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Abstract. This paper provides a unified framework for improving PRF
(pseudorandom function) advantages of several popular MACs (message
authentication codes) based on a blockcipher modeled as RP (random
permutation). In many known MACs, the inputs of the underlying block-
cipher are defined to be some deterministic affine functions of previously
computed outputs of the blockcipher. Keeping the similarity in mind, a
class of ADEs (affine domain extensions) and a wide subclass of SADEs
(secure ADEs) are introduced in the paper which contain following con-
structions C = {CBC-MAC, GCBC∗, OMAC, PMAC}. We prove that all
SADEs have PRF advantages O(tq/2n +N(t, q)/2n) where t is the total
number of blockcipher computations needed for all q queries and N(t, q)
is a parameter defined in the paper. The PRF advantage of any SADE is
O(t2/2n) as we can show that N(t, q) ≤

(
t
2

)
. Moreover, N(t, q) = O(tq)

for all members of C and hence these MACs have improved advantages
O(tq/2n). Eventually, our proposed bounds for CBC-MAC and GCBC∗

become strictly better than previous best known bounds.
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1 Introduction

Domain extension is a method to construct an extended function over an arbi-
trary domain when underlying function(s) over small domain are given. A com-
mon practice is to design domain extensions whose extended functions achieve
some desired security whenever their underlying functions are assumed to have
similar security. For example, it is well known that Merkle-Damg̊ard with length
strengthening padding [7, 16] extends a collision resistant compression function
to a collision resistant hash function. Similarly MACs (message authentication
codes) are also domain extensions extending small domain PRPs (pseudorandom
permutations [13]) or PRFs (pseudorandom functions [8]) to arbitrary domain
PRFs. A PRF and PRP have negligible advantage to be distinguished from the RF
(random function) and RP (random permutation) respectively by any (q, t, `)-
distinguisher (which makes q queries with ` and t invocations of RP to compute
the output of the longest query and all queries respectively). Any tuple of q such



queries or messages are also called (q, t)- or (q, t, `)-messages. In this paper we
study MAC domain extensions based on a single blockcipher, modeled to be a
RP on {0, 1}n (or the Galois field (F2n ,+, ·,0,1) treated equally in the paper).

1.1 Related Works: PRF Security Analysis of Known MACs

The basic and old domain extension method based on blockcipher is CBC[3]
which was proven secure for prefix-free message spaces. Afterwards, many dif-
ferent variants of CBC are proven secure for arbitrary domains. In this paper we
are mainly interested in the following domain extensions: C = {CBC-MAC [5],
OMAC [9], GCBC∗ [19]1, PMAC [6]} and (directed acyclic graph) DAG-based
PRFs [11, 20]. Our paper continues the following two lines of research which
have been studied recently.

(1) Unifying Known Domain Extensions: In [11] a class of DAG based
domain extensions (Jutla’s class) was proposed where each non-singular DAG
or a family of non-singular DAGs (see Definition 4) corresponds to a domain
extension. Each node of a DAG represents blockcipher invocation with input
as a message block xor-ed with previously computed blockcipher-outputs corre-
sponding to the predecessor nodes. Even though the Jutla’s class contains CBC,
GCBC∗ and others, it does not include those which encrypt a constant block (e.g.
OMAC and PMAC encrypt the zero block 0). If we add a special node represent-
ing to the encryption of 0 then OMAC and PMAC can be included (as described
in Nandi’s class [20]).

(2)Finding Improved Bounds of PRF Advantages: The original PRF
bound for the members of C and DAG-based constructions is about t2/2n (some-
times `2q2/2n) [3–6, 9–11, 20, 22]. The improved bound `q2/2n for CBC-MAC
was shown first time in [2]. Afterwards, similar or better improved bounds were
shown for PMAC, OMAC [14, 15, 18] and others, e.g. EMAC [22, 23], XCBC and
TMAC [5, 12, 14] (see Table 1 for existing PRF bounds).

1.2 Motivation and Our Results

(1) We Unify Many Known Domain Extensions. It is always worthwhile
to unify similar objects and study them under one umbrella. It helps us to under-
stand the basic proof nature and to come up with new efficient constructions. In
this paper we consider a more general class, called ADEs (affine domain exten-
sions). It consists of all known domain extensions which invoke the underlying
blockcipher π in a sequence such that inputs of π are determined from previous
outputs via some affine functions. Moreover, the output of the domain extension
is the last output of π.

1 GCBC∗ is one example of one-key GCBC [19], a general class of CBC-type construc-
tions which can include any number of keys. For simplicity, we only consider a
particular one-key GCBC∗ which is eventually included in [11].



Definition 1 (Affine Domain Extension or ADE). A domain extension D
is called ADE over a message space M if for each message M ∈ M there is
a lower triangular matrix C = ((ci,j))

0≤j≤`
1≤i≤` (i.e. ci,j = 0, for all i ≤ j) and

` = `(M) such that

Dπ(M) = y(`), ∀π ∈ Pn (the set of all permutations on F2n)

where the ith intermediate output y(i) = π(x(i)) and the ith intermediate input

x(i) = ci,0 +
∑i−1
j=1 ci,j ·y(j), 1 ≤ i ≤ `. The matrix C is called coefficient matrix

corresponding to M .

In Section 4, we identify a class of PRF secure domain extensions and call
them SADE (secure affine domain extensions). It contains all modified non-
singular DAG-based PRFs (i.e. Nandi’s class) and the members of C. In The-
orem 2 we prove that CBC-MAC with prefix-free message space, OMAC, PAMC
and GCBC∗ are secure affine domain extensions. Non-secure ADE does not nec-
essarily mean insecure constructions. We do not know any generic method to
distinguish non-secure ADE. The other mentioned constructions such as EMAC,
XCBC, TMAC, etc. do not directly fit into this class due to presence of one or
more extra independent keys (auxiliary keys or/and blockcipher keys). They
mostly have underlying CBC type structure. For example, the PRF security of
EMAC can be reduced to collision probability of a ADE CBC-MAC [23]. General-
ized CBC class or GCBC includes these constructions and they have been studied
in [19]. This is beyond scope of our paper.

