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Abstract. Matsui's one-dimensional Alg. 2 can be used for recoveriitg @f
the last round key of a block cipher. In this paper a truly idithensional exten-
sion of Alg. 2 based on established statistical theory isgmeed. Two possible
methods, an optimal method based on the log-likelihood ratid ay?-based
goodness-of-fit test are compared in theory and by practiqa¢riments on re-
duced round Serpent. The theory of advantage by Selcuknsrgkised in multi-
ple dimensions and the advantages and data, time and meomopiexities for
both methods are derived.

1 Introduction

Linear cryptanalysis was introduced by Matsui in [1]. Thetimoel uses a one-dimensio-
nal linear relation for recovering information about thersg key of a block cipher. Mat-
sui presented two algorithms, Algorithm 1 (Alg. 1) and Alglom 2 (Alg. 2). While
Alg.1 extracts one bit of information about the secret kelg. 2 ranks several candi-
dates for a part of the last round key of a block cipher acogrtth a test statistic such
that the right key should be ranked highest. Using the reeaMast round key, it is then
possible to extract one bit of information about the othenehkeys.

Since then researchers have been puzzled by the questiothbdiwear cryptanal-
ysis method could be enhanced by making use of multiplediapgroximations simul-
taneously. In [2] Kaliski and Robshaw used several lineatigns involving the same
key bits in an attempt to reduce the data complexities of Matalgorithms. Multiple
linear relations were also used by Biryukov, et al., [3] fatracting several bits of in-
formation about the key in an Alg. 1 type attack. This basiack was also extended
to an Alg. 2 type attack. However, both [2] and [3] depend aotitical assumptions
about the statistical properties of the one-dimensionaHr relations that may not hold
in the general case as was shown in [4].

The statistical linear distinguisher presented by Baigsget al., in [5] does not
suter from this limitation. It has also another advantage olergrevious approaches
[2] and [3]: it is based on a well established statisticabtlyeof log-likelihood ratio,
LLR, see also [6]. In [7] it was further shown how to distingluione known probability
distribution from a set of other distributions.

The purpose of this paper is to present two new multidimeraiextensions of
Matsui’'s Alg. 2 including an fiective ranking method for the key candidates based
on Selguk’s concept of advantage [8]. First a straightoohsolution for Alg. 2 based
on goodness-of-fit test using-statistic will be presented. We will then discusg?a
based version of Alg. 1 [9] and show that the method of Birywlai al., is related



to a combination of thg?-based Alg. 1 and Alg. 2. We will then present a method
based on LLR which actually combines Alg. 1 and Alg. 2 and etfgrms they?-
based method in theory and practice. In the practical expsaris the data, memory and
time complexity for achieved advantage is determined amdpawed with the values
given by the theoretical statistical models developedimglaper.

The structure of this paper is as follows: In Sect. 2 the bstsitistical theory and
notation is given. The advantage and the generalisatioeigii's theory is presented
in Sect. 3. The multidimensional Alg. 2 is described in Séend the dierent methods
based on the two test statistics are described in Sect. 5extdé The time, memory
and data complexities of both methods are examined in Sebherexperimental results
are given in Sect. 8. Finally, Sect. 9 draws conclusions.

2 Boolean Function and Probability Distribution

We will denote the space ofdimensional binary vectors by,. A functionf : V, - V
is called a Boolean function. A functioh: V, — V with f = (f, ..., f), wheref;
are Boolean functions is called a vector Boolean functiowiofensionm. A linear
Boolean function fromv, to V, is represented by am x n binary matrixU. Them
rows ofU are denoted byy, ..., Uy, where eachy; is a binary vector of length.

The correlation between a Boolean function and zero is

c(f) = c(f,0) = 27" (#(¢ € V| F(£) = 0} — #& € V| F(¢) # O))

and it is also called the correlation bf

We say that the vectqr = (po, . . ., pm) is @ probability distribution (p.d.) of random
variable (r.v.)X and denoteX ~ p, if Pr(X = ) = p,, forallp = 0,..., M. We will
denote the uniform p.d. by Let f : V, —» V,andX ~ 6. We call the p.dp of the r.v.
Y = f(X) the p.d. off.

Let us study some general properties of p.d.'s. pet (po,...,pwm) andq =
(9o, --.,0m) be some p.d.’s of r.v’s taking on values in a set with+ 1 elements.
The Kullback-Leibler distance betwe@mandq is defined as follows:

Definition 1. Therelative entropyr Kullback-Leibler distancéetween p and q is
N p
D(plia) = > pylog—~, (1)
=0 R

with the convention8log 0/b = 0, b # 0 and blogb/0 = co.

The following property usually holds for p.d.’s related toyaeal ciphers, so it will be
frequently used throughout this work:

Property 1. We say that distribution s close toq if |p, — g,/ < q,, for all =
0,1,...,M.

