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Abstract. Message Authentication Codes (MACs) are core algorithms
deployed in virtually every security protocol in common usage. In these
protocols, the integrity and authenticity of messages rely entirely on the
security of the MAC; we examine cases in which this security is lost.
In this paper, we examine the notion of “reforgeability” for MACs,
and motivate its utility in the context of {power, bandwidth, CPU}-
constrained computing environments. We first give a definition for this
new notion, then examine some of the most widely-used and well-known
MACs under our definition in a variety of adversarial settings, finding
in nearly all cases a failure to meet the new notion. We examine sim-
ple counter-measures to increase resistance to reforgeabiliy, using state
and truncating the tag length, but find that both are not simultaneously
applicable to modern MACs. In response, we give a tight security re-
duction for a new MAC, WMAC, which we argue is the “best fit” for
resource-limited devices.

Keywords: Message Authentication Codes, Birthday Attacks, Provable
Security.

1 Introduction

Message Authentication Codes. Message authentication codes (MACs) are
the most efficient algorithms to guarantee message authenticity and integrity in
the symmetric-key setting, and as such are used in nearly all security protocols.
They work like this: if Alice wishes to send a message M to Bob, she processes
M with an algorithm MAC using her shared key K and possibly some state or
random bits we denote with s. This produces a short string Tag and she then
sends (M, s,Tag) to Bob. Bob runs a verification algorithm VF with key K on
the received tuple and VF outputs either ACCEPT or REJECT. The goal is that
Bob should virtually never see ACCEPT unless (M, s,Tag) was truly generated
by Alice; that is, an imposter should not be able to impersonate Alice and forge
valid tuples.

There are a large number of MACs in the literature. Most have a proof
of security where security is expressed as a bound on the probability that an



attacker will succeed in producing a forgery after making q queries to an oracle
that produces MAC tags on messages of his choice. The bound usually contains a
term q2/2t where q is the total number of tags generated under a given key and t
is the tag length in bits. This quadratic term typically comes from the probability
that two identical tags were generated by the scheme for two different messages;
this event is typically called a “collision” and once it occurs the analysis of
the scheme’s security no longer holds. The well-known birthday phenomenon is
responsible for the quadratic term: if we generate q random uniform t-bit strings
independently, the expected value of q when the first collision occurs is about√

π2t−1 = Θ(2t/2).

Reforgeability. The following is a natural question: if a forgery is observed
or constructed by an adversary, what are the consequences? One possibility is
that this forgery does not lead to any additional advantage for the adversary:
a second forgery requires nearly as much effort to obtain as the first one did.
We might imagine using a random function f : Σ∗ → {0, 1}t as a stateless
MAC. Here, knowing a forgery amounts to knowing distinct M1,M2 ∈ Σ∗ with
f(M1) = f(M2). However it is obvious this leads to no further advantage for the
adversary: the value of f at points M1 and M2 are independent of the values
of f on all remaining unqueried points.

Practical MAC schemes, however, usually do not come close to truly random
functions, even when implemented as pseudorandom functions (PRFs). Instead
they typically contain structure that allows the adversary to use the obtained
collision to infer information about the inner state of the algorithm. This invari-
ably leads to further forgeries with a minimum of computation.

Applications. One might reasonably ask why we care about reforgeability.
After all, aren’t MACs designed so that the first forgery is extremely improbable?
They are, in most cases, and for many scenarios this is the correct approach,
but there are several settings where we might want to think about reforgeability
nonetheless:

– In sensor nodes, where radio power is far more costly than computing power,
short tag-length MACs might be employed to reduce the overhead of sending
tags.

– Streaming video applications might use a low-security MAC with the idea
that forging one frame would hardly be noticeable to the viewer; our concern
would be that the attacker would be unable to efficiently forge arbitrarily
many frames, thereby taking over the video transmission.

– VOIP is another setting where reforgeability is arguably more appropriate
than current MAC security models. In this setting, a forged packet probably
only corresponds to a fraction of a second of sound and is relatively harmless.

In all cases, if parameters are chosen correctly so that an attacker’s best
strategy is to guess tags, the overwhelming number of incorrect guesses can be
used to inform users in situations where a forged packet could potentially have
serious consequences.



MAC scheme Expected queries Succumbs to Succumbs to Message
for j forgeries padding attack other attack freedom

CBC MAC C1 + j
√

m− 2
EMAC C1 + j

√ √
m− 2

XCBC C1 + j
√ √

m− 2
PMAC C1 + j

√
1

ANSI retail MAC C1 + j
√ √

m− 2
HMAC

P
i Ci/2i + j

√
m− 1

Fig. 1. Summary of Results. The upper table lists each well-known MAC scheme we ex-
amined, along with its resistance to reforgeability attacks. Here n is the output length (in
bits) of each scheme, and m is the length (in n-bit blocks) of the queries to the MAC
oracle; the i-th collision among the tags is denoted by event Ci. For most schemes, the
first forgery is made after the first collision among the tags, and each subsequent forgery
requires only one further MAC query. With a general birthday attack, the first collision is
expected at around 2n/2 MAC queries, although the exact number for each scheme can
differ somewhat. The last column gives the number of freely-chosen message blocks in the
forgery.

