
Security Analysis of the Mode of JH Hash Function

Rishiraj Bhattacharyya1, Avradip Mandal2, and Mridul Nandi3?

1 Indian Statistical Institute, Kolkata, India
rishi r@isical.ac.in

2 Université du Luxembourg, Luxembourg
avradip.mandal@uni.lu

3 NIST, USA and Computer Science Department, The George Washington University
mridul.nandi@gmail.com

Abstract. Recently, NIST has selected 14 second round candidates of SHA3
competition. One of these candidates will win the competition and eventually be-
come the new hash function standard. In TCC’04, Maurer et al introduced the
notion of indifferentiability as a generalization of the concept of the indistin-
guishability of two systems. Indifferentiability is the appropriate notion of mod-
eling a random oracle as well as a strong security criteria for a hash-design. In this
paper we analyze the indifferentiability and preimage resistance of JH hash func-
tion which is one of the SHA3 second round candidates. JH uses a 2n bit fixed
permutation based compression function and applies chopMD domain extension
with specific padding.

– We show under the assumption that the underlying permutations is a 2n-
bit random permutation, JH mode of operation with output length 2n − s
bits, is indifferentiable from a random oracle with distinguisher’s advantage
bounded by O(q

2σ
2s

+ q3

2n
) where σ is the total number of blocks queried by

distinguisher.
– We show that the padding rule used in JH is essential as there is a simple

indifferentiablity distinguisher (with constant query complexity) against JH
mode of operation without length padding outputting n bit digest.

– We prove that a little modification (namely chopping different bits) of JH
mode of operation enables us to construct a hash function based on random
permutation (without any length padding) with similar bound of sponge con-
structions (with fixed output size) and with same efficiency.

– On the other hand, we improve the preimage attack of query complexity
2510.3 due to Mendel and Thompson. Using multicollisions in both forward
and reverse direction, we show a preimage attack on JH with n = 512, s =
512 in 2507 queries to the permutation.

Keywords: JH, SHA-3 candidate, Indifferentiability, chop-MD, random permu-
tation.

1 Introduction

Designing secure hash function is a primary objective of symmetric key cryptography.
Popular methods to build a hash function involve two steps. First, one designs a com-
pression function f : {0, 1}m → {0, 1}n where m > n. Then a domain extension
? Supported in part by the National Science Foundation, Grant CNS-0937267

algorithm that utilizes f as a black box4 is applied to implement the hash function
Hf : {0, 1}∗ → {0, 1}n. This is also known as design or mode of the hash func-
tion. The well known Merkle-Damgård domain extension technique is very popular as
it preserves the collision resistance property of the compression function: If f is colli-
sion resistant then so is Hf . This enables the designers to focus on designing collision
resistant compression functions.

INDIFFERENTIABILITY. While collision resistance remains an essential property of a
cryptographic hash function, current usage indicates that it no more suffices the modern
security goals. Today hash functions are used as PRFs, MACs, (2nd) preimage-secure or
even as to replace Random Oracles in different Cryptographic Protocols. In [6], Coron
et al considered the problem of designing secure cryptographic hash function based on
the indifferentiability framework of Maurer et al [15]. Informally speaking, to prove
indifferentiablity of an iterated hash function H (based on some ideal primitive f), one
has to design a simulator S. The job of S is to simulate the behavior of f while main-
taining consistency with the random oracle R. If no distinguisher D can distinguish the
output distribution of the pair (Hf , f) from that of (R,SR), the construction H is said
to be indifferentiable from a Random Oracle (RO). By proving indifferentiability, we
are guaranteed that there is no trivial flaw in the design of the hash function; the design
is secure against generic attacks. Today, indifferentiability is considered to be a desir-
able property of any secure hash function design. Coron et al showed in [6], the design
principle (Strengthened Merkle-Damgård) behind the current standard hash functions
like MD5 or SHA-1 does not satisfy indifferentiability from RO property. They also
proved that different variant of MD constructions, including chopped MD construc-
tions can be proven indifferentiable from a Variable Input Length Random Oracle if
the compression function is constructed as an ideal component like Fixed Input Length
Random Oracle or from Ideal Cipher with Davis Meyer technique. Subsequently, au-
thors of [2, 4, 9, 12] proved indifferentiability of different constructions of iterated hash
functions. In [5], Chang and Nandi proved an indifferentiability bound beyond birth-
day bound for chopped MD constructions under the assumption that the compression
function is a fixed input length random oracle.

In 2007, NIST announced a competition for a new hash function standard, to be
called SHA-3. 64 designs were submitted and after an internal review of the submis-
sions, 51 were selected for meeting the minimum submission requirements and ac-
cepted as the First Round Candidates. Recently, NIST declared the names of 14 candi-
dates for the second round of the competition. One of these candidates will win the com-
petition and eventually become the next standard cryptographic hash function. Hence,
it is essential for these candidate designs to be indifferentiable from an RO to guarantee
its robustness against generic attacks.

In this paper, we consider the mode of operation of the JH hash function, one of the
second round candidates of SHA3 competition. It uses a novel construction, somewhat
reminiscent of a sponge construction [4], to build a hash algorithm out of a single, large,
fixed permutation using chopped-MD domain extension [21]. We also consider a little
modified mode of operation of JH where the chopping is done on the other bits. For

4 The domain extension can be applied independent of compression functions except that it
depends on the parameters m and n.

a formal and detailed description of mode of operation of JH and the modified mode
of operation, we refer the reader to Section 2. Although the mode of JH is novel, it
has withstand many cryptanalysis attempts so far. The only noticeable attack is due
to Mendel and Thompson who has recently shown a preimage attack on JH mode of
operation through finding r- multicollisions in the forward direction of JH mode [16].
The query complexity of their attack is 2510.3 to get a preimage of JH outputting 512-
bits.

Our Result

In this paper we examine the indifferentiability and preimage resistance of JH mode
of operation in 2n bit random permutation model. Let s denote the number of chopped
bits. We extend the technique of Chang and Nandi [5] to random permutation model. We
prove that under the assumption that the fixed permutation of JH is a random permuta-
tion, JH mode of operation with specific length padding is indifferentiable from random
oracle with distinguisher’s advantage bounded by O(q

2σ
2s + q3

2n). When s = 3n/2 (as in
case of JH hash function with 256 bit output), our result gives beyond the birthday bar-
rier security guarantee for JH 5. This implies that finding collision in the output is not
enough to distinguish a Random Oracle from JH hash function with n/2-bit output. Al-
though chopMD constructions do not need the length padding in general, we show the
padding is essential for JH mode. We construct one indifferentiability attacker, working
in constant number of queries against JH mode of operation without length padding at
last block with n-bit output. This result also shows that the method used in [4] to prove
indifferentiability of sponge constructions (where length padding in last block is not
required) based on random permutations cannot be readily extended to prove indiffer-
entiability of JH.

Next we consider the preimage resistance of JH mode of operation and improve the
preimage attack of Mendel and Thompson [16]. Our preimage attack works with query
complexity 2507 for finding a preimage of 512-bit JH hash function. Even though it
marginally reduces the complexity of the previous known attack (with 2510.3 queries),
theoretically the new attack requires asymptotically less complexity. Looking ahead,
we exploit the multicollision in both forward and backward direction unlike in only
forward direction used in [16].

Simultaneously, we look at other constructions, modifying JH mode of operation,
where the chopping is done on the first instead of last s bits.

– We show that when the length of longest query is less than 2n/2, then the modified
JH mode of operation without the length padding is indifferentiable from an RO
with distinguisher’s advantage bounded by O(q2

2min(s,n)) where q is the maximum
number of queries made by the distinguisher.

– We show one indifferentiability attacker against modified JH mode of operation
with Ω(2n/2) query complexity. This shows for s ≥ n the previous security bound
is actually optimal.

