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Abstract. The generalized Feistel structure (GFS) is a generalized form
of the classical Feistel cipher. A popular version of GFS, called Type-
II, divides a message into k > 2 sub blocks and applies a (classical)
Feistel transformation for every two sub blocks, and then performs a
cyclic shift of k sub blocks. Type-II GFS has many desirable features
for implementation. A drawback, however, is its low diffusion property
with a large k. This weakness can be exploited by some attacks, such
as impossible differential attack. To protect from them, Type-II GFS
generally needs a large number of rounds.
In this paper, we improve the Type-II GFS’s diffusion property by replac-
ing the cyclic shift with a different permutation. Our proposal enables
to reduce the number of rounds to attain a sufficient level of security.
Thus, we improve the security-efficiency treading off of Type-II GFS. In
particular, when k is a power of two, we obtain a significant improvement
using a highly effective permutation based on the de Bruijn graph.
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1 Introduction

The generalized Feistel structure (GFS) is one of the basic structures of a block
cipher. While basic Feistel ciphers divide a message into two sub blocks, GFS
divides a message into k sub blocks for some k > 2, which is called the partition
number. One popular form of GFS is so-called Type-II3[28], where the output of a
single round of Type-II GFS for input (m0,m1, . . . , mk−1) is (c0, c1, . . . , ck−1) =
(F0(m0)⊕m1,m2, F1(m2)⊕m3,m4, . . . , Fk−2/2(mk−2)⊕mk−1,m0), where Fis
are round functions. As we can see, this operation is equivalent to applying Feistel
transformation (x, y) → (x, F (x)⊕y) for every two blocks and then performing a
(left) cyclic shift of sub blocks. Recently, Type-II GFS receives a lot of attention
for its simplicity and high parallelism. We have some modern Type-II-based
block ciphers, e.g., CLEFIA [25] (k = 4), and HIGHT [11] (k = 8). When
the length of message is fixed, the width (i.e., I/O lengths) of round function
gets shorter as the partition number grows. Since the width of round function
is a critical factor of the size of implementation, Type-II GFS with a large
3 Zheng et al. [28] refers to this as the Type-II Feistel-Type Transformation. Some

studies use the word GFS to mean Type-II GFS, e.g., [19].



partition number is considered to be suitable for small-scale implementations.
Moreover, as well as the Feistel cipher, Type-II GFS’s round function needs not
be invertible. Thus, the implementation cost for decryption would be negligibly
small when the encryption has been implemented. This can be an advantage over
Substitution-Permutation Network (SPN) ciphers such as AES, if we focus on
small-scale implementation while need decryption in its usage. This holds true
for many block cipher modes such as CBC, OCB [24], and the most of storage
encryption modes, e.g. EME [10]. However, Type-II GFS with a large k has one
big drawback, namely its low diffusion. In order to diffuse the input difference
to all output sub blocks, we need about k rounds (see Section 2.2 for details).
If diffusion of input difference is imperfect, there will be some attacks, such as
impossible differential attack [2] or saturation attack [7], etc. Hence, there is a
treading off between efficiency (i.e. the number of rounds) and compactness (i.e.
the partition number). This might be the reason why recent GFS ciphers have
relatively small k to keep a balance of implementation size and speed.

To our knowledge, there has been no comprehensive study trying to improve
Type-II GFS up to now. Nyberg [21] proposed a variant of Type-II GFS called
Generalized Feistel Network (GFN), where a permutation of sub blocks (which
we call block shuffle) different from the cyclic shift is used. She evaluated GFN’s
immunity against differential cryptanalysis (DC) and linear cryptanalysis (LC).
However, the analysis of [21] can not be used to evaluate the goodness of diffu-
sion. In this paper, we allow GFS to use an arbitrarily block shuffle (but identical
for each round). Our goal is to find block shuffles having a better diffusion than
the cyclic shift. For this purpose, we formally define a criterion for the goodness
of diffusion called the maximum diffusion round, DRmax, which tells how many
rounds are needed to achieve the full diffusion. Hence, a smaller DRmax would
imply a faster, better diffusion. Moreover, we observe that DRmax is closely re-
lated to the security against impossible differential and saturation attacks, and
the pseudorandomness analysis. This demonstrates the usefulness of our notion.
We exhaustively searched the shuffles up to k = 16, using a computer. As a re-
sult, a better shuffle than the cyclic shift exists for k ≥ 6. In addition, we present
a family of highly diffusive shuffles when k is a power of two. This is based on
the de Bruijn graph, and achieves DRmax being about 2 log2 k. As DRmax of
Type-II GFS is k, this means a significant improvement for a large k. To see the
validity of our proposal, we also investigated our proposal’s resistance against
DC and LC, and experimentally confirmed that ours have the same resistance
against these attacks as those provided by the cyclic shift. Our result enables
us to build a secure GFS cipher having a fewer rounds than Type-II without
increasing the implementation cost. From practical viewpoint, the primal appli-
cation of our result would be the construction of small-scale block ciphers, where
many ciphers are recently proposed in this category [4][11]. Additionally, it will
also be useful to build large-block ciphers, such as 256 or 512-bit block. Appli-
cations of large-block ciphers are, e.g., storage encryption or block cipher-based
hash functions, as mentioned by Junod and Macchetti [22].



2 Generalized Feistel Structure

2.1 Definition of GFS

First, let us make clear what GFS means in this paper. Let k be an even integer.
A single round of k-partition GFS is a permutation over ({0, 1}n)k defined as

(X0, X1, . . . , Xk−1)
→ π(X0, F0(X0)⊕X1, X2, F1(X2)⊕X3, . . . , F(k−2)/2(X0)⊕X1), (1)

where Fi : {0, 1}n → {0, 1}n is a cryptographic keyed function called a round
function, and π : ({0, 1}n)k → ({0, 1}n)k is a deterministic permutation. Here,
we restrict π to be a block-wise permutation, i.e., a shuffle of k sub blocks.
An encryption of a GFS cipher is done by iterating the above permutation for
certain number of rounds, r, where the first input is the plaintext and the r-
round output is the ciphertext. For the decryption, we perform an inversion of
Eq. (1) using the inverse of π, denoted by π−1. Throughout the paper, k denotes
the partition number (the number of sub blocks) and n denotes the bit length
of sub block. Thus a GFS cipher is always a kn-bit block cipher.

As mentioned, the most popular instance of GFS is Type-II proposed by
Zheng et al.[28], which uses the left cyclic shift as π, i.e., π(X0, X1, . . . , Xk−1) =
(X1, X2, . . . , Xk−1, X0), as shown by Fig. 1(Left). Another known instance of
GFS is Nyberg’s Generalized Feistel Network (GFN)[21]. It uses a different per-
mutation π. A GFS using block shuffle π is denoted by GFSπ. Thus, if π is the
(left) cyclic shift GFSπ is identical to Type-II GFS.

For convenience, we define the following notations. An input data to the i+1-
th round for i ≥ 0 is written as Xi = (Xi

0, X
i
1, · · · , Xi

k−1), and the intermediate
data is Y i+1 = (Y i+1

0 , Y i+1
1 , · · · , Y i+1

k−1), where Y i+1
j = Xi

j if j is even and Y i+1
j =

Xi
j⊕F i

(j−1)/2(X
i
j−1) if j is odd. Here F i

h for h = 0, 1, . . . ,m−1 is the h-th (from
left to right) F function in the i-th round. If underlying block shuffle is π, the
output of i + 1-th round (which is equivalent to the i + 2-th round input) is
Xi+1 = π(Y i+1). See Fig. 1 for reference.
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Fig. 1. Type-II GFS (Left) and Our generalization (Right)



2.2 Diffusion Property of Type-II GFS

In this section, we introduce a formal notion of the diffusion property of GFS.
What we mean by ‘diffusion’ here is the state that a sub block input affects all of
the sub blocks of output. More formally, if Xr2

j can be expressed by an equation
containing Xr1

i for some i and r1 < r2, we say Xr2
j is affected by Xr1

i . If all of
the output sub blocks of the r2-th round is affected by Xr1

i , then we say Xr1
i

has diffused to all of the sub-blocks in round r2. For instance, in Type-II GFS,
Xi

0 can be expressed as F i
0(X

i−1
0 )⊕Xi−1

1 . Therefore Xi
0 is affected by Xi−1

0 and
Xi−1

1 . Note that the expression is allowed to include the target sub block in the
raw or as an argument of F . Using this, we make the following definition.