If pis close tog then we can approximate the Kullback-Leibler-distance/eetp and
g by its Taylor series. We call the first term of the series thegaci#ty of p andq and it
is defined as follows:



Definition 2. The capacity between two p.d.s p and q is defined by
M 2
(P, — Gy)
Clp.g) = ) ——"~ 2)

If q is the uniform distribution, then (, q) will be denoted by () and called the
capacity of p.

The normed normal distribution with mean 0 and variance Ersoted byN (0, 1). Its
probability density function (p.d.f.) is

o(%) = \,izexzfz 3)

and the cumulative distribution function (c.d.f.) is
X
29~ [ oa. @

The normal distribution with meam and variancer? is denoted byN (u, o?) and its
p.d.f.and c.d.f. are, - and®, .-, respectively.

They?,-distribution withM degrees of freedom has melhand variance ®1. The
non-central?,(1)-distribution withM degrees of freedom has me&nM and variance
2(M + 22). If M > 30, we may approximaje, (1) ~ N (1 + M, 2(M + 22)) [10].

Let Xy, ..., Xn be a sequence independent and identically distributed.Jitandom
variables where eitheX; ~ p, foralli = 1,...,N (corresponding to null hypothesis
Ho) or Xi ~ q # p,foralli = 1,...,N (corresponding to alternate hypothekig)
and letxj, ..., Xy be the empirical data. The hypothesis testing problem is thele-
termine whether to accept or rejddp. The Neyman-Pearson lemma [11] states that
an optimal statistic for solving this problem, or distingfing betweerp andgq, is the
log-likelihood ratio defined by

Py

M
LLR(@, p.d) = > N@, log =, (5)
n=0 1

whered = (o, . . ., Gum) is the empirical p.d. calculated from the daga. ., Xy by

N 1 . o
Gy = g =1...NIx=n}
The distinguisher accepld, that is, output® (respectively rejectsly or outputsy) if
LLR(G, p,q) > v (< y) wherey is the threshold that depends on the level and the power
of the test. If the power and the level of the test are equais(a$ten the case) then
v=0.
The proof for the following result can be found in [11], segc[5].

Proposition 1. The LLR-statistic calculated from i.i.d. empirical datgi = 1,...,N
using (5) is asymptotically normal with mean and variancgg\and NTS (Ngg and



No-i, resp.) if the data is drawn from p (q, resp.). The means amrees are given
by

uo =D(pllg) w1 =-D(allp)

2_'\/I | 2P 5 z_M | 2P 5 (6)
O'O—an 0g q, Ho 0'1—2% 09 q, M
n

n=0 n=0 y

Moreover, if p is close to g, we have

1
po~ -~ 5C(p.q) g~ 0f~C(p.a). @)

3 Advantage in Key Ranking

In a key recovery attack one is given a set of key candidatebtlze problem is to
determine which key is the right one. Usually the keys arecbesl from the se¥,, of all

2" strings ofn bits. The algorithm consists of four phases, tbenting phasganalysis
phasesorting phasexindsearching phasgl2]. In the counting phase one collects data
from the cipher, for example, plaintext-ciphertext palrsthe analysis phase a real-
valued statisticT is used in calculating a rank (or “mark” [12])(x) for all candidates

Kk € Vq.

In the sorting phase the candidateme sorted, i.e., ranked, according to the statistic
T. Optimally, the right key, denoted kyg, should be at the top of the list. If this is not
the case, then one must also run through a search phagseg thstikeys in the list until
ko is found. The goal of this paper is to find a statiffix) that is easy to compute and
that is also reliable andigcient in finding the right key.

The time complexity of the search phase, given amduwof data, was measured
using a special purpose quantity “gain” in [3]. A similar bubre generally applica-
ble concept of “advantage” was introduced by Sel¢cuk in {#jere it was defined as
follows:

Definition 3. We say that a key recovery attack for an n-bit key achieveslaargage
of a bits over exhaustive search, if the correct key is rardeedng the top = 22 out
of all 2" key candidates.

Statistical tests for key recovery attacks are based on ttengvkey Hypothesis [13].
We state it as follows:

Assumption 1 (Wrong-key Hypothesis).There are two p.d’s g and'gqq # g such
that for the right keo, the data is drawn from g and for a wrong key «o the data is
drawn from g # q.

A real-valued statistid is computed frong andq’, where one of these p.d.'s may be
unknown, and the purpose of a statisfids to distinguish betweeq andqg’. We use
Dr to denote the p.d. such th@i{kp) ~ Dr. We will assumeDr = N(ur, o-zR), with
parametergr andog, as this will be the case with all statistics in this paper.Mhg
andog are determined with the help of linear cryptanalysis. Weoteby Dy, the p.d.



known based on the Wrong-key Hypothesis such 1@} ~ Dy for all « # «o. The
p.d.f. and c.d.f. oDy are denoted by andFy, respectively.

