of random IVs. Note that, while the uniqueness of random IVs in HtM gives no
information on the hash values, the good event G = eqs ∧ ntv for EHtM may give
some, negligble information on the hash values. This is the reason why 2αϵ(ℓ) is
needed rather than αϵ(ℓ) in Eq. (29).


