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Abstract. Matsui’s one-dimensional Alg. 2 can be used for recovering bits of
the last round key of a block cipher. In this paper a truly multidimensional exten-
sion of Alg. 2 based on established statistical theory is presented. Two possible
methods, an optimal method based on the log-likelihood ratio and aχ2-based
goodness-of-fit test are compared in theory and by practicalexperiments on re-
duced round Serpent. The theory of advantage by Selçuk is generalised in multi-
ple dimensions and the advantages and data, time and memory complexities for
both methods are derived.

1 Introduction

Linear cryptanalysis was introduced by Matsui in [1]. The method uses a one-dimensio-
nal linear relation for recovering information about the secret key of a block cipher. Mat-
sui presented two algorithms, Algorithm 1 (Alg. 1) and Algorithm 2 (Alg. 2). While
Alg.1 extracts one bit of information about the secret key, Alg. 2 ranks several candi-
dates for a part of the last round key of a block cipher according to a test statistic such
that the right key should be ranked highest. Using the recovered last round key, it is then
possible to extract one bit of information about the other round keys.

Since then researchers have been puzzled by the question howthe linear cryptanal-
ysis method could be enhanced by making use of multiple linear approximations simul-
taneously. In [2] Kaliski and Robshaw used several linear relations involving the same
key bits in an attempt to reduce the data complexities of Matsui’s algorithms. Multiple
linear relations were also used by Biryukov, et al., [3] for extracting several bits of in-
formation about the key in an Alg. 1 type attack. This basic attack was also extended
to an Alg. 2 type attack. However, both [2] and [3] depend on theoretical assumptions
about the statistical properties of the one-dimensional linear relations that may not hold
in the general case as was shown in [4].

The statistical linear distinguisher presented by Baignères, et al., in [5] does not
suffer from this limitation. It has also another advantage over the previous approaches
[2] and [3]: it is based on a well established statistical theory of log-likelihood ratio,
LLR, see also [6]. In [7] it was further shown how to distinguish one known probability
distribution from a set of other distributions.

The purpose of this paper is to present two new multidimensional extensions of
Matsui’s Alg. 2 including an effective ranking method for the key candidates based
on Selçuk’s concept of advantage [8]. First a straightforward solution for Alg. 2 based
on goodness-of-fit test usingχ2-statistic will be presented. We will then discuss aχ2-
based version of Alg. 1 [9] and show that the method of Biryukov, et al., is related



to a combination of theχ2-based Alg. 1 and Alg. 2. We will then present a method
based on LLR which actually combines Alg. 1 and Alg. 2 and outperforms theχ2-
based method in theory and practice. In the practical experiments the data, memory and
time complexity for achieved advantage is determined and compared with the values
given by the theoretical statistical models developed in this paper.

The structure of this paper is as follows: In Sect. 2 the basicstatistical theory and
notation is given. The advantage and the generalisation of Selçuk’s theory is presented
in Sect. 3. The multidimensional Alg. 2 is described in Sect.4 and the different methods
based on the two test statistics are described in Sect. 5 and Sect. 6. The time, memory
and data complexities of both methods are examined in Sect. 7. The experimental results
are given in Sect. 8. Finally, Sect. 9 draws conclusions.

2 Boolean Function and Probability Distribution

We will denote the space ofn-dimensional binary vectors byVn. A function f : Vn→ V1

is called a Boolean function. A functionf : Vn → Vm with f = ( f1, . . . , fm), where fi
are Boolean functions is called a vector Boolean function ofdimensionm. A linear
Boolean function fromVn to Vm is represented by anm× n binary matrixU. Them
rows ofU are denoted byu1, . . . , um, where eachui is a binary vector of lengthn.