Ranking the keys according toT means rearranging thé 2v.’s T(«),«x € Vp, in
decreasing order of magnitude. Writing the ordered r¢3@> T; > --- > Ty, we
call T; theith order statistic. Let us fix the advantagsuch that the right key should
be among the = 2"2 highest ranking keys. Hence, the right key should be at kst
high as theth wrong key corresponding ;. By Theorem 1. in [8] we get that the r.v.
T, is distributed as

Ty ~ N(ua» 02), where
2-(n+a)/2 (8)
fw(ua)

If we now define the success probabilRy of havingkg among thea highest ranking
keys we have

ua = Fyf(L— 27 ando, ~

Ps = Pr(T (ko) - Ty > 0) = | LE=E2_|, 9
\Jo&+ 0%
sinceT (ko) — Tr ~ N(ur — pta, 05 + 03).

As the data complexitiN depends on the parametggs— 1, ando3 + o3, we can
solveN from (9) as a function o& and vice versa. Hence, (9) describes the traffle-o
between the data complexity and the complexity of the search phase.

In a block cipher, the unknown key is divided into a number aind keys not
necessarily disjoint or independent. In [3], the keys ofldst round (or first and last
round) were called the outer keys and the rest of the round keyre called inner
keys. The unknown key may consist of outer keys, the parity bits of inner keys or
both. Traditionally, in Matsui’s Alg. 1 key parity bit(s) ahe inner keys are searched,
whereas in Alg. 2. the main goal is to determine parts of therdweys.

4  Algorithm 2

4.1 Multidimensional Linear Approximation

Let us study a block cipher withrounds. Letx € V, be the plaintexty € V, the
ciphertextK €V, the fixed round key data (the inner key) used in all but thertastd
andz = f(l(y, k), k € V,, the input to the last round functiofy, obtained fromy by
decrypting with the last round key dakgouter key). Letm < n be an integer. Using
m-dimensional linear cryptanalysis one can determine amcaqipationp of the p.d.
of the Boolean function

X Ux+Wz+ VK, (20)

which defines am-dimensional linear approximation, whddeandW arem x n ma-
trices andV is anm x v matrix. A way of obtainingp from the one-dimensional cor-
relations was presented in [4]. The linear mappihdivides the inner key space t§'2
equivalence classes= VK € V.. Let the right last round key be denotedigy Denote
M = 2™ -1 from now on.



In the counting phase we draW data pairs X, ¥),i = 1,...,N. In the analysis
phase, for each last round kieywe first calculateZ® = (9, k),i = 1,...,N. Then,
for eachk, we calculate the empirical p.d¢ = (g5, . . ., 6,), where

v 1 o s
q§=N#{|=1,...,N|Uxi+wzf=n}. (11)

If we use the wrong kek # kg to decryptyi,i = 1,...,N, it means we essentially
encrypt over one more round and the resulting data will beermaiformly distributed.
This heuristics is behind the original Wrong-key RandonniseHypothesis [14], which
in our case means that the dat&; + W?f, i=1,...,N, k# kgis drawn i.i.d. from the
uniform distribution.

When decrypting with the correct kéy the dataU % + Wi‘“ +9,i=1...,N,
whereg is an unknown inner key class, is drawn i.i.d. frgmThis means that the data
Uk + Wi‘“, i =1,...,Nis drawn i.i.d. from a fixed permutation @f denoted byp®.

These permuted p.d.'s have the property m;’%tn = pg®h, for all g,n,h € Vp,, and
consequently

D(p?116) = D(pIl6) andC(p) = C(p°) for all g € Vi, (12)
Moreover,D(p|| p") = D(p?]| p™®9), for all h, g € Vi, from which it follows that
minD(p® || p¥) = minD(pl| p"), (13)
g#g h=0

which is a constant value for aff € V.. We will denote this value bYDmin(p) and
assume in the sequel that,in(p) # 0 without restriction: We can unite the key classes
for which the Kullback-Leibler distance is zero. Then we juavem’ < 2™ key classes
whose Kullback-Leibler distance from each other is norez&he corresponding min-
imum capacity mip.o C(p, p") is denoted bYCmin(p).