Definition 1. For GFSπ, let DRi(π) be the minimum number of rounds such
that the i-th sub input block of the first round, X0

i , is diffused to all sub output
blocks. Then, the maximum diffusion rounds for GFSπ, denoted by DRmax(π),
is defined as DRmax(π) def= max0≤i≤k−1 DRi(π). If π is clear from the context,
we simply write DRi or DRmax.

It is trivial to see that X0
i is diffused to all sub output blocks after any round

greater than DRi(π). Thus, for any GFSπ, any sub output block is affected by
any sub input block after DRmax(π) rounds. We call this state the full diffusion.
As we will see, if full diffusion has not been attained a certain attack is possi-
ble. Hence, any GFSπ cipher needs at least DRmax(π) rounds for its security4,
implying that a block shuffle π with a small DRmax(π) is desirable.

To understand the property of DRmax, Fig. 2 shows traces of the paths that
represents how X0

7 diffuses to all sub blocks in Type-II GFS with k = 8. The
thick solid line is the data path that does not pass through any F function and
the thick dotted lines are data paths that pass through at least one F function.
The implications of these paths can be explained as follows. Let two distinct
inputs be X0 = (X0

0 , . . . , X0
7 ) and X̃0 = (X̃0

0 , . . . , X̃0
7 ) with X0

i = X̃0
i for i ≤ 6,

and X0
7 ⊕ X̃0

7 = δ for some δ 6= 0. Then, the thick solid path indicates that
X7

7 ⊕ X̃7
7 = δ holds with probability 1, as XORs on the path bring no difference

to the initial difference, δ. In contrast, dotted paths indicate that X7
i ⊕ X̃7

i for
all i = 0, . . . , 6 is close to random due to the randomness of round functions.

As Fig. 2 suggests, for a k-partition Type-II GFS, it is easy to prove that
DRmax = k. Then, how we can improve this? Note that X3

4 (= X0
7 ) affects X3

5

via F 4
2 , but X3

5 is also affected by X0
7 and therefore a collision of paths occur.

Such collisions continue to occur in round 5 and subsequent rounds. Intuitively,
what we have to do is to reduce such collisions, as frequent collisions may imply
a large DRmax. For example, the above-mentioned collision can be avoided if
Y 3

5 and Y 3
6 are given to F 4

i for some 0 ≤ i ≤ 2 and F 4
j for some i 6= j, 0 ≤ j ≤ 2.

Table 1 shows the number of collisions and its proportion to the number of
XORs for DRmax rounds. As k increases, the number and the proportion of
collisions also increase. This exhibits the low diffusion property of Type-II GFS.

4 In fact, we have to take care of chosen plaintext and ciphertext attacks, thus roughly
need DRmax(π) + DRmax(π−1) rounds. See Section 5.2.



Table 1. Collision of data paths for k-partition Type-II GFS.

Partition number k 2 4 6 8 10 12 14 16

Number of collision 0 1 4 9 16 25 36 49

Proportion (%) 0 12.5 22.2 28.1 32.0 34.7 36.7 38.3
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Fig. 2. Diffusion path of Type-II GFS.

3 Exhaustive Search for Optimum Shuffles

For each 4 ≤ k ≤ 16, we investigated DRmax(π) for all shuffles with a computer
program. Let Πk be the set of all shuffles of k sub blocks. Note that |Πk| = k!.
As we think the securities of encryption and decryption are equally important,
we focus on finding shuffle π that has a small

DRmax±(π) def= max{DRmax(π), DRmax(π−1)}.
Thus the optimum shuffle is one that provides

DRmax∗k
def= min

π∈Πk

{DRmax±(π)}.

We denote the optimum shuffle for a given k by π∗k. Note that π∗k may not
be unique. The results are presented in Table 2 (also, see Appendix A for the
specific values of block shuffles). Interestingly, π∗k always fulfills DRmax(π∗k) =



Table 2. Search result.

Partition number k 4 6 8 10 12 14 16

DRmax∗k 4 5 6 7 8 8 8

DRmax((π∗k)−1). For example, for k = 8, there was a block shuffle π having
DRmax(π) = 5 and DRmax(π−1) = 7, which is not optimal in our sense. As
well as DRmax, it is easy to prove DRmax± = k for the cyclic shift. Thus
Table 2 shows that the gain of optimum shuffle from the cyclic shift is obtained
from k = 6 and gradually increasing. We also include Nyberg’s GFN in our
investigation (See [21] for the exact definition of shuffle). When k = 4, we have
no gain, as there are only three valid shuffles: right and left cyclic shifts and
Nyberg’s GFN and they have DRmax = 4. For k up to 16, the DRmax of
Nyberg’s GFN was the same as for Type-II GFS (we did not prove this for
arbitrary k, however we think the proof is easy.). As far as we searched, any
optimum block shuffle π∗k has the property that any even-number input block is
mapped to an odd-number output block, and vice versa. We refer to such shuffles
as even-odd shuffles. From this fact, we hereafter focus on even-odd block shuffles,
and we generally use the word “shuffle” to mean an even-odd shuffle. An example
of π∗8 is shown in Fig. 3 (corresponding to Table 4, k = 8, No.1 of Appendix A).
The diffusion path is represented in the same way as in Fig. 2. The collision that
occurred in the fourth round of Fig. 2 is avoided, and the number of collisions is
reduced from nine to four. Note that if we use different shuffles for each round,
we could attain the same improvement. Since this approach will increase the
implementation cost, we only consider using the same shuffle for every round.
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Fig. 3. GFS with an optimum shuffle for k = 8.



Lower Bound. A lower bound of DRmax∗ for even-odd shuffles can be derived
as follows. For a fixed one block input difference, let No

i (Ne
i ) be the number of

odd-number (even-number) sub blocks in the i-th round output affected by that
input block. Initially we have Ne

0 = 0 and No
0 = 1. If the shuffle works ideally,

we have Ne
i = Ne

i−1 + No
i−1, and No

i = Ne
i−1, thus Ne

i+2 = Ne
i + Ne

i+1 holds
true. Hence Ne

i is Fibonacci sequence. For a GFS with an even-odd shuffle, if a
certain number of rounds is sufficient to achieve the diffusion to all even output
blocks, the full diffusion is achieved by one more round. Therefore, if i is the
smallest integer that satisfies Ne

i ≥ k/2, i + 1 is the lower bound of DRmax for
all even-odd shuffles for k blocks (not necessarily achievable). As i-th term of
Fibonacci sequence is about τ i/

√
5, where τ is the golden ratio, this lower bound

is roughly logτ

√
5k/2 ' log2 1.44k. In our search, we found block shuffles that

attain the lower bound described above for all k ≤ 8 (see Fig. 4).
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Fig. 4. Search result and lower bound for k ≤ 16.