5 According to birthday paradox, for a uniform random function with n-bit digest, collision can
be found with significant probability in O(2

n
2) queries. This is known as the birthday barrier

as security against more than O(2
n
2) queries is non-trivial; when at all possible

M1 M2 M3 M`

f f f f
Cf (M)IV

Fig. 1. Merkle-Damgård mode of operation based on compression function f

– If we set s = n, we get a random permutation based secure mode of operation
with n-bit digest using 2n bit permutation. We note that this construction is atleast
as secure as the sponge construction based on 2n bit random permutation. where
the indifferentiability bound is O(σ

2

2n) [4]. Here σ is the number blocks that the
adversary queries.

On a secondary note, even though our proof techniques for indifferentiable security
bounds are closely related to the techniques used in [5, 12], we give a more formal
argument behind some implicit assumptions made over there.

The rest of the paper is organized as follows. In next section, we mention the no-
tations, formal description of JH mode of operation and modified mode of operation,
a short introduction to Indifferentiability of hash functions and some useful definitions
and facts. In Section 3, we build our tools for extending Chang and Nandi’s proof to
random permutation model. For simplicity of of explanation, first we describe the in-
differentiability of modified JH mode without length padding at last block in Section 4
followed by indifferentiability of original JH mode with padding in Section 5. In Sec-
tion 6 and Section 7, we describe our indifferentiability distinguisher against JH mode
of operation and modified mode of operation without the padding. Finally in Section 8,
we present our improved preimage attack on JH mode of operation with padding.

2 Preliminaries

In this section we describe the notations and definitions used throughout the paper. Let
us begin with a formal definition of mode of operation.
Mode of Operation: Informally speaking, a mode of operation is an algorithm to
construct a hash function from a compression function.

Definition 1. A mode of operationC with oracle access to compression function f{0, 1}m
→ {0, 1}n an algorithm which defines a function Cf : {0, 1}∗ → {0, 1}n.

Let IV ∈ {0, 1}n be a fixed initial value. It is well known that given a compression
function f : {0, 1}m → {0, 1}n, Merkle-Damgård mode of operation is defined as

MDf (m1‖m2‖ . . . ‖ml) = f(f(. . . f(f(IV ‖m1)‖m2) . . .)‖ml)

where m1,m2, . . .ml ∈ {0, 1}m−n.
There is a subtle difference between a hash function and a mode of operation. The

mode of operation is actually a domain extension algorithm. If we supply a particular

compression function f to the mode of operation algorithm we get a particular hash
function. So when we think about a hash function, the compression function is fixed.
JH Mode of Operation: The compression function of JH, fπ : {0, 1}3n →
{0, 1}2n is defined as follows:

fπ(h1‖h2‖m) = π(h1‖(h2 ⊕m))⊕ (m‖0n)

where h1, h2,m ∈ {0, 1}n and π : {0, 1}2n → {0, 1}2n is a fixed permutation.

π
h1

h′2h2

h′1

m

Fig. 2. The JH compression function

The JH mode of operation based on a permutation π is the chopMD mode of oper-
ation based on the above compression function fπ . The usual Merkle-Damgård tech-
nique is applied on fπ and the output of the hash function is the first 2n − s bits of
the final fπ query output. For any, 0 ≤ s ≤ |m|, CHOPRs(m) is defined as mL where
m = mL‖mR and |mR| = s. Formally the JH mode of operation based on a permuta-
tion π with initial value IV1‖IV2 is defined as

JHπ(·) : ({0, 1}n)+ → {0, 1}2n−s ≡ CHOPRs(MDfπ (·)).

Where,MDfπ is the Merkle-Damgård mode of operation with initial value as IV1‖IV2

and compression function as fπ . According to [21], typically s = n. Also it is suggested
to have s ≥ n.

We also define a modified version of JH mode of operation (referred as JH′ through-
out the paper) where instead of chopping right most s bits we chop left most s bits. Let
for 0 ≤ s ≤ |m|, CHOPLs(m) is defined as mR where m = mL‖mR and |mL| = s.

JH ′π(·) : ({0, 1}n)+ → {0, 1}2n−s ≡ CHOPLs(MDfπ (·)).

Throughout the paper JH-t denotes the JH mode of operation with t bit output.
Similarly JH′-t denotes JH ′ mode of operation with t bit output.
Padding Rule: To encode messages whose lengths are not multiple of block size (n
bit) we need some padding rule, so that padded message becomes a multiple of block
size. A simple padding rule can be zero padding, that is adding sufficient number of
zero bits so that the padded message becomes a multiple of block size, even though this
is not secure. We will see as in the case of JH a well designed padding rule leads to
additional security guarantee.

Definition 2. A padding rule P is a tuple of two efficiently computable functions

P ≡ (PAD : {0, 1}∗ → ({0, 1}n)+,DEPAD : ({0, 1}n)+ → {0, 1}∗ ∪ {⊥})

such that for any M ∈ {0, 1}∗ we have

DEPAD(PAD(M)) = M.

DEPAD(y) outputs ⊥ if there exists no M ∈ {0, 1}∗ such that, PAD(M) = y.

The function PAD takes a message of arbitrary length and outputs the padded message
which is multiple of block length. Where as, the function DEPAD takes the padded
message which is multiple of block length and outputs the original message. Normally,
when we specify a padding rule we only specify the function PAD, but usually definition
of DEPAD can be trivially derived from the description of PAD. In our context, we are
interested in a specialized class of padding rules, namely with the following additional
properties.

1. |PAD(M)|
n = d |M |n e+ 1.

2. For any M ∈ ({0, 1}n)+, LB(M) ⊆ {0, 1}n be the set of n-bit elements (possible
last blocks) such that,
DEPAD(M‖m) 6=⊥ for any m ∈ LB(M). We want, |LB(M)| to be small for all
M ∈ {0, 1}∗(smaller than some constant).

Here, if x ∈ {0, 1}∗, |x| denotes the length of x in bits. Also, if A is a set, |A| denotes
the number of elements in A. Any padding which satisfies the above two properties is
called good padding rule. Now we are ready to define the JH mode of operation with
padding.

Definition 3. With respect to a padding rule P = (PAD,DEPAD) and a permutation
π, the JHP mode of operation is defined as follows,

JHπ
P (·) : {0, 1}∗ → {0, 1}2n−s ≡ JHπ(PAD(·)) ≡ CHOPLs(MDfπ (PAD(·))).

The JH Padding rule: In [21], the following padding rule is mentioned for
JH hash function with block length n = 512. Suppose that the length of the message
M is `(M) bits. Append the bit 1 to the end of the message, followed by 384 − 1 +
(−`(M) mod 512) zero bits. Then the binary representation of `(M) in big endian
form is concatenated. This padding rule ensures that at least one block of 512 bits is
padded after the message (irrespective of whether the message length is multiple of
512) . It is easy to check the above padding rule is actually a good padding rule with
|LB(M)| ≤ 2.

Indifferentiability: The notion of indifferentiability, introduced by Mau-
rer et. al. in [15], is a generalization of classical notion of indistinguishability. Loosely
speaking, if an ideal primitive G is indifferentiable with a construction C based on an-
other ideal primitive F , then G can be safely replaced by CF in any cryptographic
construction. In other terms if a cryptographic construction is secure in G model then it
is secure in F model.

Definition 4. Advantage
Let Fi, Gi be probabilistic oracle algorithms. We define advantage of the distinguisher
A at distinguishing (F1, F2) from (G1, G2) as

AdvA((F1, F2), (G1, G2)) = |Pr[AF1,F2 = 1]− Pr[AG1,G2 = 1]|.

Definition 5. Indifferentiability [15]
A Turing machineC with oracle access to an ideal primitiveF is said to be (t, qC , qF , ε)
indifferentiable from an ideal primitive G if there exists a simulator S with an oracle
access to G and running time at most t, such that for any distinguisher D, it holds that

AdvD((CF ,F), (G, SG)) < ε.

The distinguisher makes at most qC queries to C or G and at most qF queries to F
or S. Similarly, CF is said to be (computationally) indifferentiable from G if running
time of D is bounded above by some polynomial in the security parameter k and ε is a
negligible function of k.