4.2 Key Ranking in One-dimensional Alg. 2

Key ranking and advantage in the one-dimensional aase}l, of Alg. 2 was studied in
[8]. We will present it here briefly for completeness. ket 0 be the correlation of (10)
(the calculations are similar @ < 0) and letc® be the empirical correlation calculated
from the data. The statistic used in ranking the keys is #fn= |&4. The r.v.c is
binomially distributed with meapgr = c and variancer = (1 - ¢?)/N ~ 1/N. The
wrong key r.v.’sck, k # ko, are binomially distributed with meagmy = 0 (following
Assumption 1) and varianegs, = o3. SinceN is large, we can approximatgko) ~
N(ur, o2) ands(k) ~ FN (uw, og,), whereF N is the folded normal distribution, see
Appendix A in [8]. Now we can proceed as in [8]. We get that,hagfiven success
probability Ps and advantage, the data complexity is

_ (@7H(Ps) + 971 - 270 )2

N =

(14)



4.3 Different Scenarios in Multiple Dimensions

When considering generalisation of Alg.2 to the case, whaukiple linear approxi-
mations are used, flierent approaches are possible. In a previous work by Bimuko
et al., [3], a number of selected one-dimensional linear@pmations with high bias
are taken into account simultaneously under the assumftairthey are statistically
independent. As we will show later in Sect. 5.3, the statigtied in [3] is essentially a
goodness-of-fit test based on least squares and searchdspously the key parkg
andgp which give the best fit with the theoretically estimated etations.

The approaches taken in [5] for linear distinguishing artdrlén [4] for Alg. 1
do not need assumptions about independence of the lineemapyations as they are
based on the p.d. of the multidimensional linear approxmnatl0). When using the
multidimensional p.d., basically twoftirent standard statistical methods can be used:

— Goodness-of-fit (usually based gfstatistic) and
— Distinguishing of an unknown p.d. from a given set of p.dusuyally based on
LLR-statistic)

The goodness-of-fit approach is a straightforward gersatadin of one-dimensional
Alg. 2. It can be used in searching foe k. It measures whether the data is drawn from
the uniform (wrong) distribution, or not, by measuring thevi@tion from the uniform
distribution. It ranks highest the key candidate whose ecgidistribution is farthest
away from the uniform distribution. The statistic does nepeind on the inner key class
g. Information about p.dp is required only for measuring the strength of the test. We
will study this method in Sect. 5.1. After the right round Keis found, one can use
the data derived in Alg. 2 in any form of Alg. 1 for finding thenir key clasg. In this
manner, the-2-approach allows separating between Alg. 1 and Alg. 2.

The LLR-method uses the information about the p.d. relateti¢ inner key class
also in Alg. 2. In this sense, it is similar to the method of, [@here the Alg. 1 and
Alg. 2 were combined together for finding both the outer antemround keys. As
we noted in Sect. 2, the LLR-statistic is the optimal distiisper between two known
p.d.s. If we knew the right inner key clags, we could simply use the empirical p.d.'s
g~ for distinguishingp® and the uniform distribution and then choose ktfer which
this distinguisher is strongest [5]. In practice, the coriener key classy is unknown
when running Alg. 2 for finding the last round key.

Our approach is the following. In [7] it was described how a@a@ use LLR to
distinguish one known p.d. from a set of p.d.’s. We will usie tlistinguisher for distin-
guishingd from the given sep?, g € V. In the setting of Alg. 2, we can expect that for
the rightkg, it should be possible to clearly conclude that the datgi(); i = 1,..., N,
yields data X, 2‘0), i =1,...,N,which follows a p.d.p?, for someg € Vp, rather than
the uniform distribution. On the other hand, for the wrdng ko, the data follows the
uniform distribution, rather than any, g € V.

To distinguishky from the wrong key candidates we determine, for each roupd ke
candidatek, the inner key clasg, for which the LLR-statistic is the largest with the
given data. The right kel is expected to havgy such that the LLR-statistic with this
pair (Ko, o) is larger than for any other paik,(@) # (ko,do). In this manner, we also
recovery in addition toky. The LLR-method is studied in Sect. 6.



5 They?-method

This method separates the Alg. 1. and Alg. 2 such that therldttes not need any
information of p. Both methods are interpreted as goodness-of-fit problEmgshich
the natural choice of ranking statisticyi$. We will show how to find the last round key
k with Alg. 2 first.

5.1 Algorithm 2 with y?

Given empirical p.dg®, we can calculate thg?-statistic from the data as
M
S(k) = 2"™N > (@ -2, (15)
n=0

whereM = 2™ - 1 is the number of degrees of freedom. The statistic can beprated
as thd,-distance between the empirical p.d. and the uniform thstion. By Assump-
tion 1, the right round key should produce data that is fatthevay from the uniform
distribution and we will choose the round kkyor which the statistic (15) is largest.
Obviously, ifm = 1, we get the statistia{)?.