The correlation between a Boolean function and zero is

c( f ) = c( f , 0) = 2−n (#{ξ ∈ Vn | f (ξ) = 0} − #{ξ ∈ Vn | f (ξ) , 0})

and it is also called the correlation off .
We say that the vectorp = (p0, . . . , pM) is a probability distribution (p.d.) of random

variable (r.v.)X and denoteX ∼ p, if Pr(X = η) = pη, for all η = 0, . . . ,M. We will
denote the uniform p.d. byθ. Let f : Vn → Vm andX ∼ θ.We call the p.d.p of the r.v.
Y = f (X) the p.d. off .

Let us study some general properties of p.d.’s. Letp = (p0, . . . , pM) and q =
(q0, . . . , qM) be some p.d.’s of r.v.’s taking on values in a set withM + 1 elements.
The Kullback-Leibler distance betweenp andq is defined as follows:

Definition 1. Therelative entropyor Kullback-Leibler distancebetween p and q is

D(p || q) =
M
∑

η=0

pη log
pη
qη
, (1)

with the conventions0 log 0/b = 0, b , 0 and blogb/0 = ∞.

The following property usually holds for p.d.’s related to any real ciphers, so it will be
frequently used throughout this work:

Property 1. We say that distribution pis close toq if |pη − qη| � qη, for all η =
0, 1, . . . ,M.

If p is close toq then we can approximate the Kullback-Leibler-distance betweenp and
q by its Taylor series. We call the first term of the series the capacity of p andq and it
is defined as follows:



Definition 2. The capacity between two p.d.’s p and q is defined by

C(p, q) =
M
∑

η=0

(pη − qη)2

qη
. (2)

If q is the uniform distribution, then C(p, q) will be denoted by C(p) and called the
capacity of p.

The normed normal distribution with mean 0 and variance 1 is denoted byN(0, 1). Its
probability density function (p.d.f.) is

φ(x) =
1
√

2π
e−x2/2 (3)

and the cumulative distribution function (c.d.f.) is

Φ(x) =
∫ x

−∞
φ(t) dt . (4)

The normal distribution with meanµ and varianceσ2 is denoted byN(µ, σ2) and its
p.d.f. and c.d.f. areφµ,σ2 andΦµ,σ2, respectively.

Theχ2
M-distribution withM degrees of freedom has meanM and variance 2M. The

non-centralχ2
M(λ)-distribution withM degrees of freedom has meanλ+M and variance

2(M + 2λ). If M > 30, we may approximateχ2
M(λ) ∼ N(λ + M, 2(M + 2λ)) [10].

Let X1, . . . ,Xn be a sequence independent and identically distributed (i.i.d.) random
variables where eitherXi ∼ p, for all i = 1, . . . ,N (corresponding to null hypothesis
H0) or Xi ∼ q , p, for all i = 1, . . . ,N (corresponding to alternate hypothesisH1)
and letx̂1, . . . , x̂N be the empirical data. The hypothesis testing problem is then to de-
termine whether to accept or rejectH0. The Neyman-Pearson lemma [11] states that
an optimal statistic for solving this problem, or distinguishing betweenp andq, is the
log-likelihood ratio defined by

LLR(q̂, p, q) =
M
∑

η=0

Nq̂η log
pη
qη
, (5)

whereq̂ = (q̂0, . . . , q̂M) is the empirical p.d. calculated from the data ˆx1, . . . , x̂N by

q̂η =
1
N

#{i = 1, . . . ,N | x̂i = η}.

The distinguisher acceptsH0, that is, outputsp (respectively rejectsH0 or outputsq) if
LLR(q̂, p, q) ≥ γ (< γ) whereγ is the threshold that depends on the level and the power
of the test. If the power and the level of the test are equal (asis often the case) then
γ = 0.

The proof for the following result can be found in [11], see also [5].