F C S G

D

Fig. 3. The indifferentiability notion

We stress that in the above definition G andF can be two completely different prim-
itives. As shown in Fig 3 the role of the simulator is to not only simulate the behavior
of F but also remain consistent with the behavior of G. Note that, the simulator does
not know the queries made directly to G, although it can query G whenever it needs.

In this paper G is a variable input length Random oracle andF is a random permuta-
tion. Intuitively a random function (oracle) is a function f : X → Y chosen uniformly
at random from the set of all functions from X to Y .

Definition 6. f : X → Y is said to be a random oracle if for each x ∈ X the value of
f(x) is chosen uniformly at random from Y . More precisely,

Pr[f(x) = y | f(x1) = y1, f(x2) = y2, . . . , f(xq) = yq] =
1
|Y |

where |Y | is finite and x /∈ {x1, . . . , xq} and y, y1, . . . , yq ∈ Y .

A random permutation is similar to random oracle except that it is a permutation. So
similarly one can view a random permutation π : X → X as a permutation chosen
uniformly at random from the set of all permutation from X to X .

Definition 7. π : X → X is said to be a random permutation if for each x ∈ X we
have,

Pr[π(x) = y | π(x1) = y1, π(x2) = y2, . . . , π(xq) = yq] =
1

|X| − q

where |X| is finite and x /∈ {x1, . . . , xq}, y1, . . . , yq ∈ X and y ∈ X \ {y1, . . . , yq}

Definition 8. FH : {0, 1}2n → {0, 1}n is a function which outputs first n bit of any
2n bit number. Similarly, LH : {0, 1}2n → {0, 1}n is a function which outputs last n
bit of any 2n bit number.

Often we refer FH as left half and LH as right half. Below we state a few basic in-
equalities as a lemma which will be useful later.

Lemma 1. For any y ∈ {0, 1}2n−s, c ∈ {0, 1}n, S ⊆ {0, 1}2n and T ⊆ {0, 1}n we
have,

1. |{z ∈ {0, 1}s : y‖z ∈ S}| ≤ |S| and |{z ∈ {0, 1}s : z‖y ∈ S}| ≤ |S|
2. |{z ∈ {0, 1}s : FH(y‖z)⊕ c ∈ T }| ≤ 2n|T | and |{z ∈ {0, 1}s : FH(z‖y)⊕ c ∈
T }| ≤ 2s

2min(s,n) |T |

3 Main Tools for Bounding Distinguisher’s Advantage

We follow a similar approach to [5, 12] for proving indifferentiability security over here.
We start with modeling the attacker. Then we construct a simulator, for which the in-
formation the attacker sees remain statistically close whether the attacker is interacting
with JH Hash function and the random permutation it is based on, or it is interacting
with a random function and the simulator. Compared to [5] we do not restrict ourselves
to some particular type of irreducible views. The underlying small domain oracle being
a random permutation we also need to answer inverse queries.
Consistent Oracles
Intuitively, a small domain oracle is said to be consistent to a big domain oracle with
respect to some mode of operation if querying the mode of operation based on the small
domain oracle is equivalent to querying the big domain oracle.

Definition 9. A (small domain) probabilistic oracle algorithm G2 is said to be consis-
tent to a (big domain) probabilistic oracle algorithm G1 with respect to MO-mode of
operation if for any point x (from the big domain), we have

Pr[G1(x) = MOG2(x)] = 1.

The notion of consistent oracles is nothing new. In fact, in all the previous works
e.g. [4–7, 9, 10, 12] and many others, the simulators mentioned over there are always
consistent to the big domain oracle (or they abort, when they fail to be consistent). Also
note, π is always consistent to JHπ with respect to JH-mode of operation.
Evaluatable queries
There might be some point x for which the value of MOG2(x) gets fixed by the rela-
tions G2(x1) = y1, · · · , G2(xq) = yq . Such x’s are called evaluatable by the relations
G2(x1) = y1, · · · , G2(xq) = yq . Formally,

Definition 10. A point x ∈ Domain(MOG2) is called evaluatable with respect to
MO-mode of operation (based on G2) by the relations G2(x1) = y1, · · · , G2(xq) =
yq , if there exist a deterministic algorithm B such that,

Pr[MOG2(x) = B(x, (x1, y1), · · · , (xq, yq))|G2(x1) = y1, · · · , G2(xq) = yq] = 1.

Modeling the adversary
In this paper the adversary is modeled as a deterministic, computationally unbounded6

distinguisher A which has access to two oracles O1 and O2. Recall that A tries to
distinguish the output distribution of (JHπ, π) from that of (R,SR). We sayA queries
O1 when it queries the oracle JHπ or R and queries O2 when it queries the oracle π
or SR. As we model π as a random permutation, the distinguisher is allowed to make
inverse queries to oracle O2. We denote the forward query as (O2(+, ·, ·)) and inverse
query as (O2(−, ·, ·)). The view V of the distinguisher is the list query-response tuple

((M1, h1), . . . , (Mq1 , hq1), (x
1
1, x

2
1, y

1
1 , y

2
1), . . . , (x1

q2+q3 , x
2
q2+q3 , y

1
q2+q3 , y

2
q2+q3))

(1)
Where,

O1(M1) = h1, . . . ,O1(Mq1) = hq1

O2(+, x1
1, x

2
1) = (y1

1 , y
2
1), . . . ,O2(+, x1

q2 , x
2
q2) = (y1

q2 , y
2
q2)

O2(−, y1
q2+1, y

2
q2+1) = (x1

q2+1, x
2
q2+1), . . . ,O2(−, y1

q2+q3 , y
2
q2+q3) = (x1

q2+q3 , x
2
q2+q3)

Definition 11. For any view V as in (1), we define Input View I(V) and Output View
O(V) as follows,

I(V) = (M1, . . . ,Mq, (x1
1, x

2
1), . . . , (x

1
q2 , x

2
q2), (y

1
q2+1, y

2
q2+1), . . . , (y

1
q2+q3 , y

2
q2+q3))

O(V) = (h1, . . . , hq, (y1
1 , y

2
1), . . . , (y1

q2 , y
2
q2), (x

1
q2+1, x

2
q2+1), . . . , (x

1
q2+q3 , x

2
q2+q3))

Below we point out some important observations,

1. V , I(V) andO(V) are actually ordered tuples. That means, the position of any ele-
ment inside the tuple actually denotes the corresponding query number. So, in gen-
eral O1(.), O2(+, (., .)) and O2(−, (., .)) queries should not be grouped together.
But we write it like this to avoid further notational complexity.

2. For any deterministic non-adaptive attacker I(V) is always fixed.
3. For any deterministic adaptive attacker I(V) is actually determined by O(V) [18].
4. For any deterministic attacker (adaptive or non-adaptive) V is actually determined

by O(V).

Irreducible Views
Loosely speaking an irreducible view does not contain any duplicate query, and none
of the O1 queries are evaluatable from the O2 queries present in the view.

Definition 12. A view,

V = ((M1, h1), . . . , (Mq1 , hq1), (x
1
1, x

2
1, y

1
1 , y

2
1), . . . , (x1

q2+q3 , x
2
q2+q3 , y

1
q2+q3 , y

2
q2+q3))

is called irreducible if

6 Any deterministic adversary with unlimited resource is as powerful as a randomized adversary
[18].

– M1, . . . ,Mq1 are distinct,
– (x1

1, x
2
1), . . . , (x

1
q2+q3 , x

2
q2+q3) are distinct,

– (y1
1 , y

2
1), . . ., (y1

q2+q3 , y2
q2+q3) are distinct,

– M1, · · · ,Mq1 are not evaluatable by the relations

π(x1
1, x

2
1) = (y1

1 , y
2
1), . . . , π(x1

q2+q3 , x
2
q2+q3) = (y1

q2+q3 , y
2
q2+q3)

with respect to MD-mode of operation based on fπ .

Also, any view which is not irreducible is called reducible view.