(2)We Find a PRF Bound for the Unified Class. Security analysis of all
DAG-based constructions are based on the model that the underlying blockcipher
is a random function and hence we can not go beyond t2/2n bound in the RP-
model of blockcipher due to the switching lemma [3] (switching from RF to RP
costs t2/2n). So we need to find a different method to obtain improved bounds.
The proof idea of [2] for the CBC-MAC uses structure graph which is also not
suitable for a general ADE.

We use equivalence relation which is more appropriate to describe collision
patterns on inputs of the blockcipher π during the computation of a ADE outputs.
Given any q messages M1, . . . ,Mq, let t =

∑q
i=1 `i, `i = `(Mi) and ti =

∑i
j=1 `i.

We write all intermediate inputs x(1), . . . , x(t) (also outputs y(1), . . . , y(t)) in the
order of the computations of Dπ(M1), . . . ,Dπ(Mq). We call the function xπ or
x : [1, t]→ F2n intermediate input function associated with permutation π (and
the messages M1, . . . ,Mq). Similarly we define intermediate output function y
(or yπ). Since intermediate inputs are eventually affine functions of intermediate
outputs, there is a t× (t+ 1) lower triangular matrix A (called joint coefficient
matrix) such that A·y = x where y = (1, y(1), . . . , y(t)) and x = (x(1), . . . , x(t)),
called intermediate output and input vectors respectively.

Definition 2 (Collision Relation). To any permutation π and a tuple of q
messages (M1, . . . ,Mq) ∈Mq we associate an equivalence relation ∼ (called col-
lision relation) on [1, t] := {1, 2, . . . , t} where all colliding inputs of π during the



computations of Dπ(M1), . . . ,Dπ(Mq) represents the equivalence classes. More
precisely, i ∼ j if and only if x(i) = x(j) where x(1), . . . , x(t) is the sequence of
all inputs of π while computing outputs of M1, . . . ,Mq.

Whenever we fix messages M1, . . . ,Mq or understood from the context, we
denote the collision relation by ∼π. The collision relation characterizes that
which intermediate inputs collide and which do not, independent of the actual
values of inputs. There may be more than one permutation associating a collision
relation. On the other hand, there may exist equivalence relations which are
not collision relations for any permutation. We provide a characterization of
collision relation in Lemma 2. We later see that some collisions on inputs (i.e.
x(i) = x(j) for i 6= j) are trivially derived from the previous occurred collisions
(see Example 1). A set of accidents is the largest set of collisions which can not
be derived from the other collisions only. All non-accident collisions are derived
form the accidents. The set of accidents is very much analogous with a basis of a
vector space2. A more formal definition of accidents in terms of basis of a vector
space is given in Definition 3. Let

N(t, q) = max
(q,t)−messages

(M1,...,Mq)

∑
1≤i<i′≤q

N(Mi,Mi′)

where N(Mi,Mi′) is the number of collision relations ∼ with one accident such
that Dπ(Mi) or Dπ(Mi′) collide with a different intermediate output. A precise
definition is given in Section 6. In Theorem 3 we prove that for any SADE D,

Advprf
D (q, t, `) ≤ 3qt+N(t,q)

2n if ` ≤ 2n/3−1. Moreover, in Theorem 4 we show that

N(t, q) ≤
(
t
2

)
and hence Advprf

D (q, t, `) ≤ t2

2n−2 .

(3)We Find Improved PRF Bounds for CBC and GCBC∗. Because of
Theorem 3, we only need to have a better estimation of N(t, q) for a given
SADE. In Section 6, we show that N(t, q) is O(tq) for each member of C and
hence we obtain the improved PRF bounds O(tq/2n) for all members of C. In
Theorem 5 we show that CBC with prefix-free message space, OMAC, GCBC∗,
PMAC have PRF advantages O(tq/2n).

We do not know whether this upper bound holds for all secure affine do-
main extensions or not (this would be a challenging future work). Our improved
bounds (see Table 1 for comparison) are better than some of the previously
known best bounds, namely `q2/2n for CBC-MAC[2], and t2/2n for GCBC∗[19].
Note that the bound `q2/2n can be worse compare to tq/2n or even t2/2n if the
query sizes are scattered enough. For example, when ` = q = t/2 = 2n/3 (this
can happen if one message has ` blocks and all other messages have only one or
two blocks) then `q2/2n = 1 and hence no security is guaranteed with `q2/2n

bound. On the other hand, 2qt/2n = 4t2/2n = 2n/3 are negligible. So proving
t2/2n or tq/2n bound still guarantee the security.

2 In fact, it is defined via a basis or generator of a set of vectors Veq defined in
Section 3.1 (also see Section 3.2).



Name of PRF Our PRF bounds Best Known Bounds Other Bounds

CBC-MAC [3]
11tq

2n
(R1)

20`q2

2n
(R1) [2]

t2

2n
[4, 20]

PMAC [6]
5tq

2n
(R1)

5tq

2n
[15]

10`q2

2n
[14]

OMAC [9]
9tq

2n
(R1)

5tq

2n
(R1) [18]

3.5t2

2n
[10]

GCBC∗ [19]
11tq

2n
(R1)

4t2

2n
[19] -

DAG-based [11, 20]
t2

2n−2

t2

2n
[11, 20] -

SADE [this paper]
3tq

2n
+
N(t, q)

2n
(R1) - -

Table 1. PRF bounds for (q, t, `)-distinguishers. R1: ` < 2n/3−1.

2 Preliminaries

We follow the notations described in introduction throughout the paper. We
write P(m, r) = m(m − 1) · · · (m − r + 1). We denote (i, j)th entry and ith row
of an s× (s+ 1)-matrix A by ai,j and Ai respectively, 1 ≤ i ≤ s, 0 ≤ j ≤ s.

