
Cryptanalysis of the DECT Standard Cipher

Karsten Nohl1 and Erik Tews2 and Ralf-Philipp Weinmann3

1 University of Virginia,
2 Technische Universität Darmstadt,

3 University of Luxembourg
nohl@cs.virginia.edu,

e tews@cdc.informatik.tu-darmstadt.de,
ralf-philipp.weinmann@uni.lu

Abstract. The DECT Standard Cipher (DSC) is a proprietary 64-bit stream
cipher based on irregularly clocked LFSRs and a non-linear output com-
biner. The cipher is meant to provide confidentiality for cordless tele-
phony. This paper illustrates how the DSC was reverse-engineered from
a hardware implementation using custom firmware and information on
the structure of the cipher gathered from a patent. Beyond disclosing the
DSC, the paper proposes a practical attack against DSC that recovers the
secret key from 215 keystreams on a standard PC with a success rate of
50% within hours; somewhat faster when a CUDA graphics adapter is
available.

Keywords: DECT, DECT Standard Cipher, stream cipher, cryptanalysis,
linear feedback shift register.

1 Introduction

Cordless phones using the Digital Enhanced Cordless Telecommunications stan-
dard (DECT) are among the most widely deployed security technologies with
90 million new handsets shipping every year [1]. However, DECT does not pro-
vide sufficient security for its intended application ’cordless telephony’ as it
fails to deliver confidentiality and access control.

The technology is also popular in other applications with even higher secu-
rity needs including machine automation, building access control, alarm sys-
tems, and wireless credit card terminals [2].

DECT’s need for security is covered by two proprietary algorithms: The
DECT Standard Authentication Algorithm (DSAA) for authentication [3] and
the DECT Standard Cipher (DSC) for encryption. The first attacks on DECT be-
came known in 2008 [3]. Researchers demonstrated that encryption and even
authentication could easily be switched off due to insecure DECT implemen-
tations that do not enforce them. Furthermore, the researchers observed that
even when security is switched on, many devices use highly predictable ran-
dom numbers thereby undermining the level of protection the DSC aims to
achieve.

Since the initial findings, some handsets and base stations have been patched
to enforce encryption and to use strong random numbers to mitigate the pre-
vious attacks. Nonetheless, this paper demonstrates that even these improved
devices can be attacked by exploiting weaknesses of the DSC.

The DECT Standard Cipher is an asynchronous stream cipher with low
gate complexity that takes a 64 bit secret key and a 35 bit initialization vec-
tor, IV, to generate keystream. DSC is similar to GSM’s A5/1 and was reverse-
engineered from a DECT device using a combination of firmware probing and
hardware reverse-engineering. The cipher, publicly disclosed for the first time1

in this paper, is vulnerable against a clock guessing attack similar to the Ekdahl-
Johansson attack [4] against A5/1. The attack – although it has a large data com-
plexity – can be executed on a PC in hours and allows for passively sniffed voice
and data connections to be decrypted. However, we were not able to carry over
later improvements of the Ekdahl-Johansson attack [5, 6] due to specific traits
of A5/1 being used in them that are not present in the DSC.

DSC is stronger than A5/1 by statistical indicators such as the non-linearity
of the round and filter function, key size and state size. However, DSC as used
in DECT is initialized in less than half the number of rounds when compared
to A5/1 in GSM. This underpins that the number of initialization rounds is a
major security metric of stream ciphers.

The attack on DSC presented in this paper provides a trade-off between the
number of available data samples and the time needed to calculate the secret
state. When 215 samples are available, the attack executes in less about 22 min-
utes on a 16 core Opteron machine clocked at 2.3GHz.

DSC and its use in DECT could be improved in several ways, most simply
by increasing the number of initialization rounds. Incidentally, switching off en-
cryption for the DECT control channel effectively increases the number of ini-
tialization rounds which as a side effect protects the data channel better. While
this countermeasure does make our attack on data confidentiality more diffi-
cult, the DSC cipher – like many proprietary ciphers – is conceptually flawed
and should not be used for security applications. The successor technology to
DECT will hopefully include an open cipher that underwent extensive peer
review to provide the appropriate level of confidentiality and authentication
strength.

The paper is structured as follows: Section 2 gives a description of the DSC,
Section 3 describes how the cipher was reverse-engineered and Section 4 shows
attacks against the DSC. A high-performance implementation of DSC is de-
scribed in Section 5; Section 6 discusses DSC’s weaknesses and compares it to
A5/1.

1 A partial description was given by the deDECTed.org project – of which the authors
are members – at the 25th Chaos Communication Congress in Berlin in December
2008. At that point the output combiner and the key loading had not yet been reverse-
engineered. This presentation also included the practical attacks described in [3].

1.1 Notation

The internal state of DSC is represented as a 81 bit vector, s ∈ GF (2)81, com-
prised of the state of four linear feedback shift registers (LFSRs) and the mem-
ory bit of the output combiner.