Proposition 1. The LLR-statistic calculated from i.i.d. empirical datax̂i , i = 1, . . . ,N
using (5) is asymptotically normal with mean and variance Nµ0 and Nσ2

0 (Nµ1 and



Nσ2
1, resp.) if the data is drawn from p (q, resp.). The means and variances are given

by

µ0 = D(p || q) µ1 = −D(q || p)

σ2
0 =

M
∑

η=0

pη log2 pη
qη
− µ2

0 σ2
1 =

M
∑

η=0

qη log2 pη
qη
− µ2

1.
(6)

Moreover, if p is close to q, we have

µ0 ≈ −µ1 ≈
1
2

C(p, q) σ2
0 ≈ σ2

1 ≈ C(p, q). (7)

3 Advantage in Key Ranking

In a key recovery attack one is given a set of key candidates, and the problem is to
determine which key is the right one. Usually the keys are searched from the setVn of all
2n strings ofn bits. The algorithm consists of four phases, thecounting phase, analysis
phase, sorting phaseandsearching phase[12]. In the counting phase one collects data
from the cipher, for example, plaintext-ciphertext pairs.In the analysis phase a real-
valued statisticT is used in calculating a rank (or “mark” [12])T(κ) for all candidates
κ ∈ Vn.

In the sorting phase the candidatesκ are sorted, i.e., ranked, according to the statistic
T. Optimally, the right key, denoted byκ0, should be at the top of the list. If this is not
the case, then one must also run through a search phase, testing the keys in the list until
κ0 is found. The goal of this paper is to find a statisticT(κ) that is easy to compute and
that is also reliable and efficient in finding the right key.

The time complexity of the search phase, given amountN of data, was measured
using a special purpose quantity “gain” in [3]. A similar butmore generally applica-
ble concept of “advantage” was introduced by Selçuk in [8],where it was defined as
follows:

Definition 3. We say that a key recovery attack for an n-bit key achieves an advantage
of a bits over exhaustive search, if the correct key is rankedamong the top r= 2n−a out
of all 2n key candidates.

Statistical tests for key recovery attacks are based on the Wrong-key Hypothesis [13].
We state it as follows:

Assumption 1 (Wrong-key Hypothesis).There are two p.d.’s q and q′, q , q′ such
that for the right keyκ0, the data is drawn from q and for a wrong keyκ , κ0 the data is
drawn from q′ , q.

A real-valued statisticT is computed fromq andq′, where one of these p.d.’s may be
unknown, and the purpose of a statisticT is to distinguish betweenq andq′. We use
DR to denote the p.d. such thatT(κ0) ∼ DR. We will assumeDR = N(µR, σ

2
R), with

parametersµR andσR, as this will be the case with all statistics in this paper. Then µR

andσR are determined with the help of linear cryptanalysis. We denote byDW the p.d.



known based on the Wrong-key Hypothesis such thatT(κ) ∼ DW for all κ , κ0. The
p.d.f. and c.d.f. ofDW are denoted byfW andFW, respectively.

Ranking the keysκ according toT means rearranging the 2n r.v.’s T(κ), κ ∈ Vn, in
decreasing order of magnitude. Writing the ordered r.v.’s as T0 ≥ T1 ≥ · · · ≥ TM, we
call Ti the ith order statistic. Let us fix the advantagea such that the right key should
be among ther = 2n−a highest ranking keys. Hence, the right key should be at leastas
high as therth wrong key corresponding toTr . By Theorem 1. in [8] we get that the r.v.
Tr is distributed as

Tr ∼ N(µa, σ
2
a), where

µa = F−1
W (1− 2−a) andσa ≈

2−(n+a)/2

fW(µa)
.

(8)

If we now define the success probabilityPS of havingκ0 among ther highest ranking
keys we have

PS = Pr(T(κ0) − Tr > 0) = Φ


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




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µR − µa
√

σ2
R + σ

2
a


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





, (9)

sinceT(κ0) − Tr ∼ N(µR − µa, σ
2
R + σ

2
a).