Main Results. In this paper we conduct a systematic study of reforgeabil-
ity, treated first in the literature by McGrew and Fluhrer [23]. We first give a
definition of reforgeability, both in the stateless and stateful settings. We then
examine a variety of well-known MAC schemes and assess their resistance to
reforgeability attacks. We find that for all stateless schemes and many state-
ful schemes there exists an attack that enables efficient generation of forgeries
given knowledge of an existing collision in tags. In some cases this involves fairly
constrained modification of just the final block of some fixed message; in other
cases we obtain the MAC key and have free rein. For each stateful scheme where
we could not find an attack, we then turned our attentions to another related
problem: nonce misuse. That is, if nonces are reused with the same key, can
we forge multiple times? The answer is an emphatic “yes.” For many of these
MACs only a single protocol error is required to break the security; querying to
the birthday bound is unnecessary.

Figure 1 and Figure 2 give a synopsis of our findings. In most cases, our
attack is based on finding collisions and this in turn leads to a substantial num-
ber of subsequent forgeries; the degree to which each scheme breaks is noted
in the table. For some Wegman-Carter-Shoup (WCS) [7, 27] MACs, the attack
is more severe: nonce misuse yields the universal hash family instance almost
immediately.

After an earlier draft of this paper appeared on eprint, many of the attacks
in Figure 1 and Figure 2 were subsequently improved in [18] by Handschuh and
Preneel. In light of this, we include no attacks within this version of the paper.
For attack details we refer the interested reader to the full version of this paper
[8] and the other literature on this subject [10, 18, 23, 24].



UHF in FH mode Expected queries Reveals key Queries for
for j forgeries key recovery

hash127/Poly1305 C1 + log m + j
√

C1 + log m
VMAC C1 + 2j
Square Hash C1 + 2j

√
mC1

Topelitz Hash C1 + 2j
Bucket Hash C1 + 2j
MMH/NMH C1 + 2j

UHF in WCS mode Expected queries Repeated Reveals key Queries for
with nonce misuse for j forgeries nonce key recovery

hash127/Poly1305 2 + log m + j 1
√

2 + log m
VMAC C1 + 2j C1 + j
Square Hash 3m + j m

√
3m

Topelitz Hash 2j + 2 1
Bucket Hash 2j + 2 1
MMH/NMH 2m + j m

√
2m

Fig. 2. Results for Carter-Wegman MACs. The top table lists 6 well-known universal hash
families, each made into a MAC via the FH construction [11, 29] where the hash family is
composed with a pseudorandom function to produce the MAC tag. These similarly succumb
to reforgeability attacks after a collision in the output tags, with hash127/Poly1305 and
Square-Hash surrendering their key in the process. The last column gives the expected
number of queries for key recovery, where possible. The bottom table considers the same
hash families in the Wegman-Carter-Shoup (WCS) [7, 27] paradigm (the most prominent
MAC paradigm for ε-AU hash families), but where nonces are misused and repeated. With
many families, only one repeated nonce query is enough to render the MAC totally insecure.
Others reveal the key with a few more queries using the same nonce. See [18] for further
attacks on these and other hash families in a similar setting.

These attacks were sufficient to make us wonder if there exists an efficient and
practical MAC scheme resistant to reforgeability attacks. A natural first try is
to add state, in the form of a nonce inserted in a natural manner, to the schemes
above. We show, however, that this approach can be insufficient or insecure
when subtly misused. Another approach would be to use a stateless MAC such
as HMAC, and truncate the output so a collision in tags does not expose some
exploitable internal information. However, this is also somewhat unsatisfactory
because all the fastest MACs are stateful WCS-style MACs where trucation
severely reduces the security.

We therefore devised a new (stateful) scheme, WMAC, that allows nonce
reuse and where for most parameter sizes guessing the tag is the best reforge-
ability strategy. The scheme is described fully in Section 3 but briefly it works
as follows.

Let H be some ε−AU hash family H = {h : D → {0, 1}l}, and R a set of
functions R = Rand(l+b, n). Let ρ

$←R and h
$←H; the shared key is (ρ, h). Let

〈cnt〉b denote the encoding of cnt using b bits. To MAC a message (M, cnt), the



signer first ensures that cnt < 2b − 1 and if so sends (cnt, ρ(〈cnt〉b ‖ h(M))). To
verify a received message M with tag (i,Tag), the verifier computes ρ(〈i〉b‖h(M))
and ensures it equals Tag.

Why WMAC? There are essentially four parameters which much be balanced
when choosing a suitable MAC: speed, security, tag length, and deployment
feasibility. WCS MACs provide excellent performance on the first two items, but
require long tags and absolutely non-repeatable nonces (which also increases the
tag length), a potential deployment problem where the state might have to be
consistent across several machines. Stateless MACs, whose tags may be truncated
without degrading security and therefore tend to do well on the last two items,
lag behind on the first two.

WMAC can be seen as a compromise between the two sets of MACs. It has
the speed of the fastest WCS MACs but the tag length may be truncated ap-
propriately and nonces may be reused. A fixed nonce may be used for all queries
if desired, effectively yielding the FH [11, 29] scheme as a special case. At the
other extreme end, nonces are never repeated and WMAC retains a high degree
of security comparable to the WCS setting. For most real-world applications
that may already have implicit nonces (via the underlying networking protocol,
eg) and that could use the added security benefits from nonces but do not want
to enforce nonce uniqueness, WMAC is the best solution.