4 A Shuffle Family with Good Diffusion

4.1 Graphical Interpretation of Diffusion Rounds

The search result of previous section reveals optimum shuffles up to k = 16. Since
the cost of exhaustive search exponentially grows with k, a different approach
is certainly required to find a shuffle with a good diffusion for larger k. In this
section we introduce a graph-theoretic interpretation of the DRmax evaluation
problem for even-odd shuffles, and propose an even-odd shuffle family having
much better DRmax than that of cyclic shift, for k being a power of two. For
any shuffle of order k, π, let π[∗] : {0, . . . , k − 1} → {0, . . . , k − 1} denote the
corresponding index mapping (i.e., π(x0, . . . , xk−1) = (xπ[0], . . . , xπ[k−1])).

For any even-odd shuffle π, there is an equivalent, compact directed graph.



Definition 2. For any even-odd shuffle π of even order k, the corresponding
graph of π, denoted by G[π], is a directed graph with order m = k/2. The vertices
of G[π] are labeled with {0, 1, . . . , m− 1}. Every arc (a directed edge) of G[π] is
colored red or blue, and is determined as

– if π[i] = j for even i and odd j, there is an arc colored red from node i/2 to
node (j − 1)/2

– if π[i′] = j′ for odd i′ and even j′, there is an arc colored blue from node
(i− 1)/2 to node j/2.

For example, the graph of the cyclic shift is in Fig, 5, where red arcs are
written as thin lines and blue ones are written as thick ones.

0 1 2 3

Fig. 5. Graph for the cyclic shift with k = 8.

For two vertices x, x′ of G[π], we write x
r−→ x′ (x b−→ x′) if there is a red (blue)

arc from x to x′. Clearly, the in- and out-degrees of G[π] are 2. Every node of
G[π] has one outgoing red arc and one outgoing blue arc (i.e. one arc is red and
the other is blue) and has one incoming red arc and one incoming blue arc. This
condition is known as the arc-coloring of the second type [27]. If we have a path
(a sequence of connected arcs) between any two vertices of a directed graph G,
we say G is strongly connected. Moreover, if G has in- and out-degrees being 2,
and has an arc-coloring of the second type, we say G is a proper shuffle graph.
For any proper shuffle graph G of order N , we have a corresponding even-odd
shuffle for 2N elements.

The following definition plays a crucial role in evaluation of DRmax.

Definition 3. Let G be a proper shuffle graph. A directed path between two
vertices of G is appropriate if its first and last arcs are blue-colored and there
are no successive red arcs. If there always exists an appropriate path of length
L between any two (possibly the same) vertices, G is said to be L-appropriately-
reachable. The minimum of such L is defined as the sufficient distance (SD)
of G, and denoted by SD(G). In addition, if there always exists a path (not
necessarily be appropriate) of length L between any two vertices, G is said to be
L-reachable [27] and the minimum of such L is defined as the weak sufficient
distance (WSD) of G, denoted by WSD(G).

Note that WSD can be defined for directed graphs with single-colored arcs.
For any proper shuffle graph G with SD(G) = L, G is (L + i)-appropriately-
reachable for any i ≥ 0 and Diam(G) ≤ WSD(G) ≤ SD(G), where Diam(G)
is the diameter of G, i.e., the maximum distance of any two vertices.



Proposition 1. If SD(G[π]) = L for even-odd shuffle π, DRmax(π) ≤ L + 1.

This proposition is easy to verify. From the definition of SD, for any sub input
block, X0

i , we have a connected data path from X0
i to XL

j for any even j. As
underlying shuffle is even-odd, this means that there are a connected data path
from X0

i to XL+1
h , for any odd h. Also, we have a connected data path from XL

j

to XL+1
h′ for any even j and h′, by going through an F function. Thus, we have

a connected path from X0
i to XL+1

j for any j.

4.2 Colored de Bruijn Graph

Proposition 1 implies that if shuffle π has a small DRmax, G[π] will also have
a small SD. Then, how we can build such a graph? We answer this question by
using the well-known de Bruijn graph.

Definition 4. The binary de Bruijn graph, denoted by dB(s) = (Vs, Es), is a
directed graph of order N = 2s for non-negative integer s. Its vertex set Vs is
{0, 1}s, or corresponding integer set {0, . . . , N−1} (we interchangeably use). The
arc set, Es ⊆ Vs×Vs, is defined as Es = {(u, u′) : u = (u1, u2, . . . us−1, us), u′ =
(u2, u3, . . . , us, w), w ∈ {0, 1}}.

It is obvious that in- and out-degrees of dB(s) are two. Also, it is well-known
that Diam(dB(s)) = s and it is even s-reachable, since we can move to any
node u by choosing s successive arcs according to the bits of u in descending
order. The diameter of dB(s) is minimal for all directed graphs with order 2s

and maximum degree 2. Now, our task is to color the arcs of dB(s) so that it has
an arc-coloring of the second type. Our coloring function is quite simple, which
is as follows.

Definition 5. For any s ≥ 2, let CF : Es → {0, 1} be the coloring function of
arcs of dB(s), where 0 and 1 denote red and blue. For u = (u1, u2, . . . us−1, us)
and v = (v1, v2, . . . vs−1, vs), it is defined as

CF(u, v) =

{
vs if u1 = us,

vs + 1 if u1 6= us,

where vs+1 denotes the complement of vs. The colored de Bruijn graph, CdB(s),
is defined as the binary de Bruijn with CF arc-coloring. Formally, CdB(s) =
(Vs, E

′
s) with E′

s = (u, v, CF(u, v)) for all (u, v) in Es of dB(s). That is, if (u, v) ∈
Es, CdB(s) has an arc u

c(CF(u,v))−−−−−−→ v with mapping c(0) = r and c(1) = b.

Fig. 6 depicts CdB(3) and CdB(4), where a thick line denotes a blue arc and a
thin line denotes a red arc. Note that, if u

r−→ u′ in CdB(s), we have

u′1 = u2, u
′
2 = u3, . . . , u

′
s−1 = us, u

′
s = u1 + us (2)



and if u
b−→ u′ in CdB(s) we have

u′1 = u2, u
′
2 = u3, . . . , u

′
s−1 = us, u

′
s = u1 + us + 1. (3)

It is easy to see that CdB(s) for s ≥ 2 has an arc-coloring of second type5,
thus CdB(s) is a proper shuffle graph of order 2s and we have a corresponding
even-odd shuffle for 2s+1 elements, for s ≥ 2. For concrete representations of
block shuffles built from CdB(s), see Appendix A. As Fig. 6 shows, the graph
is symmetric including the arc-coloring, thus the corresponding shuffles are also
symmetric. This property will be beneficial for implementation.

000

100 001

010

101

110 011

111

1110

1111

0111

1101 1011

0110

1100 00111010 0101

1001

0100 0010

1000 0001

0000

Fig. 6. Colored de Bruijn Graphs CdB(3) (Left), and CdB(4) (Right).

4.3 Sufficient Distance of Colored de Bruijn Graph

We want to know (a bound of ) SD(CdB(s)). It can be expected to be small
from the minimality of dB(s)’s diameter, however, this expectation has to be
theoretically verified. To do this, we focus on the successive arc pairs of CdB(s).

Definition 6. Let G = (V, E) be a proper shuffle graph of order N , where E ⊆
V ×V ×{r, b}. Its double-path graph, denoted by G̃ = (V, Ẽ), is a directed graph
with the same vertex set as G, and Ẽ ⊆ V ×V ×{rb, bb}. For any (u,w, v) ∈ V 3

with (u,w, b), (w, v, b) ∈ E, we have (u, v, bb) ∈ Ẽ and for any (u′, w′, v′) ∈ V 3

with (u′, w′, r), (w′, v′, b) ∈ E, we have (u′, v′, rb) ∈ Ẽ.
5 This does not hold true when s = 1. The valid colorings for dB(1) are ones that

implement the left and right cyclic shifts. Also, CF is not the unique solution to
provide an arc-coloring of the second type.