The domain and range of a function g : J → F2n are J and g(J) := {g(j) :
j ∈ J} respectively and denoted by D(g) and R(g) respectively. If J ′ ⊆ J then
g(J ′) is the range of g|J′ restricted on the domain J ′. We denote the functions
having domain [1, t] := {1, 2, . . . , t} (index-set) by x, y, f, g etc.

The equivalence class containing i is [[i]] and the minimum element of the
class is called leader. The set of all leaders is denoted by Ld(∼) := {ı1, . . . , ıs}.
For any function g : J → F2n , the induced equivalence relation ∼g is defined as
i ∼g j if and only if g(i) = g(j).3 Two function f and g of same domain are said
to be equality-matching if ∼f=∼g and we denote it by f $ g.

2.1 Decorrelation Theorem

We state a useful result (Lemma 22 of [26]) for PRF security analysis (the result
is also applicable for (strong) pseudorandom permutation [24], pseudo online
cipher [20], etc.) and we call it Decorrelation Theorem. The main idea of the
theorem was described as Patarin’s “coefficient H-techniques” [21] (according to
Vaudenay [26, 25]). Different generalized versions of the theorem are stated in [4,
20]. For a deterministic adaptive distinguisher, the queries and the number of
blocks of queries may be dependent random variables. The decorrelation theorem
gets rid of the correlation and reduces PRF security analysis of D to show that
the q-decorrelation probability µM,w := Pr[DΠ(M1) = w1, . . . ,DΠ(Mq) = wq :

Π
∗← Pn] is very close to 1

2nq (equals to q-decorrelation probability for RF on
F2n) where M = (M1, . . . ,Mq) ∈ Mq and w = (w1, . . . , wq) ∈ Fq2n two q-
tuples of distinct elements. We call such M and w coordinate-wise distinct. A

3 We distinguish the notation ∼g (induced relation from a function) and ∼π (collision
relation associated with a permutation π) as g is a function and π is a permutation.



big advantage in the computation of µM,w is that the source of randomness is

only from the uniform distribution of Π over Pn which we denote by Π
∗← Pn.

We write the set {w1, . . . , wq} by W . The distinguishing advantage of a domain
extension D over a message space M based on a random permutation Π is
defined as follows:

Advprf
DΠ (A) = Pr[ARF = 1]− Pr[AD

Π

= 1], and

Advprf
DΠ (q, t, `) = max

A
Advprf

DΠ (A)

where the maximum is taken over all (q, t, `)-distinguishers.

Theorem 1. Decorrelation Theorem (Lemma 22 of [26])
Let q, t and ` be fixed integers, ε be some positive real number (may depend on
q, t, `) and Dπ : M → F2n be a domain extension, π ∈ Pn such that µM,w ≥
(1 − ε) × 2−nq for all coordinate-wise distinct M,w with

∑q
i=1 `(Mi) ≤ t and

maxi `(Mi) ≤ `. Then Advprf
DΠ (q, t, `) ≤ ε+ q(q−1)

2n+1 .

The intuitive reason why it works for bounding PRF advantage is the follow-
ing: Any adaptive distinguisher eventually makes decision based on all queries
and responses. So if for any possible set of queries, the responses of D is almost
uniformly random then no adaptive distinguisher can distinguish it from a ran-
dom function with non-negligible probability. The proof of the above theorem is
given in the Appendix. Security analysis of PRF base on any blockcipher EK is
same if we incorporate the PRP advantage of the EK by using the well known
hybrid argument technique. By using hybrid technique it is well known that
Advprf

DEK (q, t, `) ≤ Advprf
DΠ (q, t, `) + Advprp

EK
(t).

3 Results on Intermediate Input, Output functions and
Collision Relations

From now onwards we fix an affine domain extension D (see Definition 1) and
q distinct messages M1, . . . ,Mq, q ≥ 1. Let At×(t+1) = ((ai,j)) be its joint
coefficient matrix (see Section 1). Note that when q = 1 the joint coefficient
matrix is nothing but the coefficient matrix. We denote the ith row of the matrix
by Ai. Recall that to any permutation π, we associate an intermediate input
function x (or xπ) and output function y (or yπ), respectively where x(i) =∑i−1
j=0 ai,j · y(j) (denoted by y� x) and π(x(i)) = y(i),∀i.

3.1 Intermediate Output Function and Collision Relation

An intermediate output function y can be associated with more than one permu-
tations, e.g. yπ1 = · · · = yπr for some permutations π1, . . . , πr. Let Pn[y] denote
the set of all permutations with y as an output function. In other words, Pn[y] is
the collection of all permutations so that the computation ofDπ(M1), . . . ,Dπ(Mq)
gives exactly the same sequence of intermediate inputs and outputs namely x(1),



y(1), . . ., x(t), y(t). Clearly, all these permutations have to agree on the sets of
all intermediate inputs as π(x(i)) = y(i),∀i, ∀π ∈ Pn[y]. We denote the number
of distinct elements of x(i)’s (or y(i)’s) by s. Hence #Pn[y] = (2n−s)! whenever
y is an output function. Recall that x $ y if x(i) = x(j)⇔ y(i) = y(j) (i.e. the
collision patterns of x and y are the same) which is a necessary condition for
intermediate input and output functions. So a function y : [1, t]→ F2n is not an
intermediate output function if x 6$ y where y� x.

Lemma 1. (characterization of an intermediate output function). A
function y : [1, t]→ F2n is an intermediate output function if and only if y $ x
where y� x and in this case #Pn[y] = (2n − s)!.

We recall that a collision relation is the equivalence relation capturing the
collision pattern of xπ (and equivalently yπ) associated with π (see Definition 2).
We have already characterized intermediate output function in Lemma 1. In this
section we provide a characterization of collision relations since all equivalence
relations on [1, t] are not necessarily collision relations. For any (t+1)-vector v =
(v0, v1, . . . , vt) ∈ Ft+1

2n and any arbitrary equivalence relation ∼ we define a ∼-
reduced vector v∼ = (v0, v

∼
1 , . . . , v

∼
t ) where v∼i =

∑
j∈[[i]] vj , if i ∈ Ld(∼), o.w.

v∼i = 0. We mainly consider the ∼-reduced vectors for all row vectors Ai’s of the
joint coefficient matrix A. If y = (1, y(1), . . . , y(t)) for an intermediate output
function inducing a collision relation ∼=∼y then (A∼i −A∼j )·y = x(i)−x(j) = 0
if and only if i ∼ j. So we also define the following sets of (t+ 1)-vectors.