As an example, consider the following concrete WMAC instantiation. Let
ε ≤ 2−82, b = 8, and our PRF will be AES truncated to 24 bits. Then after
232 signing queries and 224 verification queries, one forgery is expected (from
guessing the output of the PRF). The hash family can be a variant of the VHASH
used in VMAC-128, so that the speed of the family is comparable to VMAC-
128.3 Moreover, the total tag length, including the nonce is only 32 bits. There
is no efficient MAC which, using 32 bits for both the tag and nonce, can safely
MAC as many messages with so few expected forgeries. (Note that the nonce
greatly helps the security in this case; without it an expected 64 forgeries would
be possible.)

We stress that although WMAC offers good tradeoffs for resource-constrained
environments where some forgeries may be acceptable, it is still susceptible to
attacks that exploit some bad event that occurs during operation, usually related
to the value of ε for the ε-almost universal hash family used. To be clear, the
attacks from [18] still apply and indeed come within a constant factor of matching
the bound given in our security reduction.4

3 Dan Bernstein has recently proposed [5] an almost-universal hash family which
should be as fast or faster than VMAC-64, but which uses a much smaller key
than VMAC. Bernstein’s hash would use fewer multiplications and additions than
VMAC-128, although those operations are done in some field F , not modulo 2n.

4 Our bound also highlights interesting behavior with a verification query-only attack
when the length of the tag is much smaller than lg(ε−1). This case is also matched
by essentially the attacks from [18].



Related Work. David McGrew and Scott Fluhrer have also done some work
[23] on a similar subject, produced concurrently with our work but published
earlier. They examine MACs with regard to multiple forgeries, although they
view the subject from a different angle. They show that for HMAC, CBC MAC,
and GMAC from the Galois Counter Mode (GCM) of operation for blockciphers
[21], reforgeability is possible. However, they examine reforgeability in terms of
the number of expected forgeries (parameterized by the number of queries) for
each scheme, which is dependent on the precise security bounds for the respective
MACs. Although our focus is somewhat different, our work complements their
paper by showing their techniques and bounds apply to all major MACs.

Handschuh and Preneel investigated attacks on ε-almost universal hash fami-
lies used in Wegman-Carter-Shoup mode MACs, and found new classes of attacks
[18]. Their attacks improve on ours in several ways, probably the most significant
of which is that they do not require misuse of nonce values to work.

Outline of the Paper. In the next section we cover the basic notation and
security models used. After that, we jump right in to the discussion of WMAC
and its security reduction, our main contribution, deferring the attacks that
motivated its construction to the full version [8].

2 Preliminaries

Let {0, 1}n denote the set of all binary strings of length n. For an alphabet Σ, let
Σ∗ denote the set of all strings with elements from Σ. Let Σ+ = Σ∗−{ε} where
ε denotes the empty string. For strings s, t, let s‖ t denote the concatenation of s

and t. For set S, let s
$← S denote the act of selecting a member s of S according

to a probability distribution on S. Unless noted otherwise, the distribution is
uniform. For a binary string s let |s| denote the length of s. For a string s where
|s| is a multiple of n, let |s|n denote |s|/n. Unless otherwise noted, given binary
strings s, t such that |s| = |t|, let s⊕ t denote the bitwise XOR of s and t. For
a string M such that |M | is a multiple of n, |M |n = m, then we will use the
notation M = M1 ‖M2 ‖ . . . ‖Mm such that |M1| = |M2| = . . . = |Mm|. Let
Rand(l, L) = {f | f : {0, 1}l → {0, 1}L} denote the set of all functions from
{0, 1}l to {0, 1}L.

Universal Hash Families. Universal hash families are used frequently in the
cryptographic literature. We now define several notions needed later.

Definition 1. (Carter and Wegman [11]) Fix a domain D and range R. A finite
multiset of hash functions H = {h : D → R} is said to be Universal if for every
x, y ∈ D with x 6= y, Prh∈H[h(x) = h(y)] = 1/|R|.

Definition 2. Let ε ∈ R+ and fix a domain D and range R. A finite multiset
of hash functions H = {h : D → R} is said to be ε-Almost Universal (ε-AU)
if for every x, y ∈ D with x 6= y, Prh∈H[h(x) = h(y)] ≤ ε.



Definition 3. (Krawczyk [20], Stinson [28]) Let ε ∈ R+ and fix a domain D
and range R ⊆ {0, 1}r for some r ∈ Z+. A finite multiset of hash functions
H = {h : D → R} is said to be ε-Almost XOR Universal (ε-AXU) if for
every x, y ∈ D and z ∈ R with x 6= y, Prh∈H[h(x)⊕h(y) = z] ≤ ε.

Throughout the paper we assume that a given value of ε for an ε-AU or ε-
AXU family includes a parameter related to the length of the messages. If we
speak of a fixed value for ε, then we implicitly specify an upper bound on this
length.

Message Authentication. Formally, a stateless message authentication code
is a pair of algorithms, (MAC,VF), where MAC is a ‘MACing’ algorithm that,
upon input of key K ∈ K for some key space K, and a message M ∈ D for some
domain D, computes a τ -bit tag Tag; we denote this by Tag = MACK(M).
Algorithm VF is the ‘verification’ algorithm such that on input K ∈ K, M ∈
D, and Tag ∈ {0, 1}τ , outputs a bit. We interpret 1 as meaning the verifier
accepts and 0 as meaning it rejects. This computation is denoted VFK(M,Tag).
Algorithm MAC can be probabilistic, but VF typically is not. A restriction is
that if MACK(M) = Tag, then VFK(M,Tag) must output 1. If MACK(M) =
MACK(M ′) for some K, M , M ′, we say that messages M and M ′ collide under
that key.