Definition 13. For an attacker A, an output view OV is called irreducible if the cor-
responding view V is irreducible. Any output view which is not irreducible is called
reducible output view.

Let OVAO1,O2
be the random variable corresponding to the output view of attacker

A, obtained after interacting with O1,O2. Also, VAO1,O2
be the random variable corre-

sponding to the view of attacker A, obtained after interacting with O1,O2.
The theorem below shows, if the probability distributions for all possible output

views in two scenarios are close, then the attacker advantage is small. Theorems similar
to this were mentioned in literatures before [5, 12, 18]. The only difference is, here we
concentrate on output views instead of views. In fact, for a fixed attacker A, there is
always an one to one mapping between any view and output view.

Theorem 1. Fi, Gi be the probabilistic oracle algorithms. If for an attacker A, the
relation

Pr[OVAF1,F2
= OV] ≥ (1− ε) Pr[OVAG1,G2

= OV],

holds for all possible output views OV , then we have, AdvA((F1, F2), (G1, G2)) ≤ ε

In general it is hard to show the necessary condition of Theorem 1 for all possible
output views. Theorem 2 proves that it is sufficient to work with irreducible output
views instead of all possible output views. In fact, one can reduce any output view to an
irreducible output view and then can apply Theorem 1.

Theorem 2. If there exists a simulator SR consistent to a random oracleR with respect
to JH-mode of operation, such that for any attacker A making at most q queries, the
relation

Pr[OVAJHπ,π = OV] ≥ (1− ε) Pr[OVAR,SR = OV],

holds for all possible irreducible output views OV (with respect to A); then for any
attacker A making at most q queries, we have

AdvA((JHπ, π), (R,SR)) ≤ ε.

Proof. This theorem differs from Theorem 1, only in the aspect that here probability
distributions are close only for the irreducible output views. For any reducible output
view OV and the corresponding attacker A, let V be the view fixed by OV and A. Let,
V ′ be the view obtained by deleting the computableO1 queries and repeatedO2 queries
of V . The input view I(V ′) actually specifies a non-adaptive attacker A′. The output

view OV ′ = O(V ′) is actually an irreducible output view with respect to A′. As, π is
consistent to JHπ and SR is consistent to R with respect to JH-mode of operation we
have,

Pr[OVAJHπ,π = OV] = Pr[OVA
′

JHπ,π = OV ′]

Pr[OVAR,SR = OV] = Pr[OVA
′

R,SR = OV ′].

Note, A′ actually makes less number of queries compared to A. Hence, even for re-
ducible views, we have

Pr[OVAJHπ,π = OV] = Pr[OVA
′

JHπ,π = OV ′]

≥ (1− ε) Pr[OVA
′

R,SR = OV ′]

= (1− ε) Pr[OVAR,SR = OV].

So the required condition of Theorem 1 remains true. Now, by applying Theorem 1 we
get the result. ut

In many previous works e.g. [4, 5, 12] ideas similar to Theorem 2 have been used im-
plicitly. But to our knowledge, we are the first to formalize it.

4 Indifferentiability Security Analysis of JH ′

4.1 Simulator and its Interpolation Probability

The simulator maintains one partial permutation e1 : {0, 1}2n → {0, 1}2n initially
empty, one partial function e∗1 : ({0, 1}n)∗ → {0, 1}2n initialized with e∗1(φ) =
IV1‖IV2. It also maintains two sets C1, C2 initialized as C1 = {IV1} and C2 as empty.
Let I1 denotes the set of points on which e1 is defined, O1 denotes the output points of
e1. FH,LH : {0, 1}2n → {0, 1}n be the two functions outputting first n-bits and last
n-bits of any 2n-bit number respectively.

The goal of the simulator is to remain consistent to R with respect to JH-mode of
operation while behaving like a random permutation. Before describing the simulator,
we give some insight informally on how the simulator works.

1. In the partial permutation e1, the simulator maintains its history.
2. In the partial function e∗1, the simulator maintains the list of queries evaluatable by
e1 with respect to JH-mode of operation.

3. C1 is the set of first half (first n-bits) of e∗1 outputs.
4. Even though e∗1 is evaluatable by the partial permutation e1, it might happen that
e1 is also defined at some points which do not help in evaluating e∗1. C2 is the set
of first half of such points.

5. The simulator makes sure, C1 and C2 always remain mutually exclusive.
6. Because of 5, there are no so called accidents. That means when the attacker is

interacting with (R,SR) and it wants to evaluateO1(m1‖ · · · ‖m`) through a series
of O2 queries, she will always have to make a series of ` queries starting with
O2(IV1, IV2 ⊕m1). The attacker can not hope to skip a query in the middle.

S′R(+, x1, x2)

– IF e1(x1‖x2) = z RETURN z
– IF there exists M , s.t e∗1(M) = x1‖x′

1. m = x′ ⊕ x2

2. y = R(M‖m)⊕ CHOPL(m‖0n)
3. w ∈R {0, 1}s
4. z = w‖y
5. IF (z ∈ O1 OR FH(z)⊕m ∈ C1 ∪
C2)
• GOTO 3

6. C1 = C1 ∪ {FH(z)⊕m}
7. e∗1(M‖m) = z ⊕ (m‖0n)
8. e1(x1‖x2) = z
9. RETURN z

– ELSE

10. z ∈R {0, 1}2n
11. IF z ∈ O1

• GOTO 10
12. e1(x1‖x2) = z
13. C2 = C2 ∪ {x1}
14. RETURN z

S′R(−, y1, y2)

– IF there exists z1‖z2 such that e1(z1‖z2) =
y1‖y2
• RETURN z1‖z2

– ELSE

1. z1 ∈R {0, 1}n
2. IF z1 ∈ C1

• GOTO 1
3. z2 ∈R {0, 1}n
4. IF z1‖z2 ∈ I1

• GOTO 3
5. C2 = C2 ∪ {z1}
6. RETURN z1‖z2

Fig. 4. Simulator for JH′

We note at any point of time, the following conditions hold.

|O1| ≤ q2 + q3 and |I1| ≤ q2 + q3 and |C1 ∪ C2| ≤ q2 + q3 and |C1| ≤ q2 + 1

Theorem 3. For any attacker A against JH′ and any irreducible output view OV with
respect to it, we have

Pr[OVAR,S′R = OV] ≤ 1
2(2n−s)q1+2n(q2+q3)

× 1

(1− 2(q2+q3)
2min(s,n))q2

× 1

(1− 2(q2+q3)
2n)q3

where 2s > 2(q2 + q3)2min(s,n).

Proof. As OV is irreducible, R query outputs are independent of the other queries,
hence R being a Random Function for q1 many R queries we get the term 1

2(2n−s)q1 .
For an S′R(+, ·, ·) queries, simulator is giving output as w‖y, there are two scenarios.

1. y is distributed uniformly over {0, 1}2n−s and w is distributed uniformly over
{0, 1}s \ {z ∈ {0, 1}s : z‖y ∈ O1 or FH(z‖y)⊕ (x′ ⊕ x2) ∈ C1 ∪ C2}.

2. w‖y is distributed uniformly over {0, 1}2n \O1.

By Lemma 1 we know,

|{z ∈ {0, 1}s : y‖z ∈ O1}| ≤ |O1| ≤ (q2 + q3).

On the other hand, using Lemma 1 here we have,

|{z ∈ {0, 1}s : FH(z‖y)⊕ (x′ ⊕ x2) ∈ C1 ∪ C2}| ≤
2s

2min(s,n)
|C1 ∪ C2|

≤ 2s

2min(s,n)
(q2 + q3).