Since state transitions are performed by linear operations, we will use ma-
trices to describe them. The matrices in Table 1.1 represent the DSC operations:

Table 1. Matrices describing linear operations on the internal state

Matrix Dimension Description
C1 81× 81 single clock register R1
C2 81× 81 single clock register R2
C3 81× 81 single clock register R3
L 81× 128 load key and IV into state
S 6× 81 extract the first two leading

bits from R1, R2, and R3

The output combiner O of DSC is a non-linear mapping, depending on the
previous bit of output y and 6 bits of the state s.

The DSC round function that translates a state into the next round’s state
is a non-linear mapping. The pre-ciphering phase which consists of loading the
secret key and initialization vector (IV) into the DSC registers and then applying
the round function i times is denotedDi. The i initialization rounds are referred
to as pre-ciphering steps.

2 Description of the DECT Standard Cipher

The DECT Standard Cipher (DSC) is an irregularly clocked combiner with mem-
ory. Its internal state is built from 4 Galois LFSRs R1, R2, R3, R4 of length 17,
19, 21 and 23 respectively as well as a single bit of memory y for the output
combiner. The bits of the state of the LFSR Ri shall be denoted by xi,j with the
lowest-most bit being xi,0. The taps of R1 are located at bit positions 5, 16; the
taps of R2 are at bit positions 2, 3, 12, 18; the taps of R3 at bit positions 1, 20; the
taps of R4 are at bit positions 8, 22.

For each bit of output, register R4 is clocked three times whereas R1 to R3
are clocked either two or three times. The clocking decision is determined in-
dividually for each of the irregularly clocked registers. The decisions linearly
depend on one of the three lowest bits of R4 and the middle bits of the other
irregularly clocked registers. More specifically, the number of clocks ci for each
of the registers is calculated as follows:

c1 = 2 + (x4,0 ⊕ x2,9 ⊕ x3,10)

c2 = 2 + (x4,1 ⊕ x1,8 ⊕ x3,10)

c3 = 2 + (x4,2 ⊕ x1,8 ⊕ x2,9)

2.1 The output combiner

The output combiner is a cubic function that involves the lowest-most two bits
of the registers R1, R2 and R3 as well as the memory bit y:

O((x1,0, x1,1, x2,0, x2,1, x3,0, x3,1), y) = x1,1x1,0y ⊕ x2,0x1,1x1,0 ⊕ x1,1y ⊕
x2,1x1,0y ⊕ x2,1x2,0x1,0 ⊕ x3,0y ⊕
x3,0x1,0y ⊕ x3,0x2,0x1,0 ⊕ x3,1y ⊕
x1,1x1,0 ⊕ x2,0x1,1 ⊕ x3,1x1,0 ⊕
x2,1 ⊕ x3,1

The output of the combiner function gives a keystream bit and is loaded into
the memory bit for the next clock.

2.2 Key loading and initialization

Initially all registers and the memory bit are set to zero. The 35-bit IV is zero
extended (most significant bits filled with zero) to 64 bits and concatenated
with the 64 bit cipher key CK to form the session key K.

K = Z(IV)||CK

The bits of K are clocked into the most significant bit of all four registers, bit by
bit, starting with the least significant bit. During the key loading each LFSR is
clocked once after each bit. After the session key has been loaded, 40 pre-cipher
rounds are performed. In these pre-cipher rounds, the irregular clock control
is used but the output is discarded. If one or more registers have all bits set
to zero after executing 11 rounds, the most significant bit of the corresponding
registers is set to 1 before starting the next round.

3 Reverse-Engineering the DSC from hardware

We did not find any software implementations of DSC. Instead our starting
point was a patent [7] describing the general structure of the DSC. From this
document we learn that DSC is an LFSR-based design together with the lengths
of the individual registers. Furthermore the patent discloses that the cipher has
an output combiner with a single bit of memory, irregular 2-3 clocking and
the number of initialization rounds. On the other hand the tap positions of the
LFSRs, the clocking functions, the combiner function as well as the exact key
loading routine are not described in this patent. The rule that after 11 initializa-
tion rounds a check had to be performed to make sure that no register is zero at
that point is also stated in the patent.

Luckily, for the National Semiconductors SC14xxx DECT chipset that is used
by the deDECTed.org project, we found instructions that allow to load and store
an abitrary internal state of the stream cipher. Moreover, the stream cipher can

Fig. 1. The DSC keystream generator with LFSRs in Galois configuration. Bit positions
that are inverted (white on black) are used in clocking decisions

be clocked in two modes: a regular clocking of the the LFSRs for key loading
and a second mode clocking irregularly as specified by the clocking functions,
generating output. However we are not able to directly capture these output
bits.

To reverse-engineer the unspecified details of the cipher we proceed as fol-
lows: Using the first mode allows us to determine the tap positions of the LF-
SRs. After that, we are able to determine the clocking functions in the second
mode by loading a random vector of low Hamming weight into the internal
state and observing how single-bit changes affect the clocking decisions.

The most elaborate part to reverse-engineer is the output combiner function.
To do this, we set up one machine with a modified firmware to send out frames
containing zero-stuffed payloads. Another machine acting as the receiving side
then “decrypts” these using a chosen internal state (no key setup), yielding
keystream. Starting from random states, we sequentially flip single bit positions
of the state and inspect the first bit to see whether the bit flip affected the output.
If the output remains constant for a large number of random states, we assume
that the flipped bit is not used in the output combiner. Having identified the
bits that indeed are fed into the combiner, we recover the combiner function by
using multivariate interpolation for a number of keystreams.