As the data complexityN depends on the parametersµR − µa andσ2
R + σ

2
a, we can

solveN from (9) as a function ofa and vice versa. Hence, (9) describes the trade-off

between the data complexityN and the complexity of the search phase.
In a block cipher, the unknown key is divided into a number of round keys not

necessarily disjoint or independent. In [3], the keys of thelast round (or first and last
round) were called the outer keys and the rest of the round keys were called inner
keys. The unknown keyκ may consist of outer keys, the parity bits of inner keys or
both. Traditionally, in Matsui’s Alg. 1 key parity bit(s) ofthe inner keys are searched,
whereas in Alg. 2. the main goal is to determine parts of the outer keys.

4 Algorithm 2

4.1 Multidimensional Linear Approximation

Let us study a block cipher witht rounds. Letx ∈ Vn be the plaintext,y ∈ Vn the
ciphertext,K ∈ Vν the fixed round key data (the inner key) used in all but the lastround
andz = f −1

t (y, k), k ∈ Vl , the input to the last round functionft, obtained fromy by
decrypting with the last round key datak (outer key). Letm ≤ n be an integer. Using
m-dimensional linear cryptanalysis one can determine an approximationp of the p.d.
of the Boolean function

x 7→ Ux+Wz+ VK, (10)

which defines anm-dimensional linear approximation, whereU andW arem× n ma-
trices andV is anm× ν matrix. A way of obtainingp from the one-dimensional cor-
relations was presented in [4]. The linear mappingV divides the inner key space to 2m

equivalence classesg = VK ∈ Vm. Let the right last round key be denoted byk0. Denote
M = 2m− 1 from now on.



In the counting phase we drawN data pairs ( ˆxi , ŷi), i = 1, . . . ,N. In the analysis
phase, for each last round keyk, we first calculate ˆzk

i = f −1
t (ŷi , k), i = 1, . . . ,N. Then,

for eachk, we calculate the empirical p.d. ˆqk = (q̂k
0, . . . , q̂

k
M), where

q̂k
η =

1
N

#{i = 1, . . . ,N |Ux̂i +Wẑk
i = η}. (11)

If we use the wrong keyk , k0 to decryptŷi , i = 1, . . . ,N, it means we essentially
encrypt over one more round and the resulting data will be more uniformly distributed.
This heuristics is behind the original Wrong-key Randomisation Hypothesis [14], which
in our case means that the dataUx̂i +Wẑk

i , i = 1, . . . ,N, k , k0 is drawn i.i.d. from the
uniform distribution.

When decrypting with the correct keyk0 the dataUx̂i + Wẑk0
i + g, i = 1, . . . ,N,

whereg is an unknown inner key class, is drawn i.i.d. fromp. This means that the data
Ux̂i +Wẑk0

i , i = 1, . . . ,N is drawn i.i.d. from a fixed permutation ofp denoted bypg.

These permuted p.d.’s have the property thatpg
η⊕h = pg⊕h

η , for all g, η, h ∈ Vm, and
consequently

D(pg || θ) = D(p || θ) andC(p) = C(pg) for all g ∈ Vm. (12)

Moreover,D(p || ph) = D(pg || ph⊕g), for all h, g ∈ Vm, from which it follows that

min
g′,g

D(pg || pg′) = min
h,0

D(p || ph), (13)

which is a constant value for allg ∈ Vm. We will denote this value byDmin(p) and
assume in the sequel thatDmin(p) , 0 without restriction: We can unite the key classes
for which the Kullback-Leibler distance is zero. Then we just havem′ < 2m key classes
whose Kullback-Leibler distance from each other is non-zero. The corresponding min-
imum capacity minh,0 C(p, ph) is denoted byCmin(p).