Hence, for 2s > 2(q2 + q3)2min(s,n) and any (w‖y) ∈ {0, 1}2n we have,

Pr[S′R(+, ·, ·) query outputs (w‖y)]

≤ max
(

1
22n−s

1
2s − 2s

2min(s,n) (q2 + q3)− (q2 + q3)
,

1
22n − (q2 + q3)

)
≤ 1

22n

1

(1− 2(q2+q3)
2min(s,n))

For SR(−, ·, ·) query giving output as z1‖z2 we know,

1. z1 is uniformly distributed over {0, 1}n \ C1

2. z2 is uniformly distributed over {0, 1}n \ {w ∈ {0, 1}n : z1‖w ∈ I1}

We know, |C1| ≤ (q2 + 1) and |I1| ≤ (q2 + q3). Hence, for any (z1‖z2) ∈ {0, 1}2n we
have

Pr[SR(−, ·, ·) query outputs (z1‖z2)] ≤
1

2n − (q2 + 1)
1

2n − (q2 + q3)

≤ 1
22n

1

1− 2(q2+q3)
2n

Hence, all together we get

Pr[OVAR,SR = OV] ≤ 1
2(2n−s)q1+2n(q2+q3)

× 1

(1− 2(q2+q3)
2min(s,n))q2

× 1

(1− 2(q2+q3)
2n)q3

ut

Next we wish to show that our simulator is efficient. The condition 2min(s,n) >
4(q2 + q3)2n ensures the GOTO statement at Step 5 in forward query in Figure 4 gets
executed with probability less than 1

2 at each iteration. We also know |O1| ≤ (q2 + q3)
and |C1 ∪ C2| ≤ (q2 + q3). Hence except with negligible probability, Step 5 takes at
mostO(q2+q3) time to satisfy the condition. The same argument holds for other GOTO
statements as well. Hence we get the following result.

Theorem 4. If 2min(s,n) > 4(q2 +q3), the simulator S′R takes at mostO(q2 +q3) time
to answer any query (except with exponentially small probability).

4.2 Interpolation Probability ofOVA
JH′π,π

In Theorem 3 we have shown upper bound for Pr[OVAR,S′R = OV] for any irreducible
output views OV . The Theorem below gives a lower bound for Pr[OVAJH′π,π = OV]
for any irreducible output view OV . Later we will apply Theorem 2 to prove the indif-
ferentiability bound using these upper and lower bounds.

Theorem 5. For any attackerA and any irreducible output viewOV with respect to it,
we have

Pr[OVAJH′π,π = OV] ≥ 1
2(2n−s)q1+2n(q2+q3)

× (1− 2σ2

22n
)× (1− 2q1(q1 + q2 + q3)

2min(s,n)
).

The proof of the above theorem involves two steps. Starting with an attacker A against
JH ′π ≡ CHOPL(MDfπ) we construct another attacker A′ against MDfπ which es-
sentially makes same queries as A but has access to unchopped output view.

– First we define the notion of MD-irreducible view (irreducible view with respect to
Merkle-Damgård mode of operation) and then we show for the output viewOVMD

corresponding to any MD-irreducible view we actually have,

Pr[OVA
′

MDfπ ,π = OVMD] ≥ 1
22nq1+2n(q2+q3)

× (1− 2σ2

22n
)

– In Theorem 7 we show, given an irreducible output view OV and an attacker A, if
OVMD is the set of all MD-irreducible output views for the attacker A′ such that,

Pr[OVAJH′π,π = OV|OVA
′

MDfπ ,π = OVMD] = 1

for all OVMD ∈ OVMD; then

|OVMD| ≥ 2sq1 × (1− 2q1(q1 + q2 + q3)
2min(s,n)

)

The above two results will readily imply Theorem 5.

Definition 14. The set of relations

MDfO2 (M1‖m1) = g1, . . . ,MDfO2 (Mq1‖mq1) = gq1

O2(x1
1, x

2
1) = (y1

1 , y
2
1), . . . ,O2(x1

q2+q3 , x
2
q2+q3) = (y1

q2+q3 , y
2
q2+q3) . . . Rel A

is MD-irreducible if,

1. g1 ⊕ (m1‖0n), . . . , gq1 ⊕ (mq1‖0n), y1
1‖y2

1 , . . . , y
1
q2+q3‖y

2
q2+q3 are all different.

2. For i = 1, . . . , q1, one of the following two conditions hold
(a) FH(gi) is different from x1

1, . . . , x
1
q2+q3 and IV1.

(b) Σ be the set of all message blocks present in MDfO2 queries. If FH(gi) =
IV1, then LH(gi) ⊕ IV2 6∈ Σ. If FH(gi) = x1

j for some 1 ≤ j ≤ q2 + q3,
then LH(gi)⊕ x2

j 6∈ Σ.

3. M1‖m1, . . . ,Mq1‖mq1 are not evaluatable by the relations

O2(x1
1, x

2
1) = (y1

1 , y
2
1), . . . ,O2(x1

q2+q3 , x
2
q2+q3) = (y1

q2+q3 , y
2
q2+q3)

with respect to MD-mode of operations based on fO2

We also say the tuple,

v = ((M1‖m1, g1), . . . , (Mq1‖mq1 , gq1), (x
1
1, x

2
1, y

1
1 , y

2
1), . . . ,

(x1
q2+q3 , x

2
q2+q3 , y

1
q2+q3 , y

2
q2+q3))

is MD-irreducible if and only if the corresponding Rel-A is MD-irreducible.

The definition above is similar to the definition of irreducible view (Definition 12). But
here we are interested in the view without any chopping. Note, condition 2 ensures
Mi‖mi is not evaluatable even with the help of the relations MDfO2 (Mj‖mj) = hj
for j 6= i. Loosely speaking, the Theorem below gives a lower bound of the prob-
ability of getting a particular MD-irreducible tuple v, when a attacker interacts with
(MDfπ , π).

Theorem 6. Let a tuple

v = ((M1‖m1, g1), . . . , (Mq1‖mq1 , gq1), (x
1
1, x

2
1, y

1
1 , y

2
1), . . . ,

(x1
q2+q3 , x

2
q2+q3 , y

1
q2+q3 , y

2
q2+q3))

is MD-irreducible, then the number of permutations π such that,

MDfπ

IV1‖IV2
(M1‖m1) = g1, . . . ,MDfπ

IV1‖IV2
(Mq1‖mq1) = gq1

π(x1
1, x

2
1) = (y1

1 , y
2
1), . . . , π(x1

q2+q3 , x
2
q2+q3) = (y1

q2+q3 , y
2
q2+q3) . . .Rel B

is at least
|Π|

22nq1+2n(q2+q3)
× (1− 2σ2

22n
),

where |Π| = (22n)! is the total number of permutations from {0, 1}2n to {0, 1}2n and
σ is the total number of message blocks queried. Also for a MD-irreducible tuple v, the
probability that Rel B holds is at least

1
22nq1+2n(q2+q3)

× (1− 2σ2

22n
),

when π is a random permutation.

Proof. Let D be the set of all elements from ({0, 1}n)+ whose MDfπ

IV1‖IV2
values are

determined from the relations

π(x1
1, x

2
1) = (y1

1 , y
2
1), . . . , π(x1

q2+q3 , x
2
q2+q3) = (y1

q2+q3 , y
2
q2+q3).

Since v is MD-irreducible, Mi‖mi /∈ D for all 1 ≤ i ≤ q1. let P denote the set of all
nonempty prefixes of Mi’s. More precisely,

P = {M ∈ ({0, 1}n)+ : M is prefix of Mi for some 1 ≤ i ≤ q1}.