Finally we determine the correct key loading by systematically trying dif-
ferent bit and byte-orders for both key and IV combined with both different
orders of key and IV.

In parallel to having done the above, we also reverse-engineered the DSC
cipher including its output combiner from silicon applying the techniques pre-
viously used to discover the Crypto-1 function [8].

4 Attacking the DSC

For this section, we will assume that an adversary has access to a list of DSC
keystreams with matching initialization vectors, all of which were generated
under the same secret key. A tuple of keystream and IV is referred to as a session.
We will use clock-guessing techniques very similar to the Ekdahl-Johansson
attack against A5/1 [5], but adapted to the case of a non-linear output combiner.
Further improvements of this attack discussed in [5, 6] seem to be too specific
to the A5/1 structure.

4.1 Simple clock guessing

Despite its relative large state and non-linearity, DSC is easily broken because of
one major design flaw: the small number of pre-ciphering rounds makes clock
guessing easy. After the key loading, there are only 40 clocking decisions made,
compared to 100 clocking decisions for A5/1.

If an internal state for DSC is randomly chosen from a uniform distribution
of all states, every irregularly clocked register clocks twice with 50% probability
or three times with 50% probability. We assume for now that the probability that
one register is clocked twice is independent of the clocking decision of the other
irregularly clocked registers. The probability that one register is clocked k times
during the pre-ciphering-phase is:(

40

k − 80

)
2−40

and the probability that a register has been clocked k times after i bits of output
is: (

40 + i

k − (80 + 2i)

)
2−(40+i)

The total number of clocks per register after i bits of output is distributed ac-
cording to a shifted binomial distribution with mode:⌊

i+ 1

2

⌋
+ 2i+ 100

In general, let

Di,j,k = S× Ci
1 × Cj

2 × Ck
3 × L× (key, iv)

be the state of the six bits of the registers which generate the output, after key
and iv have been loaded, and register R1 has been clocked i, register R2 has
been clocked j, and register R3 has been clocked k times.

The attack focuses on the internal DSC state from which the second bit of
output is produced. An attacker who has observed the first bit of output knows

the state z0 of the memory bit of the output combiner. The second bit of output
depends on 6 bits of the registers R1, R2, and R3. With a probability of

p =

((
41

21

)
2−41

)3

≈ 2−9.09

all of these irregularly clocked registers will be clocked exactly 103 times before
the second bit of output z1 is produced and we have

D103,103,103(key, iv)) = S×D41(key, iv)

with probability 1. If the number of clocks per register is different, this equation
will hold by chance with a probability 1

64 . Therefore, we have

Prob
(
D103,103,103(key, iv) = S×D41(key, iv)

)
= p+

1− p

64
≈ 2−5.84

Based on this guess, six affine-linear equations for an unknown key can be
derived given that sufficiently many keystreams (about 218) are available. For
every IV iv, the attacker computes

I103,103,103 = D103,103,103(0, iv)

He then checks for every possible state s of the six output bits whetherO(s, z0) =
z1 holds. If so, this is an indication that

D103,103,103(key, 0) = s+ I103,103,103

holds. After having processed all available keystreams, the attacker may as-
sume the most frequent value for D103,103,103(key, 0) to be correct. Using these
six affine-linear equations allows an attacker to recover the correct key by try-
ing only 258 instead of 264 possible keys. This basic attack however is still too
time-consuming to be practical on a single PC.

4.2 Breaking DSC on a PC

We can refine the basic attack principle to give us a much faster attack that
allows us to practically recover a DSC key on a PC.

Note that the attack scope can be extended to different assumptions for the
number of clockings for the registers R1, R2 and R3. In the basic attack, we use
the mode of the distribution of the number of clock of all registers. If the total
number of clocking decisions is odd, another set of clockings with the same
success rate always exists. For example, if the attacker assumes that R1 and
R2 have been clocked 103 times as in the previous subsection, but R3 has been
clocked 102 times instead of 103 times, the previous attack works with the same
computational effort and success rate. In total, there are 8 possible assumptions
about the number of clocks with the same success rate as the previous attack.

However, these different assumptions share many equations for the key. An
attacker will only obtain nine different affine-linear equations for the key using
these eight assumptions (compared to six equations for a single assumption).

Extending the attack scope further, – i.e., assuming that R1 has been clocked
101 times, and R2 and R3 have been clocked 102 times – increases the success
rate of the attack but at an even smaller incremental gain per additional as-
sumption.

Another way to broaden the attack is to focus on different keystream bits.
The basic attack only uses the first two bits of the output, z0 and z1. Instead of
guessing how many times the registers have been clocked before producing the
z1, one could guess how many times the registers have been clocked before z2
is produced. For example, an attacker can try using z1 and z2 of the output and
guess that R1, R2, and R3 have been clocked exactly 105 times. The resulting
correlation will have the same success rate as the one from the basic attack.
Using multiple output bits for a single clocking triplet is possible.