According to [15] the r.vS(ko) is distributed approximately as

S(ko) ~ xt(NC(p*®)) = x4(NC(P)), (16)

because of the symmetry property (12). Hence, we may appaigithe distribution by
a normal distribution withur = M + NC(p) ando = 2(M + 2NC(p)). The parameters
do not depend ogg or kg. For the wrong keyg # ko, we obtain by [15] that

S(K) ~ x(0) = xiu: (17

so thatuw = M ando, = 2M. The mean and variance in (8) grg = owb + M =
V2Mb + M ando?2 = 2-+3/252 /¢(b) < 3. Now we can solveN from (9) and get

that the data complexity is proportional to

N,z = M, b= & (1-279), (18)

C(p)
whereB(M, b, Ps) is a parameter that depends Blinb andPs. Assuming largeb, that
is, large advantaggand largePs, we can approximate by

B =2VMb +4072(2Ps - 1). (19)

Note that the normal approximation of the wrong-key disttitin is valid only when
m > 5, that is, when the approximation gf-distribution by a normal distribution
is valid. It is not possible to perform the theoretical cédtions for smallm as the
x?-distribution does not have a simple asymptotic form in ttete and we cannot
determinefy, and Fy in (8). Since ourn?-statistic reduces to the square sfk) that
was used by Selcguk, the theoretical distributioredifrom our calculations and we get



a slightly diferent formula for the advantage. Despite thiSedence, the methods are
equivalent fom = 1.

Keeping the capacity constant, it seems that the data caitypiecreases exponen-
tially as 2" as the dimensiomof the linear approximation increases and ilisiently
large. Hence, in order to strengthen the attack, the capsteduld increase faster than
2™2 when them is increased. This is a very strong condition and it suggibstsin
applications, only approximations with smailshould be used witfg?-attack. The ex-
perimental results for dierentm presented in Sect. 8 as well as the theoretical curves
depicted in Fig. 5(a) suggest that increasmdn the y*-method does not necessarily
mean improved performance for Alg. 2.

Since 22 = ¢(-b) ~ 1/ V2re/2 we can solve from (18) as a function ol and
we have proved the following theorem that can be used in dbsgrthe relationship
between the data complexity and the search phase:

Theorem 1. Suppose the cipher satisfies Assumption 1 where @ and the p.d’s
p%, g € Vi and @ are close to each other. Then the advantage ofythenethod using
statistic(15) is given by

o, = (NC(p) - 4)?
x aM
where R (> 0.5) is the probability of success, N is the amount of data usdubmttack
and ((p) and m(> 5) are the capacity and the dimension of the linear approxiorati
(10), respectively.

While (20) and (18) depend on the theoretical distribufiothe actuaj?-statistic (15)
is independent op. Hence, we do not need to knqwaccurately to realise the attack,
we only need to find an approximation (10) that deviates ashragsgossible from the
uniform distribution. On the other hand, if we use time affiire for computing an
approximation of the theoretical p.d. and if we may assuragetthe approximation is
accurate, we would also like to exploit this knowledge fodifirg the right inner key
class with Alg. 1. As noted in [9], there are several ways #&diseng a multidimensional
Alg. 1. Next we discuss Alg. 1 as)@-based goodness-of-fit problem.

,p=d%(2Pg—-1), M =2"-1, (20)

5.2 Algorithm 1 with y?

Suppose that we have obtained an empirical distribujiohdata that can be used for
determining the inner key clagg using Alg. 1. For example, we have successfully run
Alg. 2 and found the correct last round Keyand sety= g'‘e.

One approach is to consider Alg. 1 as a goodness-of-fit probMhere one deter-
mines, for eacly, whether the empirical p.dj follows p9 or not. They?-based ranking
statistic is then
(@ - P}’

5>

n

M
Sag(@) =N (21)
n=0

which should be small fogg and large for the wrong inner key clasges go. In [9] it
is shown that the data complexity of findiggwith given success probabilifys is

4m - 4’)13 + 2\¢2M(m — ’}13) (22)

N =
Alg 1,2 Cmin(p)




whereys = In(V2rIn PgY).

5.3 Combined Method and Discussion

The sums of squares of correlations used in [3] are closketo the sums of squares
(15) and (21). Indeed, we could define a combipédtatisticB by considering the sum
of the statistics from (15) and (21) and setting

B(k.0) = > S(K) + Sag1(k 9, (23)
k #k

whereSayg 1(k, g) is the statistic (21) calculated from the empirical m#.K € V. If
we approximate the denominators in (21) by"2nd scaling by 2N we obtain from
B(k, g) the statistic

B'(k.g) = > I - 013 + g — p¥I3. (24)
k’#k
This statistic is closely related to the one used in [3].
DTIEFIB + 16 - I (25)
k' £k

Indeed, if in (25) all correlation vectods andc? contain correlations from all linear ap-
proximations then (25) becomes the same"®' ¢k, g) as can be seen using Parseval's
theorem. Initially, in the theoretical derivation of (29)Ig linearly and statistically in-
dependent approximations were included in the correlatemtors. However, in Sect.
3.4 of [3] it was proposed to take into account all linear apgpmations with strong cor-
relations when forming the statistic (25) in practice. lagiical experiments by Collard,
et al. [16] this heuristic enhancement was demonstrateghpodve the results. In this
paper, we have shown how to remove the assumption abouténdepce of the linear
approximations and that all linear approximations thatehsufficient contribution to
the capacity (cf. discussion in Sect. 5.1) can and shoulddiaded.