4.2 Key Ranking in One-dimensional Alg. 2

Key ranking and advantage in the one-dimensional case,m= 1, of Alg. 2 was studied in
[8]. We will present it here briefly for completeness. Letc > 0 be the correlation of (10)
(the calculations are similar ifc < 0) and letĉk be the empirical correlation calculated
from the data. The statistic used in ranking the keys is thens(k) = |ĉk|. The r.v.ĉk0 is
binomially distributed with meanµR = c and varianceσ2

R = (1 − c2)/N ≈ 1/N. The
wrong key r.v.’sĉk, k , k0, are binomially distributed with meanµW = 0 (following
Assumption 1) and varianceσ2

W = σ
2
R. SinceN is large, we can approximates(k0) ∼

N(µR, σ
2
R) ands(k) ∼ FN(µW, σ

2
W), whereFN is the folded normal distribution, see

Appendix A in [8]. Now we can proceed as in [8]. We get that, with given success
probabilityPS and advantagea, the data complexity is

N =
(Φ−1(PS) + Φ−1(1− 2−a−1))2

c2
. (14)



4.3 Different Scenarios in Multiple Dimensions

When considering generalisation of Alg.2 to the case, wheremultiple linear approxi-
mations are used, different approaches are possible. In a previous work by Biryukov,
et al., [3], a number of selected one-dimensional linear approximations with high bias
are taken into account simultaneously under the assumptionthat they are statistically
independent. As we will show later in Sect. 5.3, the statistic used in [3] is essentially a
goodness-of-fit test based on least squares and searches simultaneously the key partsk0

andg0 which give the best fit with the theoretically estimated correlations.
The approaches taken in [5] for linear distinguishing and later in [4] for Alg. 1

do not need assumptions about independence of the linear approximations as they are
based on the p.d. of the multidimensional linear approximation (10). When using the
multidimensional p.d., basically two different standard statistical methods can be used:

– Goodness-of-fit (usually based onχ2-statistic) and
– Distinguishing of an unknown p.d. from a given set of p.d.’s (usually based on

LLR-statistic)

The goodness-of-fit approach is a straightforward generalisation of one-dimensional
Alg. 2. It can be used in searching forκ = k. It measures whether the data is drawn from
the uniform (wrong) distribution, or not, by measuring the deviation from the uniform
distribution. It ranks highest the key candidate whose empirical distribution is farthest
away from the uniform distribution. The statistic does not depend on the inner key class
g. Information about p.d.p is required only for measuring the strength of the test. We
will study this method in Sect. 5.1. After the right round keyk is found, one can use
the data derived in Alg. 2 in any form of Alg. 1 for finding the inner key classg. In this
manner, theχ2-approach allows separating between Alg. 1 and Alg. 2.

The LLR-method uses the information about the p.d. related to the inner key class
also in Alg. 2. In this sense, it is similar to the method of [3], where the Alg. 1 and
Alg. 2 were combined together for finding both the outer and inner round keys. As
we noted in Sect. 2, the LLR-statistic is the optimal distinguisher between two known
p.d.’s. If we knew the right inner key classg0, we could simply use the empirical p.d.’s
q̂k for distinguishingpg0 and the uniform distribution and then choose thek for which
this distinguisher is strongest [5]. In practice, the correct inner key classg0 is unknown
when running Alg. 2 for finding the last round key.

Our approach is the following. In [7] it was described how onecan use LLR to
distinguish one known p.d. from a set of p.d.’s. We will use this distinguisher for distin-
guishingθ from the given setpg, g ∈ Vm. In the setting of Alg. 2, we can expect that for
the rightk0, it should be possible to clearly conclude that the data ( ˆxi , ŷi), i = 1, . . . ,N,
yields data ( ˆxi , ẑ

k0
i ), i = 1, . . . ,N, which follows a p.d.pg, for someg ∈ Vm, rather than

the uniform distribution. On the other hand, for the wrongk , k0, the data follows the
uniform distribution, rather than anypg, g ∈ Vm.

To distinguishk0 from the wrong key candidates we determine, for each round key
candidatek, the inner key classg, for which the LLR-statistic is the largest with the
given data. The right keyk0 is expected to haveg0 such that the LLR-statistic with this
pair (k0, g0) is larger than for any other pair (k, g) , (k0, g0). In this manner, we also
recoverg0 in addition tok0. The LLR-method is studied in Sect. 6.