Combining these two time-success trade-offs, we developed a more ad-
vanced key-recovery attack on the DSC that merely requires hours of compu-
tation on a PC given enough keystreams. We chose a clocking interval C =
[102, 137], and generated all 353 = 42875 possible approximations with the
number of clocks of R1 to R3 in C. We introduce new variables x

(t)
i,j for the

state of bit j of Register Ri after it has been clocked t times. Assuming that Ri
has been clocked t times for an approximation gives us information about x(t)

i,0

and x
(t)
i,1. In total, a clocking-interval of length l gives us information about 6l

variables (3 registers, 2 variables per clocking amount). However, x(t)
i,1 = x

(t+1)
i,0

holds for all registers Ri, because x
(t)
i,1 is just shifted to x

(t+1)
i,0 with the next clock

of Ri. Choosing a different feedback polynomial with a feedback position be-
tween the two bits contributing to the output combiner would destroy this
structure. However for DSC, all feedback polynomials don’t have a feedback
position here. Effectively, this gives us information about 3(l + 1) variables for
a clocking interval of length l. We will always use x

(t+1)
i,0 instead of x(t)

i,1 for the
rest of this paper.

There are also linear relations between these variables. For example x(t+1)
1,5 =

x
(t)
1,6⊕x

(t)
1,0 holds. In general, having determined a consecutive sequence of vari-

ables x(t)
i,0, x

(t+1)
i,0 , . . . for a register Ri, is equivalent to the output sequence of Ri.

If more variables than the length of Ri have been determined, one might use
these linear relations to check if a given assignment is feasible. However, we
did not use this in our attack.

The success rate that register R1 is clocked i times, register R2 is clocked j
times and register R3 is clocked k times after l bits of output have been pro-
duced is:

pi,j,k,l =

(
40 + l

i− (80 + 2l)

)(
40 + l

j − (80 + 2l)

)(
40 + l

k − (80 + 2l)

)
2−(40+l)3

In theory, one could use all available bits of keystream for which the corre-
lation has better than zero success rate, however after 19 bits of keystream, all
of these correlations have negligible success probability. For example the prob-
ability that all registers have been clocked 137 times (the end of our clocking-
interval) for the 19th bit of output is below 2−26.

As in the basic attack, we evaluate all correlations separately and create a
frequency table for every correlation. Following the ideas of Maximov et al.[5]
we add the log-likelihood ratio ln p

1−p for key = s+ iv to every entry in the table,
with

p =
∑
l

pi,j,k,l ∗ [O(s, zl−1) = zl] +
1

2

(
1−

∑
l

pi,j,k,l

)
Here [O(s, zl−1) = zl] = 1, if O(s, zl−1) = zl, 0 otherwise.

Instead of writing the equations in all correlations as a linear combination
of key bits, we now write all equations in the form x

(i)
{1,2,3},0 = {0, 1}.

Taking the entry with the highest probability from the frequency table of
every approximations, we obtain 42875 ∗ 6 = 257250 equations with a given
probability. (Every approximation (42875) gives us information about the value
of 6 state-variables. In total, these state-variables can have 26 = 64 possible
values, the value with the highest probability in the frequency table is most
likely. We use the number of (weighted votes) for the top entry as an extend
pi how likely these equations are correct.) For every variable x, we take all the
equations of the form x = bi, bi ∈ {0, 1} with extend pi and compute sx =∑

i(2bi − 1) ∗ pi and assume that x = 0, if sx < 0, x = 1 otherwise.
Combining all equations to a single equation system gives 108 equations

each of which depends only on a single variable and a corresponding proba-
bility pv that this equation is correct. We sort these equations according to |pv|,
rewrite all variables to key bits, and add them in order to a new linear equation
system for the key bits. If adding a equation would make the resulting system
unsolvable, we skip that equation. If enough linearly independent variables (for
example 30) have been added to the system, we stop the process.

We then iterate through all solutions to this system, and check every solu-
tion if it is the correct key, by comparing it to some sample keystreams.

We created a proof-of-concept implementation of this attack written in Java.
Processing all available keystreams and generating a linear equation system
takes about 20 minutes using a SUN X4440 using 4 Quad-Core AMD Opteron(tm)
Processor 8356 running at 2.3 GHz. The main workload here is the generation
of all the frequency tables for all approximations. The post processing and the
generation of the final equation system is negligible. We think that this time can
be reduced to a few minutes using parallel computation and a more efficient
implementation. For the time for the final search of the correct key, see Section
5.

The success rate of this attack depends on the number of available key-
streams and the number of equations in the final equation system for the key-
bits. Using more equations makes the final search for the correct key faster, but

increases the probability of having at least one incorrect equation in the sys-
tem which makes the attack fail. If i equations are used in the final system, one
still needs to search through at most 264−i different keys to find the correct key
(assuming the equation system is correct).

Fig. 2. Success rate of the attack

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 8192 16384 24576 32768 40960 49152 57344 65536

p
ro

b
a
b
ili

ty
 o

f
s
u
c
c
e

s
s

keystreams available

10 equations
20 equations
30 equations
40 equations

Using 30 equations in the final system (one still needs to check at most 234

different keys), the attack was successful in 48 out of 100 simulations with 32768
different keystreams available. Using only 16384 keystreams, the success rate
dropped down to 1%. With 49152 keystreams, the attack was successful in 95%
of all simulations. If only 8 equations should be used, the attack had a suc-
cess rate of 8% using just 8192 keystreams. However an adversary would need
to conduct a final search for the key over 256 different keys, which is roughly
equivalent to a brute force attack against DES.