Other possibilities for combining Alg. 1 and Alg. 2 based@ror its variants are
also possible, with dierent weights on the terms of the sum in (24), for instancev-Ho
ever, the mathematically more straightforward way is to teepurey?-method de-
fined by (15) and (21), as its statistical behaviour is welwkn. An even morefécient
method can be developed based on LLR as will be shown next.

6 The LLR-method

This method is also based on the same heuristic as the Wmnbhkpothesis: Fok #
ko, the distribution of the data should look uniform andkgit should look likep®, for
somego. Hence, for each, the problem is to distinguish the uniform distributionrfro
the discrete and known sp¥, g € V. Let us use the notatidn(k, g) = LLR(§, p9, 6).
We propose to use the following ranking statistic

L(k) = maxL(k, g). (26)
9€Vim



Now kg should be the key for which this maximum ow@s is the largest and ideally,
the maximum should be achieved when= go. While the symmetry property (12)
allows one to develop statistical theory without knowigin practice one must search
throughV, for ko andVp, for go even if we are only interested in determinikg

We assume that the p.dp8 andd are all close to each other. Using Theorem 1 and
property (12) we can state Assumption 1 as follows: For thletipairky andgg

1
L(ko. Go) ~ N(Nu, Nog), whereyr = C(p) andeg = C(p), (27)

and fork # kp and anyg € V,
L(k, @) ~ N(Nuw, No3,), whereuy = —%C(p) andog, = C(p). (28)

Hence ur, 03, uw ando3, do not depend og € V.. For fixedk # ko, the r.v.’sL(k, g)
for k # ko are identically normally distributed with meag, and variancer3,. We will
assume that they are statistically independent to simgéifgulations. In particular, the
assumption about statistical independencke(&f g) for differentg does not mean that
the linear approximations should be statistically indefgsn. The statistic itself does
not depend on this assumpti@nMoreover, the theoretical results obtained this way
are a little more pessimistic that those obtained by enmaditiests, as shown in Sect.
8. Hence, these calculations give a theoretical model taatbe used in describing
how the method behaves especially compared to other methssisming that for each
k # ko, the r.v’sL(k, g)'s are independent, we obtain that the c.d.f. of their maxmis
given by [17]

FW(X) = ¢N;4W,N(r\2N(X)M+l (29)

and p.d.f.is
fW(X) = (M + 1)¢N/,lw,ND'SV(X)M¢/,lw,0'\2N(X)‘ (30)

Let us fix the advantagesuch thatr = 2'-2. The meanu, of therth wrong key statistic
L, can now be calculated from (8) to be

ta = Npw + VNowb = —1/2NC(p) + vNC(p)b,

31
b= ¢} "V1-2%), (1)

and the variance is

2—I—a0_2
2 _ W 2
Ta = (M + 1)2(1 — 2-3)20-1/(M+D) g2 () < 0o (32)
Let

P1 = Pr(L(ko. go) > maxL (ko. 9) (33)

3 See for example [17] for calculating the c.d.f. of the maximaf dependent and identically
distributed r.v.s, wherM > 100. The theoretical predictions calculated that way dghty
more pessimistic than the ones obtained in Theorem 2.



be the the probability that givé, we choose, i.e., the probability of success of Alg.
1. Let
P2 = Pr(L(ko) > L) (34)

be the probability that we rari, paired withany ge V,, among the highest ranking
keys. Finally, let

P12 = Pr(L(ko) > L | L(Ko, Qo) > glg}L(ko, 9)) (35)

be the probability that we rarlly among the highest ranking keys provided that we
pair go with kg. Then

P2 = P12P1 + Pr(L(ko) > Lr | L(ko) = LLR(ko, p% 6).9 # go)(1 - P1)
(36)
2 Plzpl.
If we pair ko with g # go thenL (ko) > L(ko, go) for a fixed empirical p.dg®, so thatky
gets rankethigherthan by using the correg. Hence, assuming thig gets paired with
0o only decreaseR; so the corresponding estimate of the data complexity gegeila
Let N1, N2 andN;; be the data complexities needed to achieve success pritibalfi| ,
P, andPs., respectively.
We can calculat®1, using (27), (28) and (9) to obtain

P1o = @(‘%{‘Mb) = &(YNLLC(p) -b), b= @} ("V1-273).  (37)
Hence, the data complexity is proportional to

Niz = (&X(P12) + b)’ /C(p). (38)

which can be used in approximating an upper bounéifokVe can approximaté(b) =
"¥1-2-2~ 1-2™2such that ~ b?/2 — mand we can solve the advantames a
function ofN;2 ~ N, from (38). We get the following theorem:

Theorem 2. Suppose the cipher satisfies Assumption 1 where @ and the p.d’s
pY, g € Vin and o are close to each other. Then the advantage of the LLR-métimod
finding the last round keyyks given by

aur = (YNC(p) - 1(P12))?/2 - m~ NC(p) - m. (39)

Here N is the amount of data used in the attaclg (B 0.5) is the probability of success
and 'p) and m are the capacity and the dimensions of the linear appration (10),
respectively.