In other words, if G has u
b−→w

b−→v for some w, G̃ has u
bb−→v, and if G has u

r−→w′ b−→v

for some w′, G̃ has u
rb−→v. Note that we did not use all pair of arcs (such as br

and rr), and G̃ may not be strongly connected.
For the double-path graph of CdB(s), we have the following.

Lemma 1. The double-path graph of the colored de Bruijn graph, C̃dB(s), is
isomorphic to CdB(s) itself under the arc-label mapping r → rb and b → bb.

Proof. If x is an s-bit value, we write xi to denote its i-th bit, i.e., x = (x1, . . . , xs).

Let u, u′, v, v′ be vertices of the double-path graph of CdB(s), C̃dB(s). From
Equations (2) and (3), when u

rb−→ v and u′ bb−→ v′, we have

v = (u3, u4, . . . , us, u1 + us, u1 + u2 + us + 1),
v′ = (u′3, u

′
4, . . . , u

′
s, u

′
1 + u′s + 1, u′1 + u′2 + u′s). (4)

To prove the lemma, we do separate analyses for even and odd s. First,
assume s is even. Let t = s/2 + 1. We define the mapping f : {0, 1}s → {0, 1}s.
For f(x) = y, x, y ∈ {0, 1}s, f is defined as

yi =

{
x i

2+t−1 if i is even
x i−1

2 +1 + x i−1
2 +t + 1 if i is odd,

(5)

for i = 1, . . . , s. Note that f is invertible; to obtain x from y, we first get
xt, . . . , xs as corresponding y’s even bits, and add them to the odd bits of y.
What we shall prove is that f is an isomorphism from CdB(s) to C̃dB(s) with
an arc-label mapping defined as r → rb and b → bb. To prove this, we need to
show (1) iff x

r−→ x′ in CdB(s) then f(x) rb−→ f(x′) in C̃dB(s), and (2) iff x
b−→ x′

in CdB(s) then f(x) bb−→ f(x′) in C̃dB(s). Let us assume x
r−→ x′ in CdB(s), and

let y = f(x) and y′ = f(x′). Since x′i = xi+1 for i = 1, . . . , s− 2, we have

y′i = x′i
2+t−1 = x i

2+t−1+1 = x i+2
2 +t−1 = yi+2,

y′j = x′j−1
2 +1

+ x′j−1
2 +t

+ 1 = x (j+2)−1
2 +1

+ x (j+2)−1
2 +t+1

+ 1 = yj+2, (6)

for all even 2 ≤ i ≤ s− 2 and all odd 1 ≤ j ≤ s− 3. For y′s−1, we have

y′s−1 = x′s−2
2 +1

+ x′s−2
2 +t

+ 1 = x′t−1 + x′s + 1 = xt + (x1 + xs) + 1 = y1 + ys,

from Eq. (2). For y′s, we have y′s = x′s = x1 + xs = y1 + y2 + ys + 1. Hence
y′ = (y3, y4, . . . , ys, y1 + ys, y1 + y2 + ys + 1), which means y

rb−→ y′ from Eq. (4).

Next, we assume x̂
b−→ x̂′ in CdB(s) and let ŷ = f(x̂) and ŷ′ = f(x̂′). The

first s− 2 bits of ŷ′ are the same as Eq. (6), and

ŷ′s−1 = x̂′t−1 + x̂′s + 1 = x̂t + (x̂1 + x̂s + 1) + 1 = ŷ1 + ŷs + 1,



from Eq. (3). Also ŷ′s = x̂′s = x̂1+x̂s+1 = ŷ1+ŷ2+ŷs. Thus ŷ′ = (ŷ3, ŷ4, . . . , ŷs, ŷ1+
ŷs + 1, ŷ1 + ŷ2 + ŷs), which means the walk ŷ

bb−→ ŷ′ from Eq. (4). This proves
the direct part of the lemma for even s. The converse (i.e., if x 6 r−→ x′ in CdB(s)
then f(x) 6 rb−→ f(x′) in C̃dB(s) and if x 6 b−→ x′ in CdB(s) then f(x) 6 bb−→ f(x′) in
C̃dB(s)) is easy. For odd s, we use a slight different isomorphism. Since the proof
is almost the same, we omit it here.

Let us consider to build an appropriate path from u to v, for two (possibly
the same) vertices u, v of CdB(s). We assume u

b−→ w. From Lemma 1 and

that C̃dB(s) is s-reachable, there always exists a path of length 2s from w to
v in CdB(s), where the last arc is colored blue. This implies the existence of
appropriate path of length 2s + 1 from u to v in CdB(s). Thus we have proved
the following.

Lemma 2. SD(CdB(s)) ≤ 2s + 1.

Using Lemma 2 and Proposition 1, we can build a block shuffle of k = 2s+1

(for any s ≥ 2) whose DRmax is at most 2s + 2 = 2 log2 k. As mentioned in
Section 3, the lower bound of DRmax is about 1.44 log2 k, derived from Fibonacci
sequence. Hence, the diffusion property of CdB(s) is close to the optimum.

Related Work. Massey [15] also proposed a graphical representation of block
shuffles. However the meaning of arc-coloring is different, i.e., a thick (thin) line
denotes a mapping from even (odd) input to even (odd) output block. He com-
bined a block shuffle, called Armenian Shuffle, with a two-block linear operation
called PHT to form a diffusion layer of an Substitution-Permutation Network
(SPN) block cipher, SAFER+. His notion of diffusion (for the diffusion layer,
not for the block shuffle itself) is different from us, which is close to the branch
number. Armenian Shuffle is based on dB(3). However, it is not even-odd. No
arc-coloring rule of the second type (and the idea of SD) was presented in [15].
Hence, even though the basic methodology of us and [15] have some similarities,
our proposal has many important differences.

5 Security

5.1 Pseudorandomness

For a new block cipher structure, it is typical to ask its pseudorandomness in the
idealized setting. This kind of analysis is needed to see if there is a structural flaw
in the proposal, as mentioned by [20]. For this, we have to prove the maximum
prp-advantage and sprp-advantage in an idealized setting, defined as

AdvprpC (q) def= max
A:q−CPA

|Pr[AC = 1]− Pr[APn = 1]|, and ,

AdvsprpC (q) def= max
A:q−CCA

|Pr[AC,C−1
= 1]− Pr[APn,P−1

n = 1]|. (7)



Here, C is the encryption function of an n-bit block cipher with some ideal-
ized functions as internal modules. Pn is an n-bit uniform random permutation
(URP), which is distributed uniformly over all n-bit permutations. Their inver-
sions are written as C−1 and P−1

n . The adversary, A, tries to distinguish C from
Pn using q encryption queries, i.e., chosen-plaintext attack (CPA), or (C, C−1)
from (Pn, P−1

n ) using q encryption and decryption queries, i.e., chosen-ciphertext
attack (CCA). The final guess of A is either 0 or 1, and the probability that A’s
guess is 1 when A queries C is written as Pr[AC = 1], where probability is de-
fined by the randomness of A and C. The maximums in Eq. (7) are taken for all
adversaries with q queries without computational restriction. For example, the
seminal Luby-Rackoff’s result [14] proved that AdvprpΦ3

and AdvsprpΦ4
are O(q2/2n),

where Φr is the r-round, 2n-bit block Feistel structure with round functions being
n-bit uniform random functions (URFs). This also means that 3-round Feistel is
a pseudorandom permutation (PRP) and 4-round one is a strong PRP (SPRP),
if round functions are pseudorandom functions (PRFs). These results are con-
sidered as a theoretical justification of basic Feistel ciphers. Similar analysis was
done for other structures, e.g., Misty structure [9][12].

For the pseudorandomness of Type-II GFS, the following result is known.