4.3 Keystream recovery

To break the DSC stream cipher, keystream needs to be recovered from the en-
crypted frames, which is only possible when the user data is known or can be
guessed. Known user data is regularly sent over DECT’s control channel (C-
channel). The C-channel messages (e.g., for a button press) share a common
structure in which the majority of the first 40 bits stays constant. There are at
most 50 C-channel packets sent per second which provides an upper bound
on the number of known keystream segments from the C-channel. Especially
in newer phones, the C-channel is extensively used for status updates includ-
ing RSS feeds and other data communication which opens the possibility that a
significant number of known keystream can be gathered.

Keystreams can also be collected from the voice channel (B-field), but as-
sumptions have to be made about the voice being transmitted (i.e., segments of
silence). Even when these assumptions do not hold in all cases, the data is still
usable in the attacks outlined below as they are error-resilient. More informa-
tion can be found in appendix A.

4.4 Extending the attack to B-field data

Thus far we have assumed the adversary to have access to the first bits of out-
put of DSC after pre-ciphering. However, these bits are only used to encrypt
the C-channel data in DECT. If C-channel data is not frequently used in a con-
versation, the adversary is unable to recover a sufficient number of keystreams
using the techniques previously described.

Henceforth, we adapt our attack to also work when the first 40 bits of key-
stream are not available. To achieve this, we need to change the clocking inter-
val from [102, 137] to [204, 239]. We then use 21 bits of the keystream starting
from bit 41. The best approximation which exists is to assume that every regis-
ter has been clocked 202 times when the second bit for the B-field is produced.
This happens with probability 2−10.527, instead of 2−9.0915 for the best approxi-
mation for the C-channel bits.

Fig. 3. Success rate of the B-field attack

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 16384 32768 49152 65536 81920 98304 114688

p
ro

b
a
b
ili

ty
 o

f
s
u
c
c
e
s
s

keystreams available

10 equations
20 equations
30 equations
40 equations

As expected, the number of keystreams required for the same success rate is
increased by factor of 2-3. To make the attack work with a success rate of 50%,
the attack requires 75,000 keystreams. Again we conducted 100 simulations to
experimentally verify the success rate and to generate the plot in figure 3.

However, B-fields are sent 100 times per second from FP to PP while a call
is in progress. This allows to recover the corresponding keystreams in less than
13 minutes if a predictable plaintext pattern is used in the B-field.

5 High-Performance DSC

The DSC is optimized for hardware implementations where LFSRs can be im-
plemented in a small number of logic gates. To minimize the complexity of
our attack implementation, we did not facilitate FPGAs or even build custom
ASICs for DSC computations. Instead we optimized implementations for an
x64 CPU, a NVidia CUDA graphics card–both of which are commonly found
in home computer–and a cell processor. Optimizations we applied to acceler-
ate the attack include bit slicing and the use of bit vectors. The combination
of these tweaks resulted in a 25x speed-up on Intel CPUs when compared to a
straight-forward DSC implementation. Performance figures for components in
a standard gaming PC (CPU, NVidia graphics adapter) and a PlayStation 3 (Cell
processor) are provided in Table 2, including the search time for the C-channel
attack searching through 234 keys.

Table 2. Efficiency of brute-forcing large numbers of DSC keys on different architectures

Compute Node Keys tried per second Attack time for final search
Intel 2 GHz CPU (2 cores) 24 million 716s
Cell processor 25 million 687s
CUDA GTX260 148 million 116s

Our optimizations have been implemented for Intel CPUs (128bit SSE), the
Cell processor in PlayStations (128bit wide SIMD units in both the SPEs and the
PPE) and to CUDA GPUs where only 64 bit wide general purpose registers are
available. However, due to the large number of compute kernels, a high-end
CUDA graphics card is almost one order of magnitude faster than a high-end
Intel CPU for our attack.

Since the problem is parallelizable without dependencies, utilization of mul-
ticore systems comes without penalty allowing the key cracking to be distributed
over a large number of CPU, cell, and CUDA nodes.

Bit slicing. In the optimized implementation, the 81 bit state of DSC is stored
in 81 registers, each register holding 128 bits for 128 DSC engines. With only 3
xor instructions the clocking decision for R1 can be made – for 128 DSC states
at once. A first implementation for an Intel Core 2 Duo at 2Ghz can verify 12
million key candidates per second per core, including extraction of the 64 bit
key from the equation system, the 64 bit key setup procedure to clock the key

into the DSC state, 40 clockings of DSC in the pre-cipher phase and the gener-
ation and comparison of 8 keystream bits. The amortized simulator processor
clocks to produce a bit of DSC output is about 2.

The bit slice implementation has the drawback that there is no efficient way
to shift a register, so for a simple one bit shift of R1, 17 locations of memory have
to be copied in the ring buffer. Fortunately when the clocking is regular, copying
is not necessary and single combined head and tail pointer can be incremented
and decremented to facilitate the shift operation. This optimization is usable
during key setup and for R4 during all DSC stages.