5 Theχ2-method

This method separates the Alg. 1. and Alg. 2 such that the latter does not need any
information ofp. Both methods are interpreted as goodness-of-fit problems,for which
the natural choice of ranking statistic isχ2. We will show how to find the last round key
k with Alg. 2 first.

5.1 Algorithm 2 with χ2

Given empirical p.d. ˆqk, we can calculate theχ2-statistic from the data as

S(k) = 2mN
M
∑

η=0

(q̂k
η − 2−m)2, (15)

whereM = 2m− 1 is the number of degrees of freedom. The statistic can be interpreted
as thel2-distance between the empirical p.d. and the uniform distribution. By Assump-
tion 1, the right round key should produce data that is farthest away from the uniform
distribution and we will choose the round keyk for which the statistic (15) is largest.
Obviously, ifm= 1, we get the statistic (ˆck)2.

According to [15] the r.v.S(k0) is distributed approximately as

S(k0) ∼ χ2
M(NC(pg0)) = χ2

M(NC(p)), (16)

because of the symmetry property (12). Hence, we may approximate the distribution by
a normal distribution withµR = M + NC(p) andσ2

R = 2(M + 2NC(p)). The parameters
do not depend ong0 or k0. For the wrong keysk , k0, we obtain by [15] that

S(k) ∼ χ2
M(0) = χ2

M , (17)

so thatµW = M andσ2
W = 2M. The mean and variance in (8) areµa = σWb + M =√

2Mb + M andσ2
a = 2−(l+a)/2σ2

W/φ(b) � σ2
0. Now we can solveN from (9) and get

that the data complexity is proportional to

Nχ2 =
β(M, b,PS)

C(p)
, b = Φ−1(1− 2−a), (18)

whereβ(M, b,PS) is a parameter that depends onM, b andPS. Assuming largeb, that
is, large advantagea and largePS, we can approximateβ by

β = 2
√

Mb+ 4Φ−2(2PS − 1). (19)

Note that the normal approximation of the wrong-key distribution is valid only when
m > 5, that is, when the approximation ofχ2-distribution by a normal distribution
is valid. It is not possible to perform the theoretical calculations for smallm as the
χ2-distribution does not have a simple asymptotic form in thatcase and we cannot
determinefW and FW in (8). Since ourχ2-statistic reduces to the square ofs(k) that
was used by Selçuk, the theoretical distributions differ from our calculations and we get



a slightly different formula for the advantage. Despite this difference, the methods are
equivalent form= 1.

Keeping the capacity constant, it seems that the data complexity increases exponen-
tially as 2m/2 as the dimensionmof the linear approximation increases and is sufficiently
large. Hence, in order to strengthen the attack, the capacity should increase faster than
2m/2 when them is increased. This is a very strong condition and it suggeststhat in
applications, only approximations with smallm should be used withχ2-attack. The ex-
perimental results for differentm presented in Sect. 8 as well as the theoretical curves
depicted in Fig. 5(a) suggest that increasingm in theχ2-method does not necessarily
mean improved performance for Alg. 2.

Since 2−a = Φ(−b) ≈ 1/
√

2πe−b2/2, we can solvea from (18) as a function ofN and
we have proved the following theorem that can be used in describing the relationship
between the data complexity and the search phase:

Theorem 1. Suppose the cipher satisfies Assumption 1 where q′ = θ and the p.d.’s
pg, g ∈ Vm andθ are close to each other. Then the advantage of theχ2-method using
statistic(15) is given by

aχ2 =
(NC(p) − 4ϕ)2

4M
, ϕ = Φ−2(2PS − 1), M = 2m− 1, (20)

where PS (> 0.5) is the probability of success, N is the amount of data used in the attack
and C(p) and m(≥ 5) are the capacity and the dimension of the linear approximation
(10), respectively.