1. Veq := {A∼i −A∼j : i ∼ j},
2. Vneq := {A∼i −A∼j : i 6∼ j}.

Thus, ∀v ∈ Veq, v · y = 0. Similarly, ∀v ∈ Vneq, v · y 6= 0. Let ek ∈ Ft+1
2n

be the (t+ 1)-vector whose kth entry is 1 and all others are 0, 0 ≤ k ≤ t. Then
(ei− ej) ·y = y(i)− y(j) 6= 0 whenever i 6∼ j. Also, e0 ·y = 1 6= 0. So we define
the following two sets of vectors:

V∗neq := Vneq ∪ {ei − ej : i 6∼ j},V∗∗neq := V∗neq ∪ {e0}.

We have ∀v ∈ V∗∗neq, v · y 6= 0. In summary, intermediate output vector y is
in the null space of the set of vectors Veq and not in the null space of V∗∗neq. So
clearly a necessary condition for a collision relation is that the vectors of V∗∗neq is
not in the span of Veq. This necessary condition is also a sufficient condition as
described in the following lemma. We provide an estimate of the size of the set
Pn[∼] = {π :∼π=∼}, the set of all permutations associating the collision relation
∼ (a similar definition is given for Pn[y] and we distinguish this two notation
by the argument y which is a function, and ∼ which is an equivalence relation).
We use the well known result regarding the number of solutions of a system of
linear equations.

Lemma 2 (Characterization of Collision Relation). Let ∼ be a collision
relation then there exists y : [1, t]→ F2n such that

N1: v0 +
∑t
j=1 vj · y(j) = 0 for all (v0, v1, . . . , vt) ∈ Veq,



N2: v0 +
∑t
j=1 vj · y(j) 6= 0 for all (v0, v1, . . . , vt) ∈ V∗∗neq.

Hence, a necessary condition for a collision relation is that each vector of V∗∗neq
is linearly independent with Veq. Conversely, if V∗∗neq is linearly independent with
Veq (i.e. ∼ satisfies the above necessary condition) then

(2n − s)!× 2n(s−a) × (1−
#V∗neq

2n
) ≤ #Pn[∼] ≤ (2n − s)!×P(2n, s− a)

where s = #Ld(∼) and a = acc(∼) := rank(Veq) (the number of accidents).
Hence ∼ is a collision relation if #V∗neq < 2n.

The proof of the lemma is given in the full version of the paper [17]. We
provide a sketch of the proof. It is easy to see that if both N1 and N2 are true
for some function y then y $ x for y� x and hence y is an intermediate output
function. From Lemma 1 we know that the number of permutations associated
to each such intermediate output function is (2n − s)! where s is the number
of equivalence classes of ∼. It remains to estimate the number of intermediate
output functions inducing the collision relation ∼. By using the well known result
regarding the number of solutions of the system of linear equations, we know
that the number of vectors satisfying N1 is exactly 2n(s−a). If we restrict the
solutions such that y(i) 6= y(j) whenever i 6∼ j then the number of solutions
is at most P(2n, s − a). So #Pn[∼] ≤ (2n − s)! × P(2n, s − a). To obtain the
lower bound, note that any vector v ∈ V∗∗neq is linearly independent with Veq and
hence the rank of Veq ∪ {v} is (a + 1). If we remove all solutions satisfying N1
and v · y = 0 for each v ∈ V∗∗neq, from the set of solutions of N1 then it gives the
set of all solutions satisfying N1 and N2. So we have the lower bound.

Corollary 1. Pr[∼Π=∼] ≤ 1
P(2n−s+a,a) where a = acc(∼).

3.2 Generator and Number of Accidents of a Collision Relation

So far we have defined intermediate input function xπ, output function yπ and
a collision relation ∼π associated with any permutation π. Now we see that not
all collisions (i.e. x(i) = x(j), i 6= j) are unexpected. That means there is a set
of collision pairs which imply all other collisions independent of the underlying
permutation. Generator is a set representing the minimum such set and the
number of such collisions are called accident (which is eventually the rank of
Veq, the size of a basis of Veq). There can be more than one basis. We choose a
special basis in a particular manner so that it uniquely determines the collision
relation.

Definition 3. The generator Gen := Gen(∼) = ((i1, j1), . . . , (ia, ja)) of a re-
lation ∼ corresponds to a maximal linearly independent set of vectors (basis)
B := {Ai1 −Aj1 , . . . ,Aia −Aja} of Veq where the pairs of indices (ik, jk)’s are
chosen as smallest as possible w.r.t. the dictionary order ≺ on [1, t](2) := {(i, j) :
i > j}.4 The number of accident is defined as a = acc(∼) := rank(Veq).
4 (i, j) ≺ (i′, j′) if and only if either i < i′ or i = i′, j < j′. The notation (i, j) � (i′, j′)

means either (i, j) ≺ (i′, j′) or (i, j) = (i′, j′). Whenever we denote i ∼ j we mean



Note that the number of accidents a, and the generator Gen defined above
must be unique which can be defined recursively as follows. The pair (ik, jk) is
the smallest related pair (i, j) larger than (ik−1, jk−1) such that (A∼i −A∼j ) is
not linearly independent with {A∼ic − A∼jc : c < k}. So a relation ∼ uniquely
determines the generator Gen(∼). Now we state that the converse is also true,
i.e. a generator uniquely determines a relation. The proof is given in [17]. From
now onwards, all missing proofs of our paper are given in [17].

Lemma 3. Any relation ∼ satisfying the necessary condition of Lemma 2 is
uniquely determined by its generator Gen(∼). Hence the number of collision
relations with a accident is at most

(
t
2

)a
.