Bit vectors. The extraction of the candidate keys from the equation system is
further optimized through the use of bit vectors, so 64 operations are needed to
produce 128 64 bit long keys, by first building a template for key values encod-
ing the information of any set of 128 consecutive candidate keys and using this
template to produce 128 keys anywhere in the key-space with linear complexity
over the number of bits (64).

CUDA tweaks. High end graphics cards for computer gaming can be expected
to perform at least 10 times faster then a single CPU. One such GPU has 240
ALUs clocked at about 1.2Ghz. The slower clock speed and the smaller register
size of 64 bits each halve the effect of the larger number of cores. Furthermore
CPU features such as superscalar execution, branch prediction and out of order
execution narrow the gap further. At about three times the power consumption,
a high-end CUDA GPU still executes about ten times as fast as a Intel CPU
making it the preferred host for our attack.

6 DSC weaknesses and mitigations

The DSC cipher is vulnerable against the attack described in this paper be-
cause it does not accumulate enough non-linearity before producing the first
keystreams. Our attack DSC exploits the fact that the cipher can be expressed
in relatively simple equations that hold true with non-negligible probability.
These equations can be generated because three weaknesses come together in
DSC:

– A round function with a low level of non-linearity
– An insufficiently small number of rounds before the first key stream bit is

produced
– Access to keystreams through known plaintext in the C-channel

The latter two properties make DSC much weaker than the related A5/1
stream cipher used in GSM2. Attacks on A5/1 still require more keystream

2 A5/1 and DSC were standardized by the same organization, A5/1 in 1987 and DSC
in 1992

than can be inferred from GSM packets or extensive precomputations for time-
memory trade-offs [9].

In other dimensions of statistical strength, the DSC cipher is stronger than
A5/1, again emphasizing how serious the above mentioned weaknesses are.

Table 3. Comparing A5/1 against the DSC

A5/1 DSC
number of registers 3 4
irregularly clocked registers 3 3
internal state in bits 64 81
output combiner linear non-linear
bits used for output 3 7
bits used for clocking 3 6
clocking decision 0/1 2/3
clocks per register until first bit of output 0-100 80-120
average clocks of registers until first bit of output 75 100
pre-cipher rounds 100 40

The larger internal state makes practical time-memory tradeoffs infeasible
for DSC. Since more bits are used in the output combiner, the sampling of spe-
cial states [10] is much harder for DSC than for A5/1. At the same time, the
non-linearity of the output combiner in DSC improves its resilience against di-
vide and conquer strategies. DSC has a register which only affects the clocking
control and doesn’t directly generate the keystream. In A5/1 every register af-
fects the output directly. Differential attacks against A5/1 [11] use that fact that
this cipher does not always clock all registers; the DSC clocks every register at
least two times after each bit of output.

The attack outlined in this paper is enabled through available keystream
and the small number of clocking rounds. Short-term countermeasures to miti-
gate the risk imposed by this particular attack include:

– frequent re-keying to prevent an attack from collecting sufficiently many
keystreams.

– switching off encryption of the C-channel (which might lead to privacy con-
cerns over dialed numbers etc.);

Both measures can be deployed to many existing base stations and handsets
through firmware updates.

However, it is our belief that the current DECT standard includes too many
vulnerabilities to be made secure through quick fixes. Also, DECT with DSC
does not provide sufficient security for its intended uses. To provide this level
of protection, a strong peer-reviewed cipher and security protocol are needed
in the next version of the DECT standard.

7 Conclusions

Cryptographic functions can be reverse-engineered from hardware devices and
need to hold up to security analyses when they are disclosed. The widely-used
DSC cipher in DECT cordless phones did not hold up to the test of a curious
review.

While the attack presented in this paper does rely on strong assumptions on
the availability of keystreams, other attacks will very likely further degrade the
security level of DSC. We believe that the DSC cipher as used in DECT is not
sufficient to protect the confidentiality of personal conversations, network traf-
fic, and credit card information. We propose the DECT standard to be amended
by a strong, peer-reviewed cipher in order to provide sufficient protection for
its users.

The fact that the DSC cipher has not undergone public review, despite be-
ing deployed in hundreds of millions of locations, raises the question of why
not more proprietary security algorithms have been reverse-engineered. The
techniques used for reversing DSC from a firmware and a chip implementation
can certainly be further generalized. This opens interesting research avenues;
research targets are aplenty as new proprietary ciphers in embedded applica-
tions such as car buses and RFID chips are constantly being created.

Acknowledgements: This paper builds on software and firmware created within
the deDECTed.org project. Moreover, a DECT kernel stack for Linux written
by Patrick McHardy was used in the reverse engineering process. We would
like to thank Andreas Schuler who helped us writing firmware for the SC14421
to reverse-engineer the cipher, Sascha Krissler for implementing the DSC on
CUDA and Starbug for his silicon reverse engineering work. Especially we
would like to thank the anonymous reviewers, who had very valuable ideas for
improvements of the attack. In particular they pointed us to a publication [4]
by Ekdahl and Johansson which shows an interesting attack against A5/1; this
helped us to significantly improve our attack.