While (20) and (18) depend on the theoretical distributionp, the actualχ2-statistic (15)
is independent ofp. Hence, we do not need to knowp accurately to realise the attack,
we only need to find an approximation (10) that deviates as much as possible from the
uniform distribution. On the other hand, if we use time and effort for computing an
approximation of the theoretical p.d. and if we may assume that the approximation is
accurate, we would also like to exploit this knowledge for finding the right inner key
class with Alg. 1. As noted in [9], there are several ways to realising a multidimensional
Alg. 1. Next we discuss Alg. 1 as aχ2-based goodness-of-fit problem.

5.2 Algorithm 1 with χ2

Suppose that we have obtained an empirical distribution ˆq of data that can be used for
determining the inner key classg0 using Alg. 1. For example, we have successfully run
Alg. 2 and found the correct last round keyk0 and set ˆq = q̂k0.

One approach is to consider Alg. 1 as a goodness-of-fit problem, where one deter-
mines, for eachg, whether the empirical p.d. ˆq follows pg or not. Theχ2-based ranking
statistic is then

SAlg1(g) = N
M
∑

η=0

(q̂k0
η − pg

η)2

pg
η

, (21)

which should be small forg0 and large for the wrong inner key classesg , g0. In [9] it
is shown that the data complexity of findingg0 with given success probabilityPS is

NAlg 1,χ2 =
4m− 4γS + 2

√

2M(m− γS)

Cmin(p)
, (22)



whereγS = ln(
√

2π ln P−1
S ).

5.3 Combined Method and Discussion

The sums of squares of correlations used in [3] are closely related to the sums of squares
(15) and (21). Indeed, we could define a combinedχ2-statisticB by considering the sum
of the statistics from (15) and (21) and setting

B(k, g) =
∑

k′,k

S(k) + SAlg 1(k, g), (23)

whereSAlg 1(k, g) is the statistic (21) calculated from the empirical p.d. ˆqk, k ∈ Vl . If
we approximate the denominators in (21) by 2−m and scaling by 2mN we obtain from
B(k, g) the statistic

B′(k, g) =
∑

k′,k

||q̂k′ − θ||22 + ||q̂k − pg||22. (24)

This statistic is closely related to the one used in [3].
∑

k′,k

||ĉk′ ||22 + ||ĉk − cg||22. (25)

Indeed, if in (25) all correlation vectors ˆck andcg contain correlations from all linear ap-
proximations then (25) becomes the same as 2mB′(k, g) as can be seen using Parseval’s
theorem. Initially, in the theoretical derivation of (25) only linearly and statistically in-
dependent approximations were included in the correlationvectors. However, in Sect.
3.4 of [3] it was proposed to take into account all linear approximations with strong cor-
relations when forming the statistic (25) in practice. In practical experiments by Collard,
et al. [16] this heuristic enhancement was demonstrated to improve the results. In this
paper, we have shown how to remove the assumption about independence of the linear
approximations and that all linear approximations that have sufficient contribution to
the capacity (cf. discussion in Sect. 5.1) can and should be included.

Other possibilities for combining Alg. 1 and Alg. 2 based onχ2 or its variants are
also possible, with different weights on the terms of the sum in (24), for instance. How-
ever, the mathematically more straightforward way is to usethe pureχ2-method de-
fined by (15) and (21), as its statistical behaviour is well-known. An even more efficient
method can be developed based on LLR as will be shown next.

6 The LLR-method

This method is also based on the same heuristic as the Wrong-key Hypothesis: Fork ,
k0, the distribution of the data should look uniform and fork0 it should look likepg0, for
someg0. Hence, for eachk, the problem is to distinguish the uniform distribution from
the discrete and known setpg, g ∈ Vm. Let us use the notationL(k, g) = LLR(q̂k, pg, θ).
We propose to use the following ranking statistic

L(k) = max
g∈Vm

L(k, g). (26)



Now k0 should be the key for which this maximum overg’s is the largest and ideally,
the maximum should be achieved wheng = g0. While the symmetry property (12)
allows one to develop statistical theory without knowingg0, in practice one must search
throughVl for k0 andVm for g0 even if we are only interested in determiningk0.