We enumerate the set P \D ≡ {N1, . . . , Nσ′}. Note that, |P |+ q1 ≤
∑
i ‖Mi‖. Now,

we have

σ = q2 + q3 +
∑
i

‖Mi‖ ≥ q2 + q3 + |P |+ q1 ≥ q1 + q2 + q3 + σ′ ≡ σ′′

Similar to the proof of Lemma 1 in [5], we can choose outputs ofMDfO2

IV1‖IV2
(N1), . . . ,

MDfO2

IV1‖IV2
(Nσ′) in at least

(22n−2(q1 + q2 + q3))(22n−2(q1 + q2 + q3 +1)) . . . (22n−2(q1 + q2 + q3 +σ′−1))

ways. (In the negative term, the factor 2 comes because, any output value should not be
same as other output values and the next input value induced by the output value should
not be same as other input values.) Hence,

|{π : {0, 1}2n → {0, 1}2n such that π is a permutation and satisfies Rel B}|

≥ (22n − σ′′)!×
σ′−1∏
i=0

(22n − 2(q1 + q2 + q3 + i))

≥ (22n)!
22nσ′′

× 22nσ′ × (1− 2σ′2

22n
) ≥ |π|

22nq1+2n(q2+q3)
× (1− 2σ2

22n
)

ut

Definition 15. With respect to an irreducible view

V = ((M1‖m1, h1), . . . , (Mq1‖mq1 , hq1), (x
1
1, x

2
1, y

1
1 , y

2
1), . . . ,

(x1
q2+q3 , x

2
q2+q3 , y

1
q2+q3 , y

2
q2+q3))

an MD-irreducible tuple v is said to be CHOPL-matching if

v = ((M1‖m1, w1‖h1), . . . , (Mq1‖mq1 , wq1‖hq1), (x1
1, x

2
1, y

1
1 , y

2
1), . . . ,

(x1
q2+q3 , x

2
q2+q3 , y

1
q2+q3 , y

2
q2+q3)),

for some q1-tuple w = (w1, . . . , wq1).

Let M ′V be the set of all such CHOPL-matching MD-irreducible tuples.

Theorem 7. For any irreducible view

V = ((M1‖m1, h1), . . . , (Mq1‖mq1 , hq1), (x
1
1, x

2
1, y

1
1 , y

2
1), . . . ,

(x1
q2+q3 , x

2
q2+q3 , y

1
q2+q3 , y

2
q2+q3))

we have,

|M ′V | ≥ 2sq1 × (1− q1(q1 + q2 + q3)
2min(s,n)

).

For the proof of this theorem, the reader is referred to the full version of the paper
Now we are ready to prove Theorem 5, with help of Theorem 6 and Theorem 7.Let

V be the irreducible view determined by A and irreducible output view OV . Consider
an AttackerA′, which makes queries at the same input points as ofA, but has access to
MDfO2 instead of JH ′O2 . Hence,

Pr[OVAJH′π,π = OV] = Pr[VAJH′π,π = V] =
∑
v∈MV

Pr[VA
′

MDfπ ,π = v]

≥
∑
v∈MV

1
22nq1+2n(q2+q3)

× (1− 2σ2

22n
)

≥ 1
22nq1+2n(q2+q3)

× (1− 2σ2

22n
)× 2sq1 × (1− 2q1(q1 + q2 + q3)

2min(s,n)
)

=
1

2(2n−s)q1+2n(q2+q3)
× (1− 2σ2

22n
)× (1− 2q1(q1 + q2 + q3)

2min(s,n)
)

ut

4.3 Indifferentiability Security Bound

We are now ready to prove the main result of this section. For any attackerA, making at
most q1, q2, q3 queries to the oracles O1,O2(+, ·, ·),O2(−, ·, ·) respectively we show
an upper bound for AdvA.

Theorem 8. The JH ′π-construction (with (2n − s)-bit output) based on a random
permutation π is (O(q2 + q3)), q1, q2 + q3, ε) indifferentiable from a random oracle R,
with

ε ≤ 2σ2

22n
+

2q3(q2 + q3)
2n

+
2q2(q2 + q3) + 2q1(q1 + q2 + q3)

2min(s,n)
,

where σ is the maximum number of message blocks queried, q1 is the maximum num-
ber queries to JH ′π or R, q2 + q3 is the maximum number of queries to π, π−1 or
S′R(+, ·, ·), SR(−, ·, ·). Here we also assume, q2 + q3 < 2min(s,n)/4.

Proof. For any attacker A and an irreducible output view OV from Theorem 3 and
Theorem 5 we have,

Pr[OVAJHπ,π = OV]

≥

(
1−

(2σ2

22n
+

2q3(q2 + q3)
2n

+
2q2(q2 + q3) + 2q1(q1 + q2 + q3)

2min(s,n)

))
× Pr[OVAR,S′R = OV]

Now, applying Theorem 2 we get the required result. ut

When maximum query length ` is smaller than 2n/2, for any attacker A (making at
most q many queries) against the JH′ construction we have

AdvA = O(
q2

2min(s,n)
)

5 Indifferentiability Security Analysis of JHP

In this section we prove the indifferentiability of JH mode of operation with padding.

5.1 Simulator and its Interpolation Probability

We describe our simulator in Fig 5. Similar to previous section, the following notation
we used in describing the simulator.

– Partial permutation e : {0, 1}2n → {0, 1}2n, initially empty. I denotes set of points
where e is defined and O denotes the output points of e.

– Partial function e∗ : ({0, 1}n)∗ → {0, 1}2n initialized to e∗(φ) = IV1‖IV2.
– Set C ⊆ {0, 1}n initialized to C = {IV1} is the FH (first half) of e∗ outputs.

For a padding rule P = (PAD,DEPAD) and M ∈ ({0, 1}n)+, we recall LB(M) ⊆
{0, 1}n is defined as {m ∈ {0, 1}n : DEPAD(M‖m) 6=⊥}. As in case of the actual JH
padding rule we assume, |LB(M)| ≤ 2.

We recall the design philosophy behind the JH ′ simulator from Section 4.1. Over there
the simulator was maintaining a list of evaluatable queries and their non-chopped out-
puts in the partial permutation e∗1. When the simulator receives some query the goal of
the simulators are three fold.

1. Give a random output keeping in mind the permutation property.
2. Do not create some new evaluatable query unless forced to do so. That means output

of the simulator will never create a new evaluatable query with the exception of the
following scenario.

3. It might happen, only the input of the simulator forces another new evaluatable
query. (This happens if attacker is trying to find some O1 query output through O2

query.) If this happens, then adjust the output of the simulator so that it remains
consistent to R, w.r.t. the new evaluatable query.

One crucial point is, during one simulator query the simulator must prevent creation of
more than one evaluatable query. Otherwise, the simulator can not remain consistent to
both of them. In forward queries to JH ′ simulator with s = n, when the attacker has
forced creation of one new evaluatable query the LH (last half) of the possible output
gets fixed by R response of that evaluatable query, but the simulator has control over
FH output with which it makes sure, another evaluatable query is not created.

Here the situation is reversed. FH gets fixed by R, the simulator has control only
over LH . This is problematic, because only FH can lead to creation of more evalu-
atable queries (with one more message block after the current evaluatable query). In
fact, in Section 6 the attacker against JH mode operation (without length padding at
last block) exploits this fact. But the simulator can play with LH to change the actual
evaluatable query (even though it can not prevent the creation.) By doing so, the sim-
ulator ensures the new evaluatable query is not a valid padded message, hence for that
query the simulator does not need to be consistent withR. The simulator also need to be
careful such that no new evaluatable queries of length (current evaluatable query length
+ 2) or more are created. However, that can easily be handled.