Open probems Our attacks against DSC should be seen as a starting point.
Although we were not able to carry over the improvements for the Ekdahl-
Johansson attack against A5/1 to the DSC we challenge other researchers to
give it a try.

The statistical methods we used to generate our equation systems certainly
can be improved. Thus far, all approximations in the clocking interval have
been used. A significant amount of CPU time in the attack is used for processing
all keystreams with all approximations. A more sophisticated method could
select a subset of the approximations to get an improved running time.

Moreover, it is an interesting problem to see whether the number of key-
streams required can be reduced by taking the linear equations from the feed-
back polynomials into account.

The most interesting problem however to us is to find an attack against the
DSC that works with a very small number of keystreams. Due to the structure

of our attack we do not believe that it can be adapted to this scenario. At the
same time, other attacks with a low data complexity that work against A5/1
cannot be carried over to DSC due to the larger internal state size.

References

1. MZA Telecoms & IT Analysts: Global cordless phone market. Press Release (August
2009)

2. DECT Forum: Positioning of DECT in relation to other radio access technologies.
Report (June 2002)

3. Lucks, S., Schuler, A., Tews, E., Weinmann, R.P., Wenzel, M.: Attacks on the DECT
authentication mechanisms. In Fischlin, M., ed.: CT-RSA 2009. Volume 5473 of Lec-
ture Notes in Computer Science., Springer (2009) 48–65

4. Ekdahl, P., Johansson, T.: Another attack on A5/1. IEEE Transactions on Information
Theory 49(1) (2003) 284–289

5. Maximov, A., Johansson, T., Babbage, S.: An improved correlation attack on A5/1.
In Handschuh, H., Hasan, M.A., eds.: Selected Areas in Cryptography – SAC 2004.
Volume 3357 of Lecture Notes in Computer Science., Springer (2004) 1–18

6. Barkan, E., Biham, E.: Conditional estimators: An effective attack on A5/1. In Pre-
neel, B., Tavares, S.E., eds.: Selected Areas in Cryptography – SAC 2005. Volume
3897 of Lecture Notes in Computer Science., Springer (2006) 1–19

7. Alcatel: Data ciphering device. U.S. Patent 5,608,802 (1994)
8. Nohl, K., Evans, D., Starbug, Plötz, H.: Reverse-engineering a cryptographic RFID

tag. In van Oorschot, P.C., ed.: USENIX Security Symposium 2008, USENIX Associ-
ation (2008) 185–194

9. Barkan, E., Biham, E., Keller, N.: Instant ciphertext-only cryptanalysis of GSM en-
crypted communication. Journal of Cryptology 21(3) (2008) 392–429

10. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In Schneier, B., ed.: FSE 2000. Volume 1978 of Lecture Notes in Computer Science.,
Springer (2001) 1–18

11. Biham, E., Dunkelman, O.: Differential cryptanalysis in stream ciphers. Cryptology
ePrint Archive, Report 2007/218 (2007) http://eprint.iacr.org/2007/218.

A Technical background on DECT for keystream recovery

DECT divides carrier frequencies into multiple timeslots. An interval of 10 ms is
divided into 24 timeslots of equal length. Connections in DECT are always be-
tween a base station – in DECT terminology an FP (Fixed Part) – and a handset,
called PP (Portable Part). An FP typically uses a single timeslot i ∈ {0, . . . , 11} to
transmit a full frame to the PP; the PP then responds in a single timeslot i+ 12
with a frame. DECT supports multiple frame formats with different modula-
tions; some of which use half a time slot or two consecutive timeslots.

A single DECT full frame using GFSK modulation consists of a 16 bit static
preamble, a 64 bit A-Field, a 320 bit B-Field, and two 4 bit checksums. The A-
Field can transport data for the C-,M-,N-,P-, or Q-Channel. If an A-Field is used
to transport C-channel messages, only 40 bits of the A-Field contain C-channel
data, the rest is used for header-bits.

If encryption is active, the DECT Standard Cipher (DSC) generates 720 con-
secutive bits of keystream for every frame exchange. The output is divided into
two keystream segments (KSS), the first 360 bit KSS is used to encrypt the frame
sent from the FP to the PP, the second KSS is used to encrypt the frame sent from
PP to FP.

If C-channel data is present in the A-Field, the first 40 bits of the KSS are
XORed with these bits, otherwise they are discarded. The remaining 320 bits of
the KSS are XORed with the B-Field.

Keystream can only be recovered for cryptanalysis from frames where the
plaintext is known. Two examples where plaintext is guessable are:

– Some phones display a counter with the duration of the current call in the
hh:mm:ss format. This counter is usually implemented on the base station.
The display of the phone is updated once per second by the base station
with the next counter value. We observed a single C-channel message be-
ing split into 5 frames. Intercepting these messages recovers 5 different key-
streams per second for which most of the first 40 bits are known.

– When (perfect) silence is transmitted the G.721 audio codec produces plain-
text of only ones. Some applications like voice mailboxes transmit silence in
one direction after the greeting message. This can be used to recover up to
100 frames per second with 320 known bits known. The first 40 bits are only
used for the C-channel and cannot be recovered using this method.