Lemma 3. (by [28][20]) Let TypeIIr,k be the r-round, kn-bit Type-II GFS with
partition number k and round functions being n-bit URFs. Then we have

AdvprpTypeIIk+1,k
(q) ≤ k2q2

2n
, and AdvsprpTypeII2k,k

(q) ≤ k2q2

2n
.

Using the idea of Mitsuda and Iwata [19], the pseudorandomness of any GFS
with an even-odd shuffle π can be evaluated via its sufficient distance.

Theorem 1. Let π be an even-odd shuffle of order k, and let GFSr,k denote the
r-round GFS with shuffle π. Its block size is kn bits, partition number is k, and
all round functions are independent n-bit URFs. Then we have

AdvprpGFSL+2,k
(q) ≤ kL

2n+1
q2 if SD(G[π]) ≤ L, and

AdvsprpGFS2L+2,k
(q) ≤ kL

2n
q2 if max{SD(G[π]), SD(G[π−1])} ≤ L.

Proof. For x = (x0, . . . , xk−1) ∈ ({0, 1}n)k, let x[i] = xi. Following [19], if keyed
permutation over ({0, 1}n)k, H, satisfies

max
x 6=x′

Pr[H(x)[i] = H(x′)[i] for some even i ∈ {0, . . . , k − 1}] ≤ ε, and

max
x 6=x′

Pr[H(x)[i] = H(x′)[i] for some odd i ∈ {0, . . . , k − 1}] ≤ ε,

then H is called ε-AUe and ε-AUo, respectively [19]. Then we obtain

AdvprpGFS2,k◦H1
(q) ≤

(
ε +

k

2n+1

)
·
(

q

2

)
(8)



by extending the lemma 9 and theorem 7 of Maurer [17] (We omit the proof
here. This slightly improves the constant of the result of [19] for Type-II GFS.).
For any two distinct x and x′, we have

Pr[GFSL,k(x)[i] = GFSL,k(x′)[i]] ≤
L

2n
, for any even i ∈ {0, . . . , k − 1}. (9)

Eq. (9) is easily proved as follows. W.l.o.g. we assume (x0, x1) 6= (x′0, x
′
1) and

estimate the probability of GFSL,k(x)[0] = GFSL,k(x′)[0]. From the assump-
tion, there is an appropriate path of length L in G[π], whose start and goal
are vertex 0. For h = 1, . . . , L, we can define a sequence of internal outputs,
Zh = GFSh,k(x)[s(h)], with s(h) following that appropriate path (e.g. s(1) = π[1]
and s(L) = 0). Obviously we have Pr[Z1 = Z ′1] = Pr[F (x0)⊕x1 = F (x′0)⊕x′1] ≤
1/2n, when F is URF. Moreover, using the independence of all round functions,
we have Pr[Zj = Z ′j |Zj−1 6= Z ′j−1] ≤ 1/2n for any j = 2, . . . , L. Therefore,
Pr[ZL = Z ′L] is at most

∑L
j=2 Pr[Zj = Z ′j |Zj−1 6= Z ′j−1] + Pr[Z1 = Z ′1] ≤ L/2n.

This indicates that Eq. (9) is true, and thus GFSL,k is k·L
2n+1 -AUe from the

union bound. From this and Eq. (8), prp-advantage of GFSL+2,k is at most
( k·L
2n+1 + k

2n+1 )
(
q
2

) ≤ k·L
2n+1 q2. This proves the first claim of Theorem 1. To prove

the second, we consider two independently-keyed permutations over ({0, 1}n)k,
H1 and H2. We assume H1 is ε1-AUe and H2 is ε2-AUo. Then we have

Advsprp
H−1

2 ◦GFS2,k◦H1
(q) ≤

(
ε1 + ε2 +

1
2kn

)(
q

2

)
≤ (ε1 + ε2) q2 (10)

using similar arguments as those of [17][19][18].
Let GFSr,k be GFS−1

r,k without the final shuffle (i.e. GFS−1
r,k = π−1

k ◦GFSr,k).
As SD(G[π−1]) ≤ L, GFS−1

L,k is k·L
2n+1 -AUe. As π is even-odd, π−1

k is also even-odd.
Hence GFSL,k is k·L

2n+1 -AUo, and the sprp-advantage of (GFSL,k)−1 ◦ GFS2,k ◦
GFSL,k = π−1 ◦GFS2L+2,k is at most 2 k·L

2n+1 q2 = k·L
2n q2 from Eq. (10). Of course

the last application of π−1 has no impact on security, hence this bound also
holds for GFS2L+2,k. This proves the second claim.

Combining Lemma 2 and Theorem 1, we obtain the pseudorandomness result
for GFS with shuffle derived from CdB(s), when k = 2s+1.

Corollary 1. Let Ωr,k be the kn-bit GFS with shuffle from CdB(s) for k = 2s+1

for s ≥ 2, where all round functions are independent n-bit URFs. Then we have

AdvprpΩ2 log k+1,k
(q) ≤ 2k log k

2n
q2, and AdvsprpΩ4 log k,k

(q) ≤ 4k log k

2n
q2,

where the base of logarithm is 2.

Corollary 1 demonstrates the power of colored de Bruijn: TypeIIr,k needs k ∼ 2k
rounds, while Ωr,k needs only 2 log k ∼ 4 log k rounds. The gain is obtained for
any k ≥ 8 being a power of two.

If k is not a power of two, we cannot use CdB(s). In such a case, we have to
search a proper shuffle graph of order 2k having a small SD. The search result
of Section 3 implies the existence of a graph with SD about 2 log k for any k,
but proving this is an open problem.



5.2 Evaluation of Security against Cryptanalysis

We also evaluate the security against the known cryptanalysis. In particular, we
consider impossible differential attack, saturation attack and differential/linear
cryptanalysis and evaluate the security of GFS with the optimum block shuffles
found by the search. In the evaluation, we treat the round function as an arbi-
trary bijective function and assume that there is no pair of nonzero input and
output differential that holds with probability 1. Each evaluation is carried out
to derive the number of rounds for characteristic we focus. Specific numbers of
round for characteristic are provided in Appendix A.

Impossible Differential Attack. An impossible differential attack [2] uses the
differential characteristic of probability zero (impossible differential characteris-
tic, IDC) to eliminate wrong key candidates. Here, IDC is represented as a pair
of input and output differences, e.g., (α 9 β), α, β ∈ ({0, 1}n)k for a k-partition
cipher E with Pr[E(x) + E(x + α) = β] = 0 for any x. To find an IDC, we use
the U-method of Kim et al. [13]. U -method can efficiently search for IDCs using
a truncated difference in sub block units classified by five types: zero difference,
nonzero unfixed difference, nonzero fixed difference, exclusive-or of nonzero fixed
and unfixed differences, and unfixed difference. These types are denoted by 0,
δ, γ, δ + γ, and R, respectively. For r ≥ 1, αr = (αr

0, α
r
1, . . . , α

r
k−1) denotes the

output difference after r-round and α0 denotes the input difference. Each coor-
dinate of αr is classified into one of the five types described above. Note that α0

always consists of types 0 and γ. For decryption, the output difference is denoted
by βr. If there is a contradiction between αr1

i and βr2
i (0 ≤ i ≤ k − 1), the path

from α to β is impossible, i.e., (α 9 β) is an IDC of (r1 + r2) rounds. We can
determine the number of round for IDC from DRmax, which is as follows. After
DRmax(π) rounds, we have two cases :
Case 1 : If αDRmax

i for some odd i has type γ, there exists a data path, P ,
that does not pass through any F (i.e., the equation corresponding to that path
does not contain X0

i as a part of arguments of F ). If αDRmax
i−1 has type δ, then

αDRmax+1
j with j = π[i] has type γ⊕ δ. Here, if βDRmax

j has type γ, it is an IDC
for 2DRmax + 1 rounds.
Case 2 : If all data paths pass through at least one F function, Both αDRmax and
βDRmax do not contain type γ. From the definition of DRmax, DRmax−1 rounds
does not achieve full diffusion. Thus αDRmax must contain type 0. This implies
that we can detect a contradiction involving difference of type 0 and difference
δ or γ. Accordingly, the number of round for IDC is at most 2DRmax− 1.