Corollary 2. Pr[acc(∼Π) ≥ 2 : Π
∗← Pn] ≤ t2

2n if t < 2n/2−1.

Remark 1. The generator of a collision relation actually represents the set of
all unexpected collisions. Each unexpected collision can occur with probability
roughly about 1/2n and these are independent to each other (Corollary 2). All
other collisions present in the collision relation are implied from these. For ex-
ample, CBC can have intermediate collisions for two messages if the messages
have common prefix. We see the following example where there are are three
collisions among which two of these are unexpected and the third collision can
be derived from these two.

Example 1. This is an example considered for CBC in [2]. Now we revisit it in our
joint coefficient matrix notations. Let M = (α1, α2, α3) and M ′ = (α′1, α

′
2, α
′
3)

such that α1⊕α3 = α′1⊕α′3. Now, consider a relation ∼= {{1, 6}, {2, 5}, {3, 4}}.
Thus, Ld(∼) = {1, 2, 3}. The coefficient matrix A = AM,M ′ of CBC and the
reduced matrix A∼ are computed below:

AM,M ′ =


α1 0 0 0 0 0 0
α2 1 0 0 0 0 0
α3 0 1 0 0 0 0
α′1 0 0 0 0 0 0
α′2 0 0 0 1 0 0
α′3 0 0 0 0 1 0

, A∼ =


α1 0 0 0 0 0 0
α2 1 0 0 0 0 0
α3 0 1 0 0 0 0
α′1 0 0 0 0 0 0
α′2 0 0 1 0 0 0
α′3 0 1 0 0 0 0


Note that A∼1 +A∼6 = A∼3 +A∼4 and hence the collision y1 = y6 is determined by
the collision y3 = y4. The set Veq = {A∼i −A∼j : i ∼ j} has only two independent
vectors. So the rank for the relation is two, even though it has three pairs which
are related (it is termed as true collision in [2]).

4 Secure Affine Domain Extensions

In Definition 1 we have defined affine domain extension. In this section we study
a subclass called secure affine domain extension or SADE. The cipher block

i > j, i.e. (i, j) ∈ [1, t](2). The notion of smaller and larger for pairs are based on the
dictionary order.



chaining message authentication code or CBC-MAC [3, 22] is a very basic and old
method to extend the domain of PRF. Later, many CBC-type domain extensions
were proposed. For a message M , let M∗ = M‖10d with the smallest nonnegative
d so that n | |M∗| (n divides |M∗|). If n | |M | then δ = 0, M = M , otherwise
δ = 1 and M = M∗. We represent M and M∗ by (α1, . . . , αb) ∈ Fb2n . The
integer b := b(M) = d|M |/ne is called the number of blocks of M . The keyed
blockcipher is denoted by π ∈ Pn. We show some CBC-type domain extensions
such as CBC-MAC, GCBC∗, OMAC, and others such as PMAC, DAG-based PRF
are affine domain extensions. The definitions of these are based on some distinct
non-0, non-1 constants c′i’s and cδ such that their differences are not 1. The
original choices of constants can be found in their respective papers [6, 9, 19]. In
the following, we define y(i) = π(x(i)).

C1 =


α1 0 0 . . . 0 0
α2 1 0 . . . 0 0
α3 0 1 . . . 0 0
...

...
...

...
...

αb 0 0 . . . 1 0

 C2 =


α1 0 0 . . . 0 0
α2 1 0 . . . 0 0
α3 0 1 . . . 0 0
...

...
...

...
...

αb 0 0 . . . cδ 0

 C3 =


0 0 0 . . . 0 0
α1 0 0 . . . 0 0
α2 0 1 . . . 0 0
...

...
...

...
...

αb+1 cδ 0 . . . 1 0



Fig. 1. C1,C2 and C3 are the coefficient matrices of CBC, GCBC∗, and OMAC respec-
tively for the message M .

CBC-MAC [3]: The CBC-MAC is CBC applied to the padded message. Let
`(M) = b and the input function x(1) = α1 and x(i) = αi+y(i−1), 2 ≤ i ≤ b.
GCBC∗ [19]: In case of GCBC∗, we consider the messages with b ≥ 2 and it is
defined as (GCBC∗)π(M) = π

(
αb + cδ · CBCπ(α1, . . . , αb−1)

)
for some constants

c0 and c1. The input function is same as CBC-MAC except the final intermediate
input x(b) = αb + cδ · y(b− 1).

OMAC [9]: OMACπ(M) = π
(
αb+c

′
δ·π(0)+CBCπ(α1, . . . , αb−1)

)
where CBCπ(λ) =

0, λ is the empty string. Let `(M) = b+ 1 and the input function is

x(1) = 0, x(i) = αi−1+y(i−1), 2 ≤ i < b+1 and x(b+1) = αb+cδ ·y(1)+y(b).

PMAC [6]: PMACπ(M) = π(αb +
∑b−1
i=1 π(αi + c′i · π(0)) + cδ · π(0)). So `(M) =

b + 1 and the input function x(1) = 0, x(i) = αi−1 + c′i · y(1), 2 ≤ i < b, and

x(b+ 1) = αb + cδ · y(1) +
∑b
i=2 y(i).

DAG-based PRF [11, 20]: In [11, 20] a domain extension over a message space
M = F`2n is proposed for every non-singular labeled DAG G = ([1, `], E , c) where
E is the set of arcs and c : E → F2n corresponds to the label. In [11], a more gen-
eral domain extension is defined for arbitrary messages by considering a family
of DAGs where each DAG corresponds to the domain extension with fixed length
messages after padding. The general definition includes CBC-MAC for arbitrary
message space, the version of GCBC considered in our paper. In [20], a much
bigger class is considered which can include PMAC and OMAC. All these con-
structions are affine domain extensions. Here we show it for the construction



based on a labeled DAG with message space M = F`2n and leave readers to
verify for other cases.