The common notion for MAC security is resistance to adaptive chosen mes-
sage attack [3]. This notion states, informally, that an adversary forges if he can
produce a new message along with a valid tag after making some number of
queries to a MACing oracle. Because we are interested in multiple forgeries, we
now extend this definition in a natural way.

Definition 4 (MAC Security—j Forgeries). Let Π = (MAC,VF) be a mes-
sage authentication code, and let A be an adversary. We consider the following
experiment:

Experiment Exmtjuf -cma
Π (A, j)

K
$←K

Run AMACK(·),VFK(·,·)

If A made j distinct verification queries (Mi,Tagi), 1 ≤ i ≤ j, such that
— VFK(Mi,Tagi) = 1 for each i from 1 to j
— A did not, prior to making verification query (Mi,Tagi), query its
MACK oracle at Mi

Then return 1 else return 0

The juf-cma advantage of A in making j forgeries is defined as

Advjuf -cma
Π (A, j) = Pr

[
Exmtjuf -cma

Π (A, j) = 1
]
.

For any qs, qv, µs, µv,Time ≥ 0 we overload the above notation and define

Advjuf -cma
Π (t, qs, µs, qv, µv, j) = max

A
{Advjuf -cma

Π (A, j)}



where the maximum is over all adversaries A that have time-complexity at most
Time, make at most qs MAC-oracle queries, the sum of those lengths is at most
µs, and make at most qv verification queries where the sum of the lengths of
these messages is at most µv.

The special case where j = 1 corresponds to the regular definition of MAC
security. If, for a given MAC, Advjuf -cma

Π (t, qs, µs, qv, µv, j) ≤ ε, then we say
that MAC is (j, ε)-secure. For the case j = 1, the scheme is simply ε-secure.

It is worth noting that the adversary is allowed to adaptively query VFK

and is not penalized for queries that return 0. All that is required is for j dis-
tinct queries to VFK return 1, subject to the restriction these queries were not
previously made to the MACing oracle.

Stateful MACs. We will also examine stateful MACs that require an extra
parameter or nonce value. Our model will let the adversary control the nonce,
but limit the number of MAC queries per nonce. Setting this limit above 1 will
simulate a protocol error where nonces are re-used in computing tags.

A stateful message authentication code is a pair of algorithms, (MAC,VF),
where MAC is an algorithm that, upon input of key K ∈ K for some key space K,
a message M ∈ D for some domain D, and a state value S from some prescribed
set of states S, computes a τ -bit tag Tag; we denote this by Tag = MACK(M,S).
Algorithm VF is the verification algorithm such that on inputs K ∈ K, M ∈ D,
Tag ∈ {0, 1}τ , and S ∈ S, VF outputs a bit, with 1 representing accept and 0
representing reject. This computation is denoted VFK(M,S, Tag). A restriction
on VF is that if MACK(M,S) = Tag, then VFK(M,S, Tag) must output 1.

As discussed later, all our attacks on stateless MACs work by examining
the event of a collision in tag values, by virtue of the birthday phenomenon
or otherwise. With stateful MACs an adversary may see collisions in tags, but
the state mitigates, and in most cases neutralizes, any potentially damaging
information leaked in such an event. With that in mind, we will consider two
different security models with regard to stateful MACs. In one, we treat stateful
MACs as intended: nonces are not repeated among queries, but repeated nonces
may be used with verification queries. Many MACs we examine have security
proofs in this model, so it is not surprising that they perform well, even with
short tags. Others don’t, and we provide the analysis.

We also provide analysis for a plausible and interesting protocol error: that
in which nonces are reused. This can happen in several reasonable scenarios:
1) the nonce is a 16- or 32-bit variable, and overflow occurs unnoticed, and 2)
the same key is used across multiple virtualized environments. This latter case
may happen when MACs in differing virtualized environments are keyed with
the same entropy pools, or one environment is cloned from another.

These protocol misuses are captured formally by allowing an adversary a
maximum of α queries per nonce between the two oracles. For most MACs we
examine, α need only be 2 for successful reforgery attacks.



Definition 5 (Stateful MAC Security—j Forgeries). Let Π = (MAC,VF)
be a stateful message authentication code, and let A be an adversary. We consider
the following experiment:

Experiment Exmtjsuf -cma
Π (A, j, α)

K
$←K

Run AMACK(·),VFK(·,·)

If A made j distinct verification queries (Mi, si,Tagi), 1 ≤ i ≤ j, such
that
— VFK(Mi, si,Tagi) = 1 for each i from 1 to j
— A did not, prior to making verification query (Mi, si,Tagi), query its
MAC oracle with (Mi, si)
— A did not make more than α queries to MACK with the same nonce.
Then return 1 else return 0

The jsuf-cma advantage of A in making j forgeries is defined as

Advjsuf -cma
Π (A) = Pr

[
Exmtjsuf -cma

Π (A, j, α) = 1
]
.