To see the tightness of above analysis, we also perform U-method. As a
result, the number of round for IDC for any GFS with optimum shuffle is one of
2DRmax− 2, 2DRmax− 1, and 2DRmax + 1.

Saturation Attack. Saturation Attack [7] works for block ciphers using per-
mutations over a small space, hence it is a strong attack on GFS with invertible
round functions. This attack exploits the fact that the output sum of a permu-
tation is zero when all inputs are given to determine whether the guessed key is



correct. We define the following four states for a set of 2n n-bit inputs:
Constant (C) : if ∀i, j xi = xj All (A) : if ∀i, j i 6= j ⇔ xi 6= xj

Balance (B) : if
⊕2n−1

i xi = 0 Unknown (U) : Other

The saturation characteristics (SC) is of form (α → β), α ∈ {C, A}k, β ∈
{C, A, B,U}k, where the input state α contains at least one A and the output
state β is not all Us. We investigated the maximum number of rounds for which
an SC exists, for all optimum shuffles. For this purpose, we used a method
developed by the evaluation report of CLEFIA [26]. Here we briefly describe the
method. See [26] for details. To apply the method of [26], we can use DRmax,
as well as the case of IDC. Note that, in case of IDC we only need to focus on a
data path not passing through F , while in case of SC we also have to consider
data paths passing through F , as input state A (to some F ) implies output state
A.

We first search an SC, (α → β), such that α consists of one A for an even
sub block and k − 1 Cs. From the definition of DRmax, the state after DRmax
encryption rounds does not contain C. Let us assume that the state after DRmax
contains two As for i-th and i+1-th blocks for some even i. By adding one more
round, the state of j-th(j = π[i+1]) sub block is B(= F (A)⊕A). After another
round, the state of s-th(s = π[j + 1]) sub block is U(= F (B) ⊕ any) and that
of t-th(t = π[j]) sub block is B. Then, in the next round, the states of all sub
blocks become U(= F (U)⊕ any). Therefore, an SC (containing one A and k− 1
Cs) exists for at most DRmax + 2 rounds. For other cases, it is easy to confirm
that such an SC exists for at most DRmax + 1 rounds. Next, the SC (α → β)
we found in the above is used to find another SC, (α′ → α → β), where α is
an intermediate state and α′ is not all As (as this means the attack using all
plaintexts). Following [26], this can be done by adding rounds to the input state
α. Using the fact that α contains only one A, we can add at most DRmax − 2
rounds to obtain a valid SC. Therefore, the maximum number of rounds for SC
is at most DRmax + 2 + DRmax− 2 = 2DRmax. In fact, we confirmed that the
maximum number of rounds for SC was either 2DRmax or 2DRmax− 1 for all
optimum shuffles we searched.

Differential / Linear Cryptanalysis. Differential cryptanalysis (DC) and lin-
ear cryptanalysis (LC) are the most basic attacks on block ciphers. Because it
is generally difficult to obtain a strict maximum differential/linear probability,
we usually count the number of active S-boxes instead [25][1]. If the maximum
differential probability of S-box is p and the number of active S-boxes is N , pN

is the maximum differential characteristic probability (DCPmax), which serves
as one index of security against DC. For sufficient security, DCPmax ≤ 2−kn

is required. Similarly, by counting the minimum number of active S-boxes with
respect to linear masking, we can derive the maximum linear characteristic prob-
ability (LCPmax), which works as an index of security against LC. For each GFS
with an optimum shuffle, we evaluate the minimum numbers of active S-boxes
for DC and LC, denoted by ASD and ASL, for 20 rounds. The result is in Ap-
pendix A. The number of active S-boxes is different for individual shuffles, even



Table 3. Number of active S-boxes of every round (Differential and Linear).

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k=8 Type-II 0 1 2 3 4 6 7 9 10 13 15 17 18 19 20 21 22 24 25 27
No.2 0 1 2 3 4 6 8 10 12 12 14 16 16 18 20 20 22 24 24 26

k = 16 Type-II 0 1 2 3 4 6 7 9 10 13 15 17 19 22 24 26 28 32 35 39
No.1 0 1 2 3 4 6 8 11 14 19 21 24 25 27 30 31 33 36 37 39

if their DRmax are the same; some are better than the Type-II and others are
worse. From this result, we expect that the security against DC/LC of GFSπ

with optimum π is the same level as Type-II GFS.
A typical construction of F is of the form F (x) = S(K ⊕ x), where K is the

key and S : {0, 1}n → {0, 1}n is S-box. Following AES, if S-box is based on the
field inversion over GF (2n), its DPmax (LPmax) is 2−n+2 if n is even and 2−n+1

if n is odd. Assuming such F for n = 8 (thus DPmax and LPmax are 2−6), we
derive the number of rounds for differential/linear characteristics. Here we focus
on Type-II and an optimum GFS using CdB(s). For these two structures, Table.
3 shows ASD and ASL for every round up to 20. Due to their duality the figures
of ASD and ASL are basically the same. Let us assume k = 8, i.e., a 64-bit block
cipher. In this case, if ASD is less than 11 there is an exploitable differential
characteristic as (2−6)10 > 2−64. Thus, Type-II GFS has 9-round differential
characteristic while optimum GFS has 8-round one. Similarly, if we set k = 16
(i.e., 128-bit block), ASD must be less than 22 to have an exploitable differential
characteristic. Table 3 shows the existences of 13-round characteristics for Type-
II GFS and 11-round one for optimum GFS. The same results hold true for LC.
From these analyses, we think our proposal slightly improves the security against
DC/LC, or at least provides the same level of security as that of Type-II GFS.

6 Concluding Remarks

We have shown that the diffusion property of Type-II GFS can be improved by
only changing the internal block shuffle from the cyclic shift. Based on a concrete
notion of diffusion, we have searched all optimum shuffles up to partition number
k ≤ 16. We also proposed a block shuffle family based on a de Bruijn graph for
k being a power of two, and proved that their diffusion property is close to the
best possible. We then confirmed that such block shuffles can be used to improve
the resistance of GFS against some cryptanalysis, such as impossible differential
attack and saturation attack, and improve the efficiency with respect to pseudo-
randomness. While known instances of Type-II GFS ciphers have relatively small
partition number to keep a balance of speed and implementation size, our results
enables to build a fast, secure GFS cipher having a large partition number.

One might think of using different shuffles for each round to achieve a better
(or at least comparable) diffusion than ours in return for a larger implementation
cost. For example, we can alternately use a two block-wise swap (i.e. (a, b, c, d) →



(b, a, d, c), two-round classical Feistel), which offers a local diffusion, and another
global shuffle. For some small k we observed that this two-round Feistel-based
scheme can offer a diffusion property as good as our optimum ones. However, it
is open if multiple shuffles can contribute to a smaller DRmax than ours.
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A Optimum Block Shuffles

Table 4,5 and 6 show the optimum shuffles found in the search and their secu-
rity evaluation. We eliminate isomorphic shuffles. Type-II and Nyberg’s GFN
are also evaluated. Shuffles based on de Bruijn graph is indicated by ∗. A shuffle
is presented in list: π = {3, 0, 1, 4, 5, 2} means that the first input sub block is
mapped to the third sub block of output, etc. Here, D denotes DRmax. IDC and
SC denote the maximum numbers of rounds for impossible differential charac-
teristics and saturation characteristics. ASD and ASL are as defined by Section
5.2. We evaluated both π and π−1. If SC (or ASD, ASL) is written as x/y, x is
for π and y is for π−1. Otherwise the evaluations were the same for π and π−1.