B An implementation of the DSC in C

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#define R1_LEN 17
#define R2_LEN 19
#define R3_LEN 21
#define R4_LEN 23

#define R1_MASK 0x010020 /* tap bits: 5, 16 */
#define R2_MASK 0x04100C /* tap bits: 2, 3, 12, 18 */
#define R3_MASK 0x100002 /* tap bits: 1, 20 */
#define R4_MASK 0x400100 /* tap bits: 8, 22 */

#define R1_CLKBIT 8
#define R2_CLKBIT 9
#define R3_CLKBIT 10
#define R1_R4_CLKBIT 0
#define R2_R4_CLKBIT 1
#define R3_R4_CLKBIT 2

#define OUTPUT_LEN 90 /* 720 bits */
#define TESTBIT(R, n) (((R) & (1 << (n))) != 0)

uint32_t clock(uint32_t lfsr, uint32_t mask) {
return (lfsr >> 1) ˆ (-(lfsr&1)&mask);

}

uint32_t combine(uint32_t c, uint32_t r1, uint32_t r2, uint32_t r3) {
uint32_t x10, x11, x20, x21, x30, x31;

x10 = r1 & 1;
x11 = (r1 >> 1) & 1;
x20 = r2 & 1;
x21 = (r2 >> 1) & 1;
x30 = r3 & 1;
x31 = (r3 >> 1) & 1;

return ((x11&x10&c) ˆ (x20&x11&x10) ˆ (x21&x10&c) ˆ (x21&x20&x10) ˆ
(x30&x10&c) ˆ (x30&x20&x10) ˆ (x11&c) ˆ (x11&x10) ˆ (x20&x11) ˆ
(x30&c) ˆ (x31&c) ˆ (x31&x10) ˆ (x21) ˆ (x31));

}

void dsc_keystream(uint8_t *key, uint32_t iv, uint8_t *output) {

uint8_t input[16];
uint32_t R1, R2, R3, R4, N1, N2, N3, COMB;
int i, keybit;

memset(output, 0, OUTPUT_LEN);

input[0] = iv&0xff;
input[1] = (iv>>8)&0xff;
input[2] = (iv>>16)&0xff;
for (i = 3; i < 8; i++) {

input[i] = 0;
}
for (i = 0; i < 8; i++) {

input[i+8] = key[i];
}

R1 = R2 = R3 = R4 = COMB = 0;

/* load IV || KEY */
for (i = 0; i < 128; i++) {

keybit = (input[i/8] >> ((i)&7)) & 1;
R1 = clock(R1, R1_MASK) ˆ (keybit<<(R1_LEN-1));
R2 = clock(R2, R2_MASK) ˆ (keybit<<(R2_LEN-1));
R3 = clock(R3, R3_MASK) ˆ (keybit<<(R3_LEN-1));
R4 = clock(R4, R4_MASK) ˆ (keybit<<(R4_LEN-1));

}

for (i = 0; i < 40 + (OUTPUT_LEN*8); i++) {
/* check whether any registers are zero after 11 pre-ciphering steps.
* if a register is all-zero after 11 steps, set input bit to one
* (see U.S. patent 5608802)
*/
if (i == 11) {
if (!R1) R1 ˆ= (1<<(R1_LEN-1));
if (!R2) R2 ˆ= (1<<(R2_LEN-1));
if (!R3) R3 ˆ= (1<<(R3_LEN-1));
if (!R4) R4 ˆ= (1<<(R4_LEN-1));

}

N1 = R1;
N2 = R2;
N3 = R3;
COMB = combine(COMB, R1, R2, R3);

if (TESTBIT(R2, R2_CLKBIT) ˆ TESTBIT(R3, R3_CLKBIT) ˆ
TESTBIT(R4, R1_R4_CLKBIT))

N1 = clock(R1, R1_MASK);
if (TESTBIT(R1, R1_CLKBIT) ˆ TESTBIT(R3, R3_CLKBIT) ˆ

TESTBIT(R4, R2_R4_CLKBIT))
N2 = clock(R2, R2_MASK);

if (TESTBIT(R1, R1_CLKBIT) ˆ TESTBIT(R2, R2_CLKBIT) ˆ
TESTBIT(R4, R3_R4_CLKBIT))

N3 = clock(R3, R3_MASK);

R1 = clock(clock(N1, R1_MASK), R1_MASK);
R2 = clock(clock(N2, R2_MASK), R2_MASK);
R3 = clock(clock(N3, R3_MASK), R3_MASK);

R4 = clock(clock(clock(R4, R4_MASK), R4_MASK), R4_MASK);

if(i >= 40) {
output[(i-40)/8] |= ((COMB) << (7-((i-40)&7)));

}
}

}

int main(int argc, char**argv) {
uint8_t key[8];
uint8_t output[OUTPUT_LEN];

if (argc != 2) {
fprintf(stderr, "usage: %s iv\n", argv[0]);
exit(1);

}

if (read(STDIN_FILENO, key, 8) < 8) {
fprintf(stderr, "short read\n");
exit(1);

}

dsc_keystream(key, atoi(argv[1]), output);

write(STDOUT_FILENO, output, 2048);
return 0;

}