For any qs, qv, µs, µv,Time, j, α ≥ 0 we let

Advjsuf -cma
Π (t, qs, µs, qv, µv, j, α) = max

A
{Advjsuf -cma

Π (A, j, α)}

where the maximum is over all adversaries A that have time-complexity at most
Time, make at most qs MACing queries, the sum of those lengths is at most
µs, where no more than α queries were made per nonce, and make at most qv

verification queries where the sum of the lengths of the messages involved is at
most µv.

If, for a given MAC, Advjsuf -cma
Π (t, qs, µs, qv, µv, j, α) ≤ ε, then we say that

MAC is (j, ε)-secure. For the case j = 1, the scheme is simply ε-secure.

3 A Fast, Stateful MAC with Short Tags

For some stateful MACs we found no attack, and others are accompanied by a
proof of security. Similarly, tag truncation is a simple technique which may be
used to ensure that security is retained well after one starts seeing collisions in
tags. Perhaps we should be satisfied and consider our search for reforgeability-
resistant MACs complete. However, both of these techniques have drawbacks for
the applications in mind which require very short tags. Namely, the nonce value
must be transmitted with each query, and tag truncation may not be used on
the fastest MACs without seriously degrading security.5

5 Truncating the tag of VMAC or Poly1305-AES by t bits also effectively grows ε for
the ε-AU family by a multiplicative factor of 2t. If these MACs were to be revised
into FH mode, truncation would be possible, but without nonces they succumb to
attacks covered in this paper, and with nonces ε needs to be unacceptably reduced
to make room for the nonce input.



It is with these thoughts in mind, and with newfound knowledge of the perils
associated with nonce misuse in WCS MACs, that we designed WMAC. WMAC
boasts speed comparable to VMAC/Poly1305, can use much shorter tags, and
is the first MAC we know of to use repeating nonces, a side effect of which is
shorter tags.

WMAC. Let H = {h : D → R} be a family of ε-AU hash functions and let
F : K × T ×R → {0, 1}n be a PRF. We define

WMAC[H, F ]th,FK
(x) = FK(t, h(x)),

where t ∈ T , h
$←H, K

$←K, and x ∈ D. Informally, once keyed with the
selection of K ∈ K and AU hash instance h, WMAC accepts a message x and
nonce t as inputs and returns FK(t, h(x)) as the tag.

Nonces in WMAC. WMAC’s nonce use can be considered as “flexible” in the
sense that the security analysis is done for different uses. To model this, we are
mainly interested in an adversary of somewhat limited capability, that is, an
adversary which can make at most α signing queries for each nonce t ∈ T . The
adversary’s verification queries per nonce are not similarly bounded. We call
such an adversary α-limited, and define Advjsuf -cma

Π (q, t, α) be the maximum
of Advjsuf -cma

Π (A) over every α-limited adversary A which makes at most q =
qs + qv oracle queries (qs to the signing oracle and qv to the verification oracle)
and halts within time Time. We say that Π is secure as an α-limited MAC, if
Advjsuf -cma

Π (q, t, α) is negligibly small for any reasonably large q and Time.
As an example, the FH and FCH [11, 29] modes of operation are special cases

of WMAC where α is set to qs and 1, respectively.

Theorem 1. For any α-limited adversary A of WMAC which makes at most
q = qs + qv queries in time Time, there exists an adversary B of F such that

Advjsuf -cma
WMAC (A) ≤ Advprf

F (B) +
ε(α− 1)qs

2
+

ε

2n−1

(
q2
v + qvqs + max{2n, q

1
2 2

n
2 +3}qv

)
+ δ(j, n, qv).

and where B makes at most q queries, using time proportional to Time + Hash(q),
where Hash(1) is the time to compute h(M) for some message M ∈ D and
h

$←H. The term δ(j, n, qv) is defined as

|S|∑
k=j

∑
X∈Sk

[
Πx′∈S:x′ /∈X

(
1− qv,x′

2n

)
Πx∈X

(qv,x

2n

)]
where S is the set of distinct message-tag pairs seen in all verification queries,
Sk is the set of k-tuples in S, and for an element x ∈ S, qv,x is the number of
verification queries made for that element.



Discussion of the Bound and Expected Number of Forgeries. Mc-
Grew and Fluhrer discuss the expected number of forgeries for GMAC (a WCS
MAC)[21], CBC MAC, and HMAC in terms of ε, n, and q. Our specific attacks
complement their analysis by showing their methods apply to all major stateful
and stateless MACs. Essentially, they show that for stateless MACs, the ex-
pected number of forgeries is cq32−n +O(q42−2n), where n is output size of the
blockcipher or hash function and c is a constant. For WCS MACs, they show
the expected number of forgeries is cq2ε +O(q3ε2).

We believe this sort of analysis should supplant the current definition of
MAC security for the simple reason that it more accurately quantifies the risks
for MACing q messages over the lifetime of one key and, in the case of our bound
in particular, makes the bound more easily understood. Rather than giving the
traditional security bound and suggesting the number of queries be “well below”
a certain value (2n/2, usually), producing a specific expected number of forgeries
is much superior.

And in this spirit, we give a formula for the expected number of forgeries
for WMAC, which also helps to understand the rather obtuse bound in theorem
1. For a given MAC scheme Π = (MAC,VF), let E(ForgeΠ , qs, qv) denote the
expected number of forgeries when qs queries are allowed to the MAC oracle and
qv queries are allowed to the VF oracle.