Table 4. Result of security evaluation for k=6,8,10 and 12

k = 6 block shuffle π block shuffle π−1 D IDC SC ASD ASL

TypeII {5,0,1,2,3,4} {1,2,3,4,5,0} 6 13 12 25 25
Nyberg {2,0,4,1,5,3} {1,3,0,5,2,4} 6 11 12 18 18
No.1 {3,0,1,4,5,2} {1,2,5,0,3,4} 5 9 10 25 25

k = 8 block shuffle π block shuffle π−1 D IDC SC ASD ASL

TypeII {7,0,1,2,3,4,5,6} {1,2,3,4,5,6,7,0} 8 17 16 27 27
Nyberg {2,0,4,1,6,3,7,5} {1,3,0,5,2,7,4,6} 8 14 15 18 18
No.1 {3,0,1,4,7,2,5,6} {1,2,5,0,3,6,7,4} 6 11 11 30 30
No.2∗ {3,0,7,4,5,6,1,2} {1,6,7,0,3,4,5,2} 6 10 11 26 26

k = 10 block shuffle π block shuffle π−1 D IDC SC ASD ASL

TypeII {9,0,1,2,3,4,5,6,7,8} {1,2,3,4,5,6,7,8,9,0} 10 21 20 32 32
Nyberg {2,0,4,1,6,3,8,5,9,7} {1,3,0,5,2,7,4,9,6,8} 10 17 18 20 20
No.1 {5,0,7,2,9,6,3,8,1,4} {1,8,3,6,9,0,5,2,7,4} 7 12 13 34 34
No.2 {3,0,1,4,7,2,5,8,9,6} {1,2,5,0,3,6,9,4,7,8} 7 13 13 33 33
No.3 {3,0,7,4,1,6,5,8,9,2} {1,4,9,0,3,6,5,2,7,8} 7 12 13 35 35

k = 12 block shuffle π block shuffle π−1 D IDC SC ASD ASL

TypeII {11,0,1,2,3,4,5,6,7,8,9,10} {1,2,3,4,5,6,7,8,9,10,11,0} 12 25 24 37 37
Nyberg {2,0,4,1,6,3,8,5,10,7,11,9} {1,3,0,5,2,7,4,9,6,11,8,10} 12 20 21 16 16
No.1 {3,0,7,2,9,4,11,8,5,10,1,6} {1,10,3,0,5,8,11,2,7,4,9,6} 8 15 15 34 34
No.2 {3,0,7,2,11,4,1,8,5,10,9,6} {1,6,3,0,5,8,11,2,7,10,9,4} 8 15 16 33 33
No.3 {7,0,9,2,11,4,1,8,5,10,3,6} {1,6,3,10,5,8,11,0,7,2,9,4} 8 14 15 36 36
No.4 {5,0,9,2,1,6,11,4,3,10,7,8} {1,4,3,8,7,0,5,10,11,2,9,6} 8 15 15 37 37
No.5 {5,0,7,2,1,6,11,8,3,10,9,4} {1,4,3,8,11,0,5,2,7,10,9,6} 8 14 15 35 35
No.6 {5,0,7,2,3,6,11,8,1,10,9,4} {1,8,3,4,11,0,5,2,7,10,9,6} 8 14 15 35 35
No.7 {5,0,7,2,3,6,11,8,9,10,1,4} {1,10,3,4,11,0,5,2,7,8,9,6} 8 15 15 35 35
No.8 {5,0,7,2,9,6,11,8,3,10,1,4} {1,10,3,8,11,0,5,2,7,4,9,6} 8 15 15 33 33
No.9 {5,0,9,2,1,6,11,8,7,10,3,4} {1,4,3,10,11,0,5,8,7,2,9,6} 8 14 15 35 35
No.10 {5,0,9,2,3,6,11,8,1,10,7,4} {1,8,3,4,11,0,5,10,7,2,9,6} 8 15 15 30 30
No.11 {5,0,9,2,3,6,11,8,7,10,1,4} {1,10,3,4,11,0,5,8,7,2,9,6} 8 15 15 35 35
No.12 {3,0,1,4,7,2,9,8,5,10,11,6} {1,2,5,0,3,8,11,4,7,6,9,10} 8 15 15/16 33 33
No.13 {3,0,1,4,7,2,11,8,9,10,5,6} {1,2,5,0,3,10,11,4,7,8,9,6} 8 14 15 37 37
No.14 {3,0,7,4,9,2,11,8,1,10,5,6} {1,8,5,0,3,10,11,2,7,4,9,6} 8 14 15 34 33
No.15 {3,0,7,4,11,2,1,8,9,10,5,6} {1,6,5,0,3,10,11,2,7,8,9,4} 8 14 14/15 28 28
No.16 {3,0,7,4,11,2,5,8,1,10,9,6} {1,8,5,0,3,6,11,2,7,10,9,4} 8 14 15 35 35
No.17 {7,0,1,4,9,2,11,8,3,10,5,6} {1,2,5,8,3,10,11,0,7,4,9,6} 8 14 15 35 35
No.18 {7,0,1,4,11,2,5,8,3,10,9,6} {1,2,5,8,3,6,11,0,7,10,9,4} 8 14 15 33 34
No.19 {7,0,3,4,11,2,1,8,5,10,9,6} {1,6,5,2,3,8,11,0,7,10,9,4} 8 14 15 37 37
No.20 {7,0,9,4,11,2,5,8,3,10,1,6} {1,10,5,8,3,6,11,0,7,2,9,4} 8 14 15 34 34
No.21 {3,0,7,4,1,6,11,8,5,10,9,2} {1,4,11,0,3,8,5,2,7,10,9,6} 8 14 15 35 34
No.22 {3,0,7,4,5,6,11,8,1,10,9,2} {1,8,11,0,3,4,5,2,7,10,9,6} 8 14 14 36 34
No.23 {3,0,7,4,9,6,5,8,1,10,11,2} {1,8,11,0,3,6,5,2,7,4,9,10} 8 14 15 34 35
No.24 {3,0,7,4,9,6,11,8,5,10,1,2} {1,10,11,0,3,8,5,2,7,4,9,6} 8 17 16/15 35 35
No.25 {3,0,7,4,11,6,1,8,5,10,9,2} {1,6,11,0,3,8,5,2,7,10,9,4} 8 14 15 36 36
No.26 {3,0,7,4,11,6,5,8,9,10,1,2} {1,10,11,0,3,6,5,2,7,8,9,4} 8 14 15/14 34 36
No.27 {3,0,9,4,1,6,5,8,7,10,11,2} {1,4,11,0,3,6,5,8,7,2,9,10} 8 14 15 33 33
No.28 {3,0,9,4,1,6,11,8,7,10,5,2} {1,4,11,0,3,10,5,8,7,2,9,6} 8 14 15 34 35
No.29 {3,0,9,4,11,6,1,8,7,10,5,2} {1,6,11,0,3,10,5,8,7,2,9,4} 8 15 15 33 34
No.30 {3,0,9,4,11,6,5,8,7,10,1,2} {1,10,11,0,3,6,5,8,7,2,9,4} 8 15 15 33 33
No.31 {3,0,11,4,1,6,5,8,9,10,7,2} {1,4,11,0,3,6,5,10,7,8,9,2} 8 14 15 35 35
No.32 {3,0,11,4,9,6,1,8,5,10,7,2} {1,6,11,0,3,8,5,10,7,4,9,2} 8 14 15 34 33