Definition 4. A DAG G with ` nodes [1, `] and a color function c : E → F2n

is called non-singular [11] if there exists exactly one source node (in-degree is
zero), one sink node ` (out-degree is zero) and for any two nodes v and v′ with
same set of incident nodes U (i.e. U = {u : u→ v} = {u : u→ v′}), there exists
u ∈ U such that c(u, v) 6= c(u, v′).

The nodes are numbered in such a way that u → v implies u < v. This is
possible since G has no cycle. Given a message M = (α1, . . . , α`) ∈ F`2n , let
` = `(M) = ` and DAGG(M) = y(`) where the input and output functions are

x(v) = αv +
∑
v′→v

c(v′, v) · y(v′), y(v) = π(x(v)), 1 ≤ v ≤ `.

Hence any DAG-based domain extension is ADE. The (i, j)th entry of the coeffi-
cient matrix is ai,j = c(i, j) if i→ j, otherwise ai,j = 0. The (i, 0)th entry is the
the ith message block αi. It is easy to verify the following result.

Lemma 4. If a DAG G is non-singular then for any message all rows of the
coefficient matrix are distinct. If M 6= M ′ then AM

` 6= AM ′

i , 1 ≤ i ≤ `.

EMAC [22], XCBC [5], TMAC [12] (as these domain extensions require either
auxiliary keys or more than one permutation) and XOR-MAC [1] (the output is
sum of all previous intermediate outputs instead of the last intermediate output)
are some examples of non-ADE PRFs. Now we characterize a class of PRF secure
affine domain extension called secure affine domain extensions.

Definition 5 (Secure Affine Domain Extension or SADE). An ADE D is
called SADE if for any (i,M) 6= (`(M ′),M ′), ∃π ∈ Pn such that yπ(i) 6= Dπ(M ′),
1 ≤ i ≤ ` where yπ is the intermediate output function associated with π for the
message M .

Informally speaking, an ADED is non-secure (not necessarily insecure) ifDπ(M ′)
always collide with a specific intermediate output of π while computing Dπ(M)
for some messages M and M ′. We call this type of collision “forced collision”
(later we see that it is related to a special collision relation called forced collision
relation). By knowing the value of Dπ(M ′) of a non-secure ADE (even for secretly
chosen permutation π), a specific positioned intermediate output of Dπ(M) is
leaked. This may be an undesired property which could lead a distinguishing
attack. For example, we have the following attacks:

CBC-MAC on {0, 1}∗ is not SADE and it has length extension attack due to
forced collision. If we modify the definition of OMAC by choosing c0 = 1 then
D(0‖0) = π(0) = yπ,M (1), ∀π and a message M (if we set xπ,M (1) = 0). So
it is not a SADE and one can show a distinguishing attack exploiting this
observation (e.g., D(0‖0) = C ⇒ D(C) = C with probability one). It also
explains why we should choose non-1 constants for OMAC.



Even though we know some attacks on non-secure ADE, we do not know yet
how to make a generic attack on all non-secure constructions. All affine domain
extensions avoiding this undesired forced collisions is SADE.

4.1 Examples of SADE

Now we show that all members of C are SADEs.

Theorem 2. Member of C and (modified) non-singular DAG-based domain ex-
tensions are SADE.

Before we prove it we first introduce a special collision relation called forced
relation. An equivalence relation ∼∗ is called forced relation if Veq = {0t}
(i.e. A∼i = A∼j if and only if i ∼ j) and V∗neq does not contain the zero vector.
So a forced relation clearly satisfies the necessary condition of collision relation
and #Pn[∼∗] > 0 provided t(t − 1) < 2n (see Lemma 2). So for any i 6∼∗ j
there exists a permutation π such that yπ(i) 6= yπ(j). Since rank(Veq) = 0,
there can exist at most one such collision relation (due to Lemma 3). The forced
relation is a sub-relation of all collision relations. In other words, if i ∼∗ j then
yπ(i) = yπ(j) for all permutation π (converse may not be true). This can be
shown as A∼i = A∼j for all i ∼∗ j where ∼=∼π. LetM be a message space such

that maxM∈M `(M) < 2n/2−1. Then for any pair of messages the joint coefficient
matrix has at most t rows such that t(t− 1) < 2n.

Lemma 5 (Equivalence characterization of SADE). An affine domain ex-
tension is SADE if and only if for any tuple of two distinct messages M =
(M,M ′), the forced collision relation ∼∗ is I-isolated (i.e. i 6∼∗ j, for all j 6= i,
i ∈ I = {t1 := `, t2 := `+ `′}).

Proof of Theorem 2. Lemma 4 shows that non-singular DAG-based construc-
tions are SADE. We prove the result for CBC-MAC with prefix-free message space.
The similar argument will work for other members of C. Let M = (α1, . . . , α`)
and M ′ = (α′1, . . . , α

′
`′) be two prefix-free messages, i.e. one is not prefix to other.

Suppose s ≥ 0 with α1 = α′1, . . . , αs = α′s, αs+1 6= α′s+1. Then s < min{`, `′} and
it is called length of common prefix. Now define a collision relation ∼ such that
1 ∼ `+ 1, . . . , s ∼ s+ ` and all other unequal values are unrelated (clearly, i ∼ i
for all i since it is an equivalence relation). Now let A = A(M,M ′) then it is easy
to see that A∼i = A∼j if and only if i ∼ j. Hence it must be the trivial collision
relation. Thus, CBC is SADE for any prefix-free message space. However, if we
choose two messages such that one is prefix to other then clearly trivial collision
relation says that CBC is not a secure affine domain extension. ut

5 A Unified PRF Security Analysis for all Secure Affine
Domain Extensions

Let (M1, . . . ,Mq) be any fixed (q, t)-messages with `i = `(Mi) and ti =
∑i
j=1 `j .

The final and intermediate index sets are I = {t1, . . . , tq := t} and [1, t] \ I



respectively. To any permutation π, we associate the intermediate input and
output function xπ : [1, t] → F2n and yπ : [1, t] → F2n respectively. We also
associate a collision relation ∼π characterizing all collisions on xπ(i) values. Now
we compute probability of collision between an intermediate input and a final
input of Π during the computations of DΠ(M1), . . . ,DΠ(Mq). More precisely,

ε(M1, . . . ,Mq) := Pr[xΠ(i) = xΠ(j), for some i ∈ I and j 6= i].