Following [23], we will assume WMAC uses an ideal random function as
the PRF. Unless qv is unreasonably large, the expected number of forgeries is
overwhelmingly influenced by the chance that an adversary sets bad to true
during one of the qs queries to the MAC oracle. If this occurs, we give the
adversary qv forgeries. There is a small chance bad is set to true in the verification
phase and to simplify the analysis we admit qv forgeries in this case as well. Thus,
we bound the expected number of forgeries as qv times the probability that bad
is set to true. Finally, we must consider the expected number of forgeries when
the adversary merely guesses the correct outputs of the ideal random function,
which is qv2−n. Thus,

E(ForgeWMAC, q) ≤ εqvqs(α− 1)
2

+
qvε

2n−1

(
q2
v + qvqs + 2n/2+3qv

√
q
)

+ qv2−n.

It is this formula which is used to give figures in the example from section
1. Note that when q = qs = qv, letting α take on values in {1, q} gives bounds
similar to those from [23].

Proof. Without loss of generality, we may assume that A doesn’t ask the same
signing query twice, and that A makes all signing queries before making any
verification queries.6 Our adversary B has access to an oracle Q(t, x). We con-
struct B, which runs A as a subroutine, by directly simulating the oracles A

expects. That is, in the startup phase, B randomly selects h
$←H. It then runs

A, responding to A’s signing query (t, M) by querying its oracle at (t, h(M))

6 This condition is not required by our security reduction— an adversary may make
queries in any order she wishes — but for ease of notation we adopt it.



and returning the answer to A. Similarly, B responds to a verification query
(t, M, Tag) by querying its oracle at (t, h(M)) and returning 1 if the answer is
equal to Tag, 0 otherwise. After A has completed all queries, B outputs the same
bit as A.

Consider the games G0 and G1 in figure 3, where Game G1 includes the
boxed statement. The function InitializeMap takes as arguments a map name,
a domain, and a range, and initializes a map with the input name where every
map lookup returns ⊥.

Procedure Initialize

0 V ← ∅, h
$←H, ρ

$← Rand(T ×R, {0, 1}n),
InitializeMap(Map, T × D, T ×R), InitializeMap(Mapo, T × D, T ×R)

Procedure MAC(t, x)
1 v ← h(x)

2 If (t, v) ∈ V then { bad ← true, (t, v)
$←T ×R \ V }

3 V ← V ∪ (t, v)
4 return ρ(t, v)

Procedure VF(t, x, Tag)
5 If Map[(t, x)] = ⊥ then {
6 v ← h(x), Map[(t, x)]← (t, v)

7 If (t, v) ∈ V then { Mapo[(t, x)]← (t, v), Map[(t, x)]
$←T ×R \ V , (t, v)← Map[(t, x)] }

8 V ← V ∪ (t, v)
}

9 If Mapo[(t, x)] 6= ⊥ then {
10 If Tag = ρ(Mapo[(t, x)]) or Tag = ρ(Map[(t, x)]) then { bad ← true }

}
11 return Tag = ρ(Map[(t, x)])

Fig. 3. Game G0 and Game G1

Clearly, AG0 corresponds to the experiment where A is given access to the
signing oracle ρ(t, h(x)) and verification oracle ρ(t, h(x)) = Tag, and AG1 cor-
responds to the experiment where the tags for A’s queries (either signing or
verification), are choosen as uniform random outputs. Because A doesn’t ask
the same signing query twice and by the way we constructed B, this is precisely
the answers A will get when the signing oracle is a uniform random function
and the verification oracle behaves similarly. Finally, when B’s oracle is FK , B
simulates the oracle A expects exactly. Therefore,

Advprf
F (B) = Pr

h
1← AWMACK,h

i
− Pr

h
1← AG0

i
= Pr

h
1← AWMACK,h

i
− Pr

h
1← AG1

i
+ Pr

h
1← AG1

i
− Pr

h
1← AG0

i
≥ Pr

h
1← AWMACK,h

i
− Pr

h
1← AG1

i
− Pr

h
AG1 sets bad

i
= Advjsuf -cma

WMAC (A)− Pr
h
1← AG1

i
− Pr

h
AG1 sets bad

i
,

since G0 and G1 are identical-until-bad games.



The term δ(j, n, qv) represents the probability of A’s success when presented
with the oracle of game G1. In this case, a verification query (ti, xi, τi) with a
new message-nonce pair (ti, xi) ‘succeeds’ iff ρ(ti, h(xi)) = τi, and this happens
with probability 2−n. Similarly, for ` verification queries made with (ti, xi) as
the message-tag pair, the total success probability is `/2n. By summing over all
possibilities for correct and incorrect guesses, we have that

|S|∑
k=j

∑
X∈Sk

[
Πx′∈S:x′ /∈X

(
1− qv,x′

2n

)
Πx∈X

(qv,x

2n

)]
.

(A much more intuitive grasp of this term can be obtained by considering its
expected value, qv2−n. This can be seen by the fact that the expected number
of forgeries for any one message tag pair x ∈ S is qv,x2−n; the value follows by
linearity of expectation of independent events and the fact that qv =

∑
x∈S qv,x.)