Theorem 2 now gives the trad€fdetween the search phase and the data complexity
of the algorithm. With fixedN and capacityC(p), the advantage decreases linearly with
m whereas in (20) the logarithm of advantage decreases ljneih m. For fixedm
andp, the advantage of the LLR-method seems to be larger thardirentage of the
x?-method. The experimental comparison of the methods iepted Sect. 8



In [4] it is shown that the data complexity of Alg. 1 for findinige right inner key
classgy is proportional to
16min2 - 16P;

N ORI

whereP’ = In( V2rin P;Y). If we want to be certain that we have paired the right inner
key clasgyp with kg, the data complexity is given by

(40)

NLr = max(Ng, N) o (41)

_m
C(p)’
The data complexiti; is an overestimate for the actual data complexity of Alg.JL [9
so in practiceN, dominates.

7 Algorithms and Complexities

For comparing the two methods, LLR agd we are interested in the complexities of
the first two phases of the Alg. 2 since the sorting and seaggitiase do not depend on
the chosen statistic. The counting phase is done on-linalktite other phases can be
done df-line. However, we have not followed this division [12] inrdmplementation,
as we do part of the analysis phase on-line. We will divideatlgerithm in two phases

initialise 2 x 2™ countersF(k, ), k=0,..., 2-1,73=0,..., M;
fori=1,...,Ndo

for j=1,..., mdo
calculate bity; = uj - % @ wj -
end
increment counteF(k, ) = #{i | U + W2 = 5}, wheren is the vector
(..., nm) interpreted as an integer;
end
end

Fig. 1. On-line phase of Matsui's Alg. 2 in multiple dimensions

as follows: In theon-line phasedepicted in Fig. 1, we calculate the empirical p.d.’s
for the round key candidates. The maB) for the y*>-method and_(k) for the LLR-
method are then assigned to the keys indffdine phase The df-line phases foy?-
method and LLR-method are depicted in Fig. 2 and Fig. 4, wsmdy. After the
keysk are each given the mark, they can be ranked according to tHe Hhae wish to
recovergy with y?-method, we also need to store, in addition to the marks rtipgrecal
p.d’sg*. Giveng®, one can use the multidimensional Alg. 1 described in Figor3 f
finding go off-line. The version of Alg. 1 is based on LLR. Obviously, oneilcbuse



Input: tableF(k, ), k=0,..., 2-175=0,..., M;
fork=0,...,2 —1do
computeS(K) = 31o(F(k, n)/N - 27™)?;
if wish to recover gthen
store 8(k), F(k,0),..., F(k, M));
else
storeS(K);

end
end

Fig. 2. Off-line phase of Alg. 2 using?-method

Input: counter value$(ky, 0), ... ., F(ko, M);
compute the theoretical distribution wkdimensional approximations for each value of
2" inner key classes and store them inf"a22™ tableP(g,7),g=0,..., M,n=0,..., M;
for inner key classes g 0,..., M do

calculateG(g) = X, F (ko, 7) log P(g, 7);
end
Output: go such that magy,, G(g) = G(go)

Fig. 3. Matsui’s Alg. 1 in multiple dimensions (using LLR)

some other method, e.g. use thebased ranking statistic (21), which gives similar
results in practice even if the LLR-based method is more pfubia theory [9].

The data, time and memory complexities for on-line afidline phase for both
methods are shown in Table 1. Given success probaPBitsgnd advantaga, the data

Table 1. Data, time and memory complexities of thg and LLR-method

On-line Oft-line
2 for ko|y? for ko, go| LLR ||x?for ko| x? for ko, go LLR
Data NXZ N)(Z N|_|_R - - -
Time || N,z 2m N,z 2m |Nur2'm|| 2+m 2+m 2+m
Memory]| 2'+m 2l+m 2l+m 2 |2"max(2, 2 [2™ max(2, 2™)

complexityN,. is given by (18). If we want to recoveg also, then theoretically, data
complexityN; given by (40) is needed to successfully run Alg. 1 given in. BigAs
noted in [9], the theoretical valug, is an overestimate and the total data complexity in
practice is probably dominated by the data complekity of rankingko high enough.
Nevertheless, the data complexity of the LLR-method is &mé#han they2-method.
Otherwise, the complexities for the LLR-method are mostlysame as fop?-method
provided thatnis not much larger thalhwhich is usually the case. Thus, we recommend



Input: tableF(k,n), k=0,..., 2-1,3=0,..., M;
compute the theoretical distribution wkdimensional approximations for each value of
2™ inner key classes and store them if"fa2™ tableP(g,7), g=0,....,M,n=0,..., M;
fork=0,...,2 - 1do

forg=0,...,Mdo

L(k,g) = LLR(&*, p% 6), wheredf = F(k, n)/N;

end

storeL(K) = maxgev,, L(k, 9);
end

Fig. 4. Off-line phase of Alg. 2 using LLR-method

using the LLR-method rather thas-method unless there is great uncertainty about the
validity of the approximative p.g of the linear relation (10).