It is easy to see that ε(M1, . . . ,Mq) ≤
∑
i<i′ ε(Mi,Mi′) (by using the union

bound). The probability that ∼Π has rank two or more corresponding to mes-

sages (Mi,Mi′) is less than (`i+`i′ )
4

22n (see Corollary2). Since D is SADE, the
forced collision relation does not contribute to the probability ε(Mi,Mi′). So
only accident one collision remains to be considered. Let N(Mi,Mi′) denote the
number of accident one collision relations associated with messages Mi,Mi′ such
that the a final index is related with other index (i.e. either ti ∼ j or ti′ ∼ j′

for some j 6= ti and j′ 6= ti′). For any such collision relation ∼ we know that
Pr[∼Π=∼] ≤ 1

2n−`i−`i′+1 ≤
1

2n−2` (see Corollary 1) where ` = maxi `i. Hence

ε(M1, . . . ,Mq) ≤
∑

1≤i<i′≤q

(N(Mi,Mi′)

2n − 2`
+

(`i + `i′)
4

22n
)

<
N(M1, . . . ,Mq) + 2`+ 8`3tq/2n

2n

where N(M1, . . . ,Mq) :=
∑

1≤i<i′≤q N(Mi,Mi′). So if N(Mi,Mi′) ≤ c(`i + `i′)
for some constant c then N(M1, . . . ,Mq) ≤ ct(q − 1). Let N(t, q) = maxN(M1,
. . ., Mq) where the maximum is taken over all (q, t)-messages. We summarize
the above discussion in the following lemma.

Lemma 6. ε(M1, . . . ,Mq) := Pr[xπ(i) = xπ(j), for some i ∈ I and j 6= i] ≤
N(t,q)+2`+8`3tq/2n

2n . Moreover, if N(M,M ′) ≤ c(` + `′) for some constant c and
all messages M 6= M ′ with ` = `(M) and `(M ′) = `′ then ε(M1, . . . ,Mq) ≤
ct(q−1)+2`+8`3tq/2n

2n .

Definition 6. For a fixed block-wise distinct q-tuple w = (w1, . . . , wq), a per-
mutation π is said to be w-regular if

type-1: R(yπ|I) (the set of all π-outputs on I, see Section 2) and W =
{w1, . . . , wq} are disjoint (i.e. all intermediate outputs associated with the
permutation π are different from wi’s) and
type-2: xπ(i) 6= xπ(j), for all i ∈ I and j 6= i, i.e. ∼π is I-isolated.

The above Lemma 6 gives probability of type-2 permutations. A random
permutation does not satisfy type-1 property if an intermediate output is from
the q-set W . Intuitively, the probability that an intermediate output is from W
for first time (in terms of index) has probability less than q

2n−t . Since there are
t such intermediate outputs we have the following result.



Lemma 7. Pr
Π
∗←Pn

[yΠ(i) = wj , for some i ∈ I and j] ≤ qt
2n−t ≤

qt+t
2n .

Now we explain why we have defined w-regular permutations. Conditioning
on the set of all w-regular permutations, the probability that q final outputs of
the domain extensions for the messages M1, . . . ,Mq are w1, . . . , wq, is at least

1
P(2n−1,q) . So the conditional decorrelation probability is roughly 2−nq. We can

visualize this due to the following reason: Given that Π is w-regular, all final
intermediate inputs are fresh as they are different from all other intermediate
inputs of Π. Moreover, wj ’s do not appear in non-final intermediate outputs.
Hence the Π-outputs of the final intermediate outputs (which are the output of
the domain extensions) can be chosen at random so that they are distinct and
different from the intermediate outputs, in particular w1, . . . , wq.

Lemma 8. Pr
Π
∗←Pn

[yΠ(ti) = wi, 1 ≤ i ≤ q|Π is w-regular] ≥ 1
P(2n−1,q)

Armed with these lemmas and decorrelation theorem (Theorem 1) we can
prove our main result of this section.

Theorem 3. For any SADE D, Advprf
D (q, t, `) ≤ 3qt+N(t,q)

2n if ` < 2n/3−1.

Proof. µM,w := Pr
Π
∗←Pn

[yΠ(ti) = wi, 1 ≤ i ≤ q] ≥ Pr[Π is w-regular]
P(2n−1,q) . Note that

if ` < 2n/3−1 then 8`3tq
2n ≤ tq and hence Pr[Π is w-regular] ≥ 1− 2tq+t+2`+N(t,q)

2n .

Clearly, t + 2` < tq and so µM,w ≥
1− 3qt+N(t,q)

2n

2nq . The result follows from the
decorrelation theorem. ut
Corollary 3. If N(M,M ′) ≤ c× (`(M)+ `(M ′)) for all messages M 6= M ′ and

some fixed constant c, then Advprf
D (q, t, `) ≤ (3+c)tq

2n if ` < 2n/3−1.

Theorem 4. For any SADE D, we have Advprf
D (q, t, `) ≤ t2

2n−2 .

Proof. The result is immediate from Theorem 3 and Lemma 3 if we have the re-
striction on ` as needed in Theorem 3. To prove the unconditional bound we note

that µM,w ≥ Pr[Π is w-regular]
P(2n−1,q) ≥ 1−(qt+t)/2n−t(t−1)/2n

2nq since Pr
Π
∗←Pn

[xΠ(ti) 6=
xΠ(j) for all j 6= i] ≥ Pr[∼Π=∼∗] ≥ (1− t(t−1)/2n) (Lemma 2) where ∼∗ is the
forced collision relation. The result follows by using decorrelation theorem. ut

6 Improved Security Bounds for Members of C
We provide a sketch (the detail can be found in the full version of the paper [17])
of improved security analysis of members of C. We use the following lemmas
proved in [2] (Lemma 12 and Lemma 17 of [2]) and Corollary 3 to provide
improved PRF bounds.