SR(+, x1, x2)

1. IF e(x1‖x2) = z RETURN z
2. IF there exists M , s.t. e∗(M) = x1‖x′

(a) m = x′ ⊕ x2

(b) IF M 6= φ AND m ∈ LB(M)
i. y =
R(DEPAD(M‖m))⊕CHOPR(m‖0n)

ii. w ∈R {0, 1}s
iii. z = y‖w

(c) ELSE

i. z ∈R {0, 1}2n
(d) IF z ∈ O GOTO 2b
(e) e∗′ = e∗

(f) C′ = C
(g) FOR EACH i1‖i2 ∈ I ∪ {x1‖x2}

i. IF FH(z)⊕m 6= i1 CONTINUE

ii. IF LH(z)⊕ i2 ∈ LB(M‖m)
– GOTO 2b

iii. IF i1‖i2 = x1‖x2

– o1‖o2 = z
iv. ELSE

– o1‖o2 = e(i1‖i2)
v. e∗′(M‖m‖LH(z)⊕ i2) = (o1⊕
LH(z)⊕ i2)‖o2

vi. C′ = C′ ∪ {o1 ⊕ LH(z)⊕ i2}
vii. FOR EACH i′1‖i′2 ∈ I ∪ {x1‖x2}

– IF LH(z)⊕ i2 = o1 ⊕ i′1
• GOTO 2b

(h) e∗ = e∗′

(i) C = C′

(j) e∗(M‖m) = z ⊕ (m‖0n)
(k) C = C ∪ {FH(z)⊕m}

3. ELSE

(a) z ∈R {0, 1}2n
(b) IF z ∈ O GOTO 3a

4. e(x1‖x2) = z
5. RETURN z

SR(−, y1, y2)

1. IF there exists z1‖z2 such that e(z1‖z2) =
y1‖y2

– RETURN z1‖z2
2. ELSE

(a) z1 ∈R {0, 1}n
(b) IF z1 ∈ C

– GOTO 2a
(c) z2 ∈R {0, 1}n
(d) IF z1‖z2 ∈ I

– GOTO 2c
(e) e(z1‖z2) = y1‖y2
(f) RETURN z1‖z2

Fig. 5. Simulator for JH with padding

The next two theorems describe the running time and interpolation probability upper
bound corresponding to the simulator.

Theorem 9. For any attacker A against JHπ
P mode of operation and any irreducible

output view OV with respect to it, we have

Pr[OVAR,SR = OV] ≤ 1
2(2n−s)q1+2n(q2+q3)

× 1

(1− (q2+q3+3)2

2s)q2
× 1

(1− (q2+q3+1)2

2n)q3

when (q2 + q3 + 3)2 < 2min(s,n).

Theorem 10. If 2(q2 + q3 + 3)2 < 2min(s,n), the simulator SR takes at most O((q2 +
q3)2) time to answer any query (except with exponentially negligible probability).

The proof of two theorems above is similar to the proof of Theorem 3 and Theo-
rem 4. Due to space constraint we skip the proof and refer the reader to full version of
the paper.

5.2 Interpolation Probability ofOVA
JHπ

P ,π

The following theorem is analogous to Theorem 5, used in Section 4.

Theorem 11. For any attacker A and any irreducible output view OV with respect to
it, we have

Pr[OVAJHπP ,π = OV] ≥ 1
2(2n−s)q1+2n(q2+q3)

×(1− 2σ2

22n
)×(1− 2σq1(q1 + q2 + q3)

2s
).

For the proof of above theorem we refer the reader to the full version.

5.3 Indifferentiability Security Bound

Theorem 12. The JHπ
P mode of operation (with (2n− s)-bit output) based on a ran-

dom permutation π is (O((q2 + q3)2), q1, q2 + q3, ε) indifferentiable from a random
oracle R, with

ε ≤ 2σ2

22n
+
q2(q2 + q3 + 3)2

2s
+
q3(q2 + q3 + 1)2

2n
+

2σq1(q1 + q2 + q3)
2s

,

where σ is the maximum number of message blocks queried, q1 is the maximum num-
ber queries to JHπ

P or R, q2 + q3 is the maximum number of queries to π, π−1 or
S′R(+, ·, ·), SR(−, ·, ·). Here we also assume, 2(q2 + q3 + 3)2 < 2min(s,n).

Under reasonable assumptions, for an attacker making at most q queries with total σ
many compression function invocations we have

AdvA = O(
σ2

22n
+
q3

2n
+
q2σ

2s
).

Distinguisher A

1. M ∈R {0, 1}n.
2. h = O1(M).
3. t1‖t2 = O2(+, h‖0n).
4. z1‖z2 = O2(+, IV1‖IV2 ⊕M).
5. h2 = O1(M‖z2).
6. IF t1 6= h2 ⊕ z2

– return 1.
7. return 0.

(a)

Distinguisher for JH′ without length padding at last block

– Choose distinct n-bit numbers m1, . . . ,mk

– For i = 1, . . . , k
y1
i ‖y2

i = O2(+, IV1‖IV2 ⊕mi)
– If for i = 1, . . . , k, (yi1 ⊕mi)’s are distinct return 1
– else
• Find distinct j1, j2 such that (y1

j1 ⊕ mj1) =
(y1
j2 ⊕mj2)

• m ∈R {0, 1}n
• x1 = O1(mj1‖(m⊕ y2

j1))
• x2 = O1(mj2‖(m⊕ y2

j2))
• if x1 ⊕ CHOPL((m ⊕ y2

j1)‖0
n) 6= x2 ⊕

CHOPL((m⊕ y2
j2)‖0

n)
∗ return 1

– return 0
(b)

Fig. 6. 6(a): Distinguisher for JH-n without length padding, 6(b): Distinguisher for JH′ without
length padding

6 DistinguisherA for JH without length padding at last block

Recall that the compression function of JH is based on a fixed permutation π. On in-
put of the n-bit message block m and 2n-bit chaining value h1||h2 the compression
function outputs f(m,h1, h2) = π(h1, h2 +m) +m||0n. JH applies chopped Merkle-
Damgård transformation and outputs first t (t = 2n − s) bits of the output of final
compression function. Here s denotes the number of chopped bits.

In case of JH-n, we have s = n. Our distinguisher first queries h = Cπ(M) with
a random n-bit message M . The distinguisher appends 0n with h and queries t1‖t2 =
π(+, h‖0n). Note that when the distinguisher is interacting with (π,Cπ), the second
π query made by Cπ(M ||M2) will be on the input (h||z) where z is the last n bit
output of π(+, IV1, IV2 ⊕M1) xor-ed with M2. So if we set M2 to be the last n bit
output of π(+, IV1, IV2 ⊕ M1) then z = 0n. Note that in case of JH with length
padding, we could not choose M2 this way as the length block is fixed. To get M2,
the distinguisher queries z1‖z2 = O2(+, IV1‖IV2 ⊕M). Now D sets M2 = z2 and
queries h2 = Cπ(M‖z2). Finally the distinguisher checks whether h2 = t1 ⊕ z2.
Formal algorithm of the distinguisher is described in Figure 6(a).

Theorem 13. If the simulator S makes at most k many R queries for answering a
single query, then AdvA ≥ 1− 2k+1

2n

7 Distinguisher for JH′

In this section, we show one distinguisher with Ω(2n/2) many queries, which is suc-
cessful against any simulator with non-negligible probability. Hence, when maximum
query length ` is bounded by 2n/2, we get tight security bound.

The distinguisher has access to two oracles O1,O2 and is trying to differentiate be-
tween the two scenarios whether (O1,O2) is (JHπ, π) or (R,SR). Formal description
of our distinguisher is given in Fig 6(b). The success probability of the distinguisher is
established by following theorem. For a proof we refer the reader to the full version of
the paper.

Theorem 14. With k = Ω(2n/2), AdvA is non-negligible for any simulator S.

Note, if we use CHOPR instead of CHOPL then the same attack actually applies for
the original JH mode of construction without length padding at last block as well.

8 Preimage Attack on JH

In this section we demonstrate a preimage attack on Merkle-Damgård based the JH
compression function. As the JH hash output is a part of MDfπ , having preimage
attack on MDfπ immediately translate a preimage attack on JH hash function. We
use multicollision as it has been used in [16]. Let Q(r) denote expected number of
queries to get r-collision of a n-bit random oracle. In [20], it was shown that Q(r) ∼
2n(r−1)/r(r!)1/r. In [16], a preimage attack on JH has been shown based on multicol-
lision of the forward direction of the JH mode. The query-complexity of the attack is
O(Q(r)) where r is a solution of the equation r1/2Q(r) = 2n. We use two sided multi-
collision (both from forward and backward direction) to improve the attack complexity
little bit. The new query-complexity is O(Q(r)) where Q(r)r = 2n. Now we describe
our preimage attack for MDfπ where fπ is the compression function defined in JH
based on a permutation π (see Fig 2). Let h‖h′ ∈ {0, 1}2n be a randomly chosen target.
Note that given any m,h, h′, f−1(h, h′,m) is easily computable by making only one
π−1 query.