Table 5. Result of security evaluation for k=14

k = 14 block shuffle π block shuffle π−1 D IDC SC ASD ASL

TypeII {13,0,1,2,3,4,5,6,7,8,9,10,11,12} {1,2,3,4,5,6,7,8,9,10,11,12,13,0} 14 29 28 39 39

Nyberg {2,0,4,1,6,3,8,5,10,7,12,9,13,11} {1,3,0,5,2,7,4,9,6,11,8,13,10,12} 14 23 24 15 15

No.1 {1,2,9,4,3,6,13,8,7,10,11,12,5,0} {13,0,1,4,3,12,5,8,7,2,9,10,11,6} 8 15 15 39 39

No.2 {1,2,9,4,13,6,7,8,5,10,3,12,11,0} {13,0,1,10,3,8,5,6,7,2,9,12,11,4} 8 14 15 40 40

No.3 {1,2,11,4,3,6,13,8,9,10,7,12,5,0} {13,0,1,4,3,12,5,10,7,8,9,2,11,6} 8 14 15 40 40

No.4 {5,2,1,4,11,6,3,8,13,10,9,12,7,0} {13,2,1,6,3,0,5,12,7,10,9,4,11,8} 8 15 16 39 40/39

No.5 {5,2,9,4,1,6,13,8,7,10,3,12,11,0} {13,4,1,10,3,0,5,8,7,2,9,12,11,6} 8 15 15/16 37 37

No.6 {5,2,13,4,11,6,3,8,1,10,9,12,7,0} {13,8,1,6,3,0,5,12,7,10,9,4,11,2} 8 15 15 37 37

No.7 {1,2,7,4,3,6,13,8,5,12,9,10,11,0} {13,0,1,4,3,8,5,2,7,10,11,12,9,6} 8 15 15 39 39

No.8 {1,2,7,4,5,6,11,8,3,12,13,10,9,0} {13,0,1,8,3,4,5,2,7,12,11,6,9,10} 8 15 15 37/38 39

No.9 {1,2,7,4,11,6,13,8,5,12,3,10,9,0} {13,0,1,10,3,8,5,2,7,12,11,4,9,6} 8 15 15/16 39 39

No.10 {1,2,9,4,3,6,7,8,11,12,13,10,5,0} {13,0,1,4,3,12,5,6,7,2,11,8,9,10} 8 15 16 39 39

No.11 {1,2,9,4,5,6,11,8,7,12,13,10,3,0} {13,0,1,12,3,4,5,8,7,2,11,6,9,10} 8 15 15 39 37

No.12 {1,2,9,4,11,6,7,8,5,12,13,10,3,0} {13,0,1,12,3,8,5,6,7,2,11,4,9,10} 8 14 15 38 40

No.13 {1,2,11,4,9,6,3,8,7,12,13,10,5,0} {13,0,1,6,3,12,5,8,7,4,11,2,9,10} 8 14 15 33 33

No.14 {1,2,11,4,13,6,7,8,5,12,9,10,3,0} {13,0,1,12,3,8,5,6,7,10,11,2,9,4} 8 14 15 40 38

No.15 {5,2,1,4,11,6,9,10,7,8,13,0,3,12} {11,2,1,12,3,0,5,8,9,6,7,4,13,10} 8 15 15 38 38

No.16 {5,2,9,4,1,6,13,10,11,8,7,0,3,12} {11,4,1,12,3,0,5,10,9,2,7,8,13,6} 8 15 15/16 39 39

No.17 {5,2,9,4,3,6,1,10,7,8,13,0,11,12} {11,6,1,4,3,0,5,8,9,2,7,12,13,10} 8 15 15 38 38

No.18 {5,2,9,4,11,6,3,10,7,8,13,0,1,12} {11,12,1,6,3,0,5,8,9,2,7,4,13,10} 8 14 15 39 39

No.19 {7,2,1,4,9,6,3,10,11,8,13,0,5,12} {11,2,1,6,3,12,5,0,9,4,7,8,13,10} 8 15 15 39 39

No.20 {7,2,1,4,9,6,5,10,3,12,13,0,11,8} {11,2,1,8,3,6,5,0,13,4,7,12,9,10} 8 14 15 40 40

No.21 {1,2,11,4,3,8,5,6,13,0,7,12,9,10} {9,0,1,4,3,6,7,10,5,12,13,2,11,8} 8 14 15 38 38

No.22 {1,2,9,6,3,4,13,0,5,10,7,12,11,8} {7,0,1,4,5,8,3,10,13,2,9,12,11,6} 8 14 15 41 41

No.23 {1,2,9,6,13,4,3,0,7,10,5,12,11,8} {7,0,1,6,5,10,3,8,13,2,9,12,11,4} 8 15 16 36 36

Table 6. Result of security evaluation for k=16

k = 16 block shuffle π block shuffle π−1 D IDC SC ASD ASL

TypeII {15,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14} {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0} 16 33 32 39 39

Nyberg {2,0,4,1,6,3,8,5,10,7,12,9,14,11,15,13} {1,3,0,5,2,7,4,9,6,11,8,13,10,15,12,14} 16 26 27 16 16

No.1∗ {1,2,9,4,15,6,5,8,13,10,7,14,11,12,3,0} {15,0,1,14,3,6,5,10,7,2,9,12,13,8,11,4} 8 15 16 39 39

No.2 {1,2,11,4,9,6,7,8,15,12,5,10,3,0,13,14} {13,0,1,12,3,10,5,6,7,4,11,2,9,14,15,8} 8 15 15 35 36

No.3 {1,2,11,4,9,6,15,8,5,12,7,10,3,0,13,14} {13,0,1,12,3,8,5,10,7,4,11,2,9,14,15,6} 8 15 15 38 38

No.4 {5,2,9,4,1,6,11,8,15,12,3,10,7,0,13,14} {13,4,1,10,3,0,5,12,7,2,11,6,9,14,15,8} 8 15 15 39 26

No.5 {5,2,9,4,11,6,15,8,3,12,1,10,7,0,13,14} {13,10,1,8,3,0,5,12,7,2,11,4,9,14,15,6} 8 14 15 41 41

No.6 {5,2,11,4,1,6,15,8,3,12,13,10,7,0,9,14} {13,4,1,8,3,0,5,12,7,14,11,2,9,10,15,6} 8 15 15 26 39

No.7 {1,2,11,4,3,6,7,8,15,12,5,14,9,0,13,10} {13,0,1,4,3,10,5,6,7,12,15,2,9,14,11,8} 8 14 15 40 40

No.8 {1,2,11,4,9,6,7,8,15,12,13,14,3,0,5,10} {13,0,1,12,3,14,5,6,7,4,15,2,9,10,11,8} 8 15 15 26 26

No.9 {1,2,11,4,9,6,15,8,5,12,7,14,3,0,13,10} {13,0,1,12,3,8,5,10,7,4,15,2,9,14,11,6} 8 15 16/15 42 42

No.10 {7,2,13,4,11,8,3,6,15,0,9,10,1,14,5,12} {9,12,1,6,3,14,7,0,5,10,11,4,15,2,13,8} 8 14 15 44 44

No.11 {7,2,13,4,11,8,9,6,15,0,3,10,5,14,1,12} {9,14,1,10,3,12,7,0,5,6,11,4,15,2,13,8} 8 15 16 38 38

No.12 {1,2,11,4,15,8,3,6,7,0,9,12,5,14,13,10} {9,0,1,6,3,12,7,8,5,10,15,2,11,14,13,4} 8 15 16 42 42

No.13 {5,2,11,6,13,8,15,0,3,4,9,12,1,14,7,10} {7,12,1,8,9,0,3,14,5,10,15,2,11,4,13,6} 8 15 15 35 35