Lemma 12 of [2]. For the CBC-MAC and any M 6= M ′, the number of col-
lision relations of accident one associated with messages M and M ′ such that
CBC-MAC(M) = CBC-MAC(M ′) is at most d′(|`(M) − `(M ′)|) where d′(m) =
maxm′≤m d(m) and d(m) denotes the number of divisors of m.

Lemma 17 of [2]. For any two prefix-free messages M 6= M ′, N(M,M ′) ≤
8(`(M) + `(M ′)) for CBC-MAC.



Improved Security Bound for CBC:
By applying Lemma 17 of [2] we have N(t, q) ≤ 4t(q − 1). Hence the CBC-MAC
for prefix-free message space has the following PRF advantage:

Advprf
CBC(q, t, `) ≤ 11tq

2n
if ` ≤ 2n/3−1.

Improved Security Bound for GCBC∗:
If (i, j) is a basis of a collision relation ∼ with one accident where both i, j 6∈
{1, `, ` + 1, t := ` + `′} then the basis vector A∼i − A∼j = c · e0 + ei−1 + ej−1
for some constant c has only two non-zero entries which are 1 with the column
index 1 or more (ignoring the zeroth column).
Case-A : δM 6= δM ′ : In this case one can show easily that ∼ is I-isolated. If
not t ∼ k for some k 6= t then A∼k −A∼t can not be multiple of c ·e0+ei−1+ej−1.
Case-B : δM = δM ′ and x` 6= x`′ : ∼ is I-isolated unless ` ∼ t. This implies
either `− 1 or t− 1 is related to i (< j say). Let `− 1 ∼ i− 1. Now A∼i−1−A∼`−1
is multiple of c · e0 + ei−1 + ej−1. This is possible only if A∼i−1 = A∼`−1 and
hence i − 2 ∼ ` − 2 and so on. So we get 1 ∼ ` − i + 1 which can not be true
as A∼1 −A∼`−i+1 can not be multiple of c · e0 + ei−1 + ej−1. Similarly one can
prove that when i− 1 ∼ t− 1.
Case-C : δM = δM ′ and x` = x`′ : In this case we reduce to CBC case by
dropping the last message block from both the messages.

So we can assume that one of the i, j from the set {1, `, ` + 1, t} and hence
N(M,M ′) ≤ 8(`+ `′). Hence

Advprf
GCBC∗(q, t, `) ≤

11tq

2n
if ` ≤ 2n/3−1.

Security Bound for OMAC:
Case-A : δM 6= δM ′ : Suppose I is not isolated in a collision relation ∼ of rank
one and say t ∼ i′. Let {(i, j)} be the basis for ∼ such that i, j 6∈ I. The first
element in A∼t −A∼i′ must be non-zero (either cδ′ − cδ or cδ′ − 1 or cδ′), whereas
the first element of A∼i −A∼j is zero. Thus, the rank should be more than one.
Hence, the only possible collision relation of rank one are relations with the basis
(i, j) where j ∈ I. So, the number of such relations is at most 2(`+ `′).

Case-B : δM = δM ′ : Suppose we have t ∼ i′ where i′ 6∈ I then by a similar
reason, the basis should contain the pair whose one element is from I. So there
are at most 2(`+ `′) many such relations. Now we consider the case when ` ∼ t.
This implies that CBC(M) = CBC(M

′
) and accident is still one for CBC. Since

δM = δM ′ , M 6= M
′
. Now by using Lemma 12 of [2], we know that there are at

most d(|`− `′|) such relations with one accident.
Combining the above two cases, the total number of collision relations with

one accident is at most 3(`+ `′) and hence N(M,N ′) ≤ 6(`+ `′). Thus, we have
PRF-insecurity bound for OMAC as

Advprf
OMAC ≤

9qt

2n
if ` ≤ 2n/3−1.



Security Bound for PMAC: It is easy to see that basis of an accident one
collision relation must contain a final index since the first column entry of row `
or t is cδ which is different from those of all other rows. So N(M,M ′) ≤ 2(`+`′).

Advprf
PMAC ≤

5qt

2n
if ` ≤ 2n/3−1.

Theorem 5. Each member of C has PRF advantage O(tq/2n) if ` < 2n/3−1.

7 Conclusion and Future Work

We provide a unified framework for improving PRF advantages of many known
blockcipher based domain extensions. We obtain improved bounds O(tq/2n) for
all members of C and our general result can also help to obtain similar improved
bound for any affine domain extension, once we know a better estimate of N(t, q).
We believe that N(t, q) = O(tq) for all secure affine domain extension and this
would be an interesting research area to prove it. The other possible direction of
research is to go further beyond O(tq/2n). To do so we need to find a completely
new proof technique as our general bound or others proof idea for improved
bounds can not do so.
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Appendix

Proof of Decorrelation Theorem

W.l.o.g we consider deterministic distinguisher A and the queries to be distinct.
So the final output of A only depends on responses w1, . . . , wq. Let S ⊆ Fq2n be
the set of all possible q-tuple of responses on which A returns 1. Now for any
fixed w := (w1, . . . , wq), let M := M(w) = (M1, . . . ,Mq) be the corresponding
distinct queries. Note that these queries are fixed and independent of oracles.

Let Y be the set of all coordinate-wise distinct elements from Fq2n . So Pr[ADΠ =

1 : Π
∗← Pn] =

∑
w∈S µw,M(w). Let M(w) = (M1, . . . ,Mq). The probability is

computed over the random choice of Π.

Advprf
D (A) =

#S

2nq
−
∑
w∈S

Pr[DΠ(M1) = w1, . . . ,DΠ(Mq) = wq]

≤ #S \ Y
2nq

+
∑

w∈S∩Y

( 1

2nq
− Pr[DΠ(M1) = w1, . . . ,DΠ(Mq) = wq]

)
≤ q(q − 1)

2n+1
+
ε×#(S ∩ Y)

2nq
(from the given condition)

≤ q(q − 1)/2n+1 + ε ut