1. Choose an arbitrary message block M5 with correct padding, and compute H4 :=
h4‖h′4 = f−1(h‖h′,M5).

2. Compute Q(r) candidates for H3 = f−1(H4,M4) to obtain r-collision on the last
half of H3. This is possible since we assume that π is a random permutation. Let L
be the list of r many H3’s such that LH(H3)’s are identical to say h′3.

3. Similarly we do it for forward computation of f for the first message blockM1. We
have a list L′ of r values of H1 such that FH(H1) = h1 for all H1 ∈ L′.

4. Now we run a kind of meet-in-the-middle attack for the chaining value H2. We
compute Q(r) values of π(h1, h

′
1) and π−1(h3, h

′
3) for Q(r) choices of h′1 and h3.

Note that h1 and h′3 are fixed from the previous two steps. Find h′1 and h3 such that

FH(π(h1, h
′
1)⊕π−1(h3, h

′
3))⊕h′1 ∈ L′, LH(π(h1, h

′
1)⊕π−1(h3, h

′
3))⊕h3 ∈ L.

For any pair (h′1, h3) the probability of the above event is r2

22n . Since we haveQ2(r)
such pairs we can expect one such pair (h′1, h3) satisfying the above condition
provided r is the at least the solution of the equation rQ(r) = 2n. Let M2 =
FH(π(h1, h

′
1) ⊕ π−1(h3, h

′
3)), M3 = LH(π(h1, h

′
1) ⊕ π−1(h3, h

′
3)). Moreover

we choose M1 and M4 from the list L′ and L respectively such that H1 := h1‖h′1
and H3 := h3‖h′3 are the corresponding chaining value.

It is easy to verify that MDfπ (M1‖M2‖M3‖M4‖M5) = h‖h′. In [16], r = 51 to
satisfy the equation r1/2Q(r) = 2512 where n = 512. The query complexity of their at-
tack is roughly 2510. We can choose r = 46 a solution of rQ(r) ∼ 2512. In this case the
query complexity of π and π−1 is roughly 2507. Compared with the previous preimage
attack, it does not have significant reduction in complexity. However, asymptotically it
has non-trivial reduction finding preimage of JH. The solution of r in r1/2Q(r) = 2n

is larger than that of rQ(r) = 2n. Since Q(r) is strictly increasing function in r our
attack complexity is asymptotically less than that of [16]. However, we do not know
any concrete forms of the query complexities for these two attacks.

9 Conclusion

14 candidates has been selected for the second round of SHA3 competition. Over the
next few years one of these candidates will win and become the next hash function
standard. In this paper we considered the security of a second round candidate, JH, in the
indifferentiability framework. We showed that under the assumption that the underlying
permutation is a random permutation, JH mode of operation with specific padding rule
is indifferentiable from a Random Oracle. We also considered a modified design of
JH, called JH′ , by chopping different bits. We analyzed the indifferentiability of JH’
mode with optimal bounds. We also presented a distinguisher for JH mode without
length padding (with any other prefix free padding). Finally we constructed a preimage
attack with 2507 query which is better than the complexity of known preimage attacks.
However, our attack doesnot pose any serious threat to JH hash function.

10 Acknowledgements

We sincerely thank Jean Sébastien Coron for his valuable comments on initial drafts of
this paper. We also thank anonymous reviewers for their thoughtful suggestions.

References

1. M. Bellare and P. Rogaway. Random Oracles Are Practical : A Paradigm for Designing
Efficient Protocols. In 1st Conference on Computing and Communications Security, ACM,
pages 62–73. 1993.

2. M. Bellare and T. Ristenpart. Multi-Property-Preserving Hash Domain Extension and the
EMD Transform. In Advances in Cryptology - Asiacrypt 2006, volume 4284 of LNCS, pages
299-314, Springer-Verlag, 2006.

3. R. Barke On the Security of Iterated MACs. Diploma Thesis ’03. ETH Zurich

4. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the indifferentiability of the sponge
construction. In Advances in Cryptology- Eurocrypt 2008, volume 4965 of LNCS, pages 181-
197. Springer-Verlag, 2008.

5. D. Chang and M. Nandi. Improved Indifferentiability Security Analysis of chopMD Hash
Function. In Fast Software Encryption 2008, LNCS 5086/2008, pages 429–443.

6. J. S. Coron, Y. Dodis, C. Malinaud and P. Puniya. Merkle-Damgard Revisited: How to Con-
struct a Hash Function. In Advances in Cryptology- Crypto 2005, volume 3621 of LNCS, pages
430–448. Springer-Verlag, 2005.

7. J. S. Coron, J. Patarin and Y Seurin. The Random Oracle Model and the Ideal Cipher Model
Are Equivalent. In Advances in Cryptology- Crypto 2008 volume 5157 of LNCS, Springer-
Verlag, pages 1-20, 2008.

8. I. Damgård A Design Principles for hash functions. In Advances in Cryptology-CRYPTO
1989, volume 435 of LNCS, pages 416-427, Springer-Verlag, 1989.

9. Y. Dodis, K. Pietrzak, and P. Puniya. A new mode of operation for block ciphers and length-
preserving MACs. In Advances in Cryptology-EUROCRYPT 2008, volume 4965 of LNCS,
pages 198-219. Springer-Verlag, 2008.

10. Y. Dodis, L. Reyzin, R. Rivest and E. Shen. Indifferentiability of Permutation-Based Com-
pression Functions and Tree-Based Modes of Operation, with Applications to MD6. In FSE
2009.

11. Y. Dodis, T. Ristenpart and T. Shrimpton. Salvaging Merkle-Damgård for Practical Ap-
plications. In Advances in Cryptology, Eurocrypt 2009, volume 5479 of LNCS, pages 371-
388,Springer-Verlag, 2009.

12. D. Chang, S. Lee, M. Nandi, and M. Yung. Indifferentiable security analysis of popular hash
functions with prefix-free padding. In Advances in Cryptology - Asiacrypt 2006, volume 4284
of LNCS, pages 283-298, Springer-Verlag, 2006

13. R. Canetti, O. Goldreich and S. Halevi. The random oracle methodology, revisited. In STOC’
1998, ACM,1998.

14. U. Maurer. Indistinguishability of Random Systems. In Advances in Cryptology- EURO-
CRYPT 2002,volume 2332 of LNCS pages 110-132, Springer-Verlag, 2002.

15. U. Maurer, R. Renner and C. Holenstein. Indifferentiability, Impossibility Results on Re-
ductions, and Applications to the Random Oracle Methodology. In TCC’2004, volume 2951 of
LNCS, pages 21–39. Springer-Verlag, 2004.

16. F. Mendel, S. Thomsen. An Observation on JH-512. Available at
http://ehash.iaik.tugraz.at/uploads/d/da/Jh preimage.pdf

17. J. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-
committing Encryption Case. In Advances in Cryptology-Crypto 2002, volume 2442 of LNCS,
Springer-Verlag, 2002.

18. M. Nandi A Simple and Unified Method of Proving Indistinguishability In Progress in
Cryptology - Indocrypt 2006, volume 4329 of LNCS, pages 317-334, Springer-Verlag, 2002.

19. SHA 3 official website http://csrc.nist.gov/groups/ST/hash/sha-
3/Round1/submissions rnd1.html

20. K., D. Tonien, K. Kurosawa, and K. Toyota. Birthday Paradox for Multi-collisions. In Min
Surp Rhee and Byoungcheon Lee, editors, ICISC, volume 4296 of LNCS, pages 2940. Springer,
2006.

21. H. Wu. The Hash Function JH. Submission to NIST, 2008. Available online: http://icsd.i2r.a-
star.edu.sg/staff/hongjun/jh/jh.pdf.

22. S. Vaudenay, Decorrelation: A Theory for Block Cipher Security, J. Cryptology, Volume 16,
no 4, 2003, pp 249-286.