In some situations it may also be advantageous to combindifiieeent methods.
For example, one may want to first find, sayest round keys by?, such that the data
complexityN, - is given by (18), where the advantagais | —r. Then one can proceed
by applying the LLR-method to the remainimgkeys, thus reducing the size of the
round key space to be less thdnQther similar variants are possible. Their usefulness
depends on the cipher that is being studied.

8 Experiments

The purpose of the experiments was to test the accuracy ofettieed statistical mod-
els and to demonstrate the better performance of the LLRebasethod in practice.
Similarly as in previous experiment on multiple linear damalysis, see [16] and [3],
the Serpent block cipher was used as a test-bed. The seuwdt@erpent is described,
for example, in [18]. We have searched for a 12-bit part offiftle round key based
on m linear approximations with efierentm. Each experiment was performed for 16
different keys.

We calculated the capacities for the approximation (10Y dveound Serpent for
differentm. Practical experiments were used in confirming Bat.(p) ~ C(p) and
especiallyCmin(p) # 0. We also saw thap] — pj | < 7i:pd, for all g,g’ andn € Vin.
Hence,p?’s can be considered to be close to each othemand

The theoretical advantage of ty¢-method predicted in (20) has been plotted as
a function of data complexity in Fig. 5(a). The figure showattimcreasingn larger
than 4, the attack is weakened. This suggests usirg4 base approximations in the
y?-attack. Since we should have at least 5 for the normal approximation/{aﬁ,I to
hold, the theoretical calculations do not necessarily Hotdsmall m. However, the
experiments, presented in Fig. 5(b), seem to confirm theyifeom = 1 andm = 4,
too. The most icient attack is obtained by usimg = 4 equations. Increasing (and
hence, the time and memory complexities of the attack, sbke T3 actually weakens
the attack. The optimal choice of depends on the cipher. However, the theoretical
calculations suggest that using> 5 is usually not advantageous.
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The reason is thg?-squared statistic itself: it only measures if the datacio#

a certain distribution, the uniform distribution in thissea The more approximations
we use, the larger the distributions become and the morertaitty we have about
the “fitting” of the data. Small errors in experiments genetarge errors iry? as the
fluctuations from the relative frequency2become more significant.

The theoretical advantage of the LLR-method (39) is plo#tgdinst the data com-
plexity in Fig. 5(c) for diferentm. The empirical advantages for severaffeiientm
are shown in Fig. 5(d). Unlike fop? we see that the method can be strengthened by
increasingm, until the increase in the capaci€(p) becomes negligible compared to
increase irm. For 4-round Serpent, this happens wher 12.

Experimental results presented in Figures 5(d) and 5(bfjroothe theoretical pre-
diction that the LLR-method is more powerful than tiemethod. Also the theoreti-
cal and empirical curves seem to agree nicely. For exammpefull advantage of 12
bits with m = 7 achieved at loy = 27.5 for LLR whereasy?-method needs about
logN = 28. Moreover, the LLR can be strengthened by increasm§orm = 12, the
empirical logarithmic data complexity is about 26.5.

9 Conclusions

There are several approaches of realising Matsui’s Algigusultiple linear approx-
imations. In this paper, methods based on two standardgtitatiLLR andy?, were
studied. Selcuk’s theory of advantage describing thect@fibetween data complex-
ity and search phase was extended to multiple dimensioresatitiantages of the two
methods in key ranking were then determined. A descripticth® multidimensional
Alg. 2 for both methods was given so that their performancasueed in time, memory
and data could be compared.

The y?-statistic, based on the classic goodness-of-fit test, Wwasrged to perform
poorly for large dimensions of linear approximation, whereas the LLR-statistic, an
optimal statistic for testing two known hypotheses, wasashto improve with the
dimensionm of the linear approximation much further. In particulare thdvantage
of using multiple linear approximations instead of just ameignificant and of real
practical importance if LLR-statistic is used in Alg. 2. lemgral, it was shown that
the LLR-method is usually more advantageous compared tg4method. As long
as there is no significant error, stemming from the lineat-éfiiect, for example, in
determining the approximate p.d. of the multidimensiomaadr approximation, we
recommend to use the LLR-method proposed in this paperrritae they?-method.
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