Procedure Initialize

0 V ← ∅, h
$←H, ρ

$← Rand(T ×R, {0, 1}n), InitializeMap(Map, T × D, T ×R),
InitializeMap(Mapo, T × D, T ×R), InitializeMap(O, T ×R, {0, 1}n)

Procedure Q(t, x)
1 v ← h(x)

2 If (t, v) ∈ V then { bad ← true, (t, v)
$←T ×R \ V }

3 V ← V ∪ (t, v), O[(t, v)]
$← {0, 1}n

4 return O[(t, v)]
Procedure VF(t, x, Tag)

5 If Map[(t, x)] = ⊥ then {
6 v ← h(x), Map[(t, x)]← (t, v)

7 If (t, v) ∈ V then { Mapo[(t, x)]← (t, v), Map[(t, x)]
$←T ×R \ V , (t, v)← Map[(t, x)] }

8 V ← V ∪ (t, v), O[(t, v)]
$← {0, 1}n

}
9 If Mapo[(t, x)] 6= ⊥ then {
10 If Tag = O[Mapo[(t, x)]] or Tag = O[Map[(t, x)]] then { bad ← true }

}
11 return Tag = O[Map[(t, x)]]

Fig. 4. Game G2

Now we must bound the probability that bad is set to true, but first we
go through some output distribution-preserving game transitions to make the
analysis easier. The difference between Game G1 and Game G2 is that in G2,
MAC(t, x) returns a uniform random value τ from {0, 1}n and VF(t, x, Tag)
chooses its outputs in line 8 from uniform random values from {0, 1}n. But
in Game G1, ρ(t, v) is computed for all distinct (t, v) in line 4 and in line 11
ρ(Map[(t, x)]) is computed for all distinct values of Map[(t, x)] when distinct
(t, x) values are used. Therefore the two games are identical. In Game G3, we
clean things up by removing the unnecessary ρ, and removing the statement
(t, v) $←T ×R \ V . This is possible because this occurs after bad ← true.

In Game G4, we first generate all the random answers to the queries of A,
and on ith signing query, save the query and just return the ith random answer.



Procedure Initialize

0 V ← ∅, O ← ∅, h
$←H, InitializeMap(Map, T × D, T ×R),

InitializeMap(Mapo, T × D, T ×R), InitializeMap(O, T ×R, {0, 1}n)
Procedure Q(t, x)

1 v ← h(x)
2 If (t, v) ∈ V then { bad ← true }
3 V ← V ∪ (t, v), O[(t, v)]

$← {0, 1}n

4 return O[(t, v)]
Procedure VF(t, x, Tag)

5 If Map[(t, x)] = ⊥ then {
6 v ← h(x), Map[(t, x)]← (t, v)

7 If (t, v) ∈ V then { Mapo[(t, x)]← (t, v), Map[(t, x)]
$←T ×R \ V , (t, v)← Map[(t, x)] }

8 V ← V ∪ (t, v), O[(t, v)]
$← {0, 1}n

}
9 If Mapo[(t, x)] 6= ⊥ then {
10 If Tag = O[Mapo[(t, x)]] or Tag = O[Map[(t, x)]] then { bad ← true }

}
11 return Tag = O[Map[(t, x)]]

Fig. 5. Game G3

Procedure Initialize

0 h
$←H, (τ1, . . . , τqs+#qv )

$← ({0, 1}n)qs+#qv , i← 0,
InitializeMap(O, T ×R, {0, 1}n)

Procedure Q(t, x)
1 i← i + 1, ti ← t, xi ← x, O[(t, x)]← τi

2 return τi

Procedure VF(t, x, Tag)
3 If O[(t, x)] = ⊥ then {
4 i← i + 1, ti ← t, xi ← x, O[(t, x)]← τi, Tagi ← Tag
}

5 return τi = Tagi
Procedure Finalize

6 If (ti, h(xi)) = (tj , h(xj)) for some i < j ≤ qs, then { bad ← true }
7 If (ti, h(xi)) = (tj , h(xj)) for some i < j, qs < j then {
8 If O[(ti, xi)] = Tagj or O[(tj , xj)] = Tagj then { bad ← true }
}

Fig. 6. Game G4

The verification queries are handled similarly by using the saved values. We can
check whether we should set bad at the finalization step, using the saved query
values. Clearly, all games G2, G3, and G4 preserve the probability that bad gets
set. Therefore,

Advjsuf -cma
WMAC (A) ≤ Advprf

F (B) + Pr[AG4 sets bad] + δ(j, n, qv).

We will use the fact that

Pr[AG4 sets bad] ≤ Pr[AG4 sets bad in line 6] + Pr[AG4 sets bad in line 8].

It is easy to analyze the probability Pr[AG4 sets bad in line 6]; In Game G4,
the adversary A gets no information about h at all, and the random variables ti
and xi are independent from h. Let’s enumerate all the elements of T as T1, . . . ,



T|T |, and let qs,i be the number of signing queries (t, x) such that t = Ti. Then,

Pr[AG4 sets bad in line 6] ≤
|T |∑
i=1

ε · qs,i(qs,i − 1)
2

≤
|T |∑
i=1

ε · qs,i(α− 1)
2

=
ε(α− 1)

2

|T |∑
i=1

qs,i =
ε(α− 1)qs

2
.

We must also bound the probability Pr[AG4 sets bad in line 8]. The adversary
A still learns no information about h, but we must account for an optimal tag
guessing strategy with respect to bad being set to true. We first focus on the
case where A does not guess multiple tags for a message-nonce pair and then
handle the general case. For each value k ∈ T let Sk be the set of indices i such
that 1 ≤ i ≤ qs and ti = k. Similarly, let Vk be the set of indices i such that
qs < i ≤ qs + qv and ti = k. Let g be the number of correctly guessed tags
during the verification phase. Let Xk = {xi : i ∈ Sk ∨ (i ∈ Vk ∧ Tagi = τi)}
and let Xτ

k = {τi : xi ∈ Xk}. (Note that
∑

k∈T |Xk| = qs + g.) For any value
τ ∈ {0, 1}n, let Gk(τ) = {xi : τi ∈ Xτ

k , τ = τi}. Let Ck = max{|Gk(τ)| : τ ∈ Xτ
k }

and C = max{Ck} and let Eb be the the event that AG4 sets bad in line 8. Then,

Pr[Eb] ≤
X
k∈T

X
i∈Vk

0@ max
τ∈Xτ

k

Pr [h(xi) = h(x) : x ∈ Gk(τ)] (1)

+ Pr [h(xi) = h(x) : x ∈ Xk}] · Pr[Tagi = τi] (2)

+
X

j∈Vk,j<i

Pr[h(xj) = h(xi)] · Pr
ˆ
Tagj = τj ∨ Tagj = τi

˜1A (3)

≤
X
k∈T

X
i∈Vk

0@εCk + ε|Xk|2−n +
X

j∈Vk,j<i

ε2−n+1

1A (4)

≤ ε
X
k∈T

|Vk|−1X
j=0

(Ck + (α + g)2−n + j2−n+1) (5)

≤ ε
X
k∈T

 
|Vk|(C + (α + g)2−n) + 2−n+1

 
|Vk|
2

!!
(6)

≤ ε

 
qv(C + (α + g)2−n) + 2−n+1

X
k∈T

 
|Vk|
2

!!
(7)

≤ ε

 
qv(C + (α + g)2−n) + 2−n+1

 
qv

2

!!
(8)

On a verification query (tj , xj ,Tagj) we consider two cases where the condi-
tional on line 7 is met: i ≤ qs and qs < i. Also, on line 8, there are two events
that may set bad to true: A’s guess may be correct for the unmodified output



τi, or it may be a correct guess for the modified output τj . Suppose bad is set
to true on line 8, then we distinguish these four events:

– E1,j : i ≤ qs and A’s guess was correct for the unmodified output.
– E2,j : i ≤ qs and A’s guess was correct for the modified output.
– E3,j : qs < i and A’s guess was correct for the unmodified output.
– E4,j : qs < i and A’s guess was correct for the modified output.

Then Pr[AG4 sets bad in line 8] on the j-th query is

Pr[E1,j ∨ E2,j ∨ E3,j ∨ E4,j ] ≤ Pr[E1,j ] + Pr[E2,j ] + Pr[E3,j ] + Pr[E4,j ].

Lines (1) and (2) of the set of the equations denote Pr[E1,j ] and Pr[E2,j ], respec-
tively, and line (3) contains Pr[E3,j ∨ E4,j ]. The justification for line (1) is that
an adversary’s best strategy when i ≤ qs is to guess the most frequently occuring
tag returned during the signing phase (or a tag that is known by being guessed
correctly during the verification phase). In lines (2) and (3) the adversary must
try to guess an independent uniform random sample from 2n values once the
conditional is met. Line (4) upper bounds the probabilities for these events to
occur, lines (5-7) simplify the equation, and the last inequality is justified by the
fact that the quantity is maximized by making all verification queries with the
same nonce.

Finally, with a simple argument we cover the case where during the verifica-
tion phase multiple tags are guessed for a particular message-nonce pair. Since
A learns nothing about h during the game, A has no way of learning which of
its queries caused the conditional on line 7 to be true and gains no advantage
from this approach. Indeed, the optimal strategy is to only make one verifica-
tion query per message-nonce pair, so that the odds of line 8 being reached are
increased with each query by forcing more values to be re-mapped as in line 7
of game G3.

The full version contains a bound for C for values of interest. In particular,

C ≤ max{1, qs+g
2n + 15

√
qs+g
2n/2 } and the expected value of g is qv2−n. Putting it

together, we have

Pr[AG4 sets bad] ≤ ε(α− 1)qs

2
+ ε

(
qv(C + (α + g)2−n) + 2−n+1

(
qv

2

))
≤ ε(α− 1)qs

2
+ ε

(
q2
v

2n
+ 2qvC

)
≤ ε(α− 1)qs

2
+ ε

(
q2
v

2n
+

qvqs

2n−1
+

q2
v

22n−1
+

15qv
√

q

2n/2

)
≤ ε(α− 1)qs

2
+

ε

2n−1

(
q2
v + qvqs + 2n/2+3qv

√
q
)

.

4 Conclusions

We have shown that for most MACs, forging multiple times is not much harder
than forging once. We then find that two natural ways of improving resistance



to reforgeability are, unfortunately, mutally exclusive when applied to common
MACs. WMAC, which aims to reconcile these two methods with a modern
Carter-Wegman-Shoup MAC, is introduced and the security bounds given match
the best known attacks [18]. WMAC provides parameter choices that yield con-
structions with varying security, speed, tag length, and use of state. For this
flexibility, the inputs to WMAC are longer than other Wegman-Carter style
MAC constructions and therefore messages take slightly longer to process.
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