We assume that the p.d.’spg andθ are all close to each other. Using Theorem 1 and
property (12) we can state Assumption 1 as follows: For the right pairk0 andg0

L(k0, g0) ∼ N(NµR,Nσ
2
R), whereµR =

1
2

C(p) andσ2
R = C(p), (27)

and fork , k0 and anyg ∈ Vm

L(k, g) ∼ N(NµW,Nσ
2
W), whereµW = −

1
2

C(p) andσ2
W = C(p). (28)

Hence,µR, σ
2
R, µW andσ2

W do not depend ong ∈ Vm. For fixedk , k0, the r.v.’sL(k, g)
for k , k0 are identically normally distributed with meanµW and varianceσ2

W. We will
assume that they are statistically independent to simplifycalculations. In particular, the
assumption about statistical independence ofL(k, g) for differentg does not mean that
the linear approximations should be statistically independent. The statistic itself does
not depend on this assumption3. Moreover, the theoretical results obtained this way
are a little more pessimistic that those obtained by empirical tests, as shown in Sect.
8. Hence, these calculations give a theoretical model that can be used in describing
how the method behaves especially compared to other methods. Assuming that for each
k , k0, the r.v.’sL(k, g)’s are independent, we obtain that the c.d.f. of their maximum is
given by [17]

FW(x) = ΦNµW,Nσ2
W

(x)M+1 (29)

and p.d.f. is
fw(x) = (M + 1)ΦNµW,Nσ2

W
(x)MφµW,σ

2
W
(x). (30)

Let us fix the advantagea such thatr = 2l−a. The meanµa of therth wrong key statistic
Lr can now be calculated from (8) to be

µa = NµW +
√

NσWb = −1/2NC(p) +
√

NC(p)b,

b = Φ−1(
M+1√

1− 2−a),
(31)

and the variance is

σ2
a =

2−l−aσ2
W

(M + 1)2(1− 2−a)2(1−1/(M+1))φ2(b)
� σ2

0. (32)

Let
P1 = Pr(L(k0, g0) > max

g,g0

L(k0, g)) (33)

3 See for example [17] for calculating the c.d.f. of the maximum of dependent and identically
distributed r.v.’s, whenM ≥ 100. The theoretical predictions calculated that way are slightly
more pessimistic than the ones obtained in Theorem 2.



be the the probability that givenk0, we chooseg0, i.e., the probability of success of Alg.
1. Let

P2 = Pr(L(k0) > Lr ) (34)

be the probability that we rankk0, paired withany g∈ Vm, among ther highest ranking
keys. Finally, let

P12 = Pr(L(k0) > Lr | L(k0, g0) > max
g,g0

L(k0, g)) (35)

be the probability that we rankk0 among ther highest ranking keys provided that we
pairg0 with k0. Then

P2 = P12P1 + Pr(L(k0) > Lr | L(k0) = LLR(k0, p
g, θ), g , g0)(1− P1)

≥ P12P1.
(36)

If we pairk0 with g , g0 thenL(k0) ≥ L(k0, g0) for a fixed empirical p.d. ˆqk0, so thatk0

gets rankedhigherthan by using the correctg0. Hence, assuming thatk0 gets paired with
g0 only decreasesP2 so the corresponding estimate of the data complexity gets larger.
Let N1, N2 andN12 be the data complexities needed to achieve success probabilitiesP1,
P2 andP12, respectively.

We can calculateP12 using (27), (28) and (9) to obtain

P12 = Φ(
µR − µW − σwb

σR
) = Φ(

√

N12C(p) − b), b = Φ−1(
M+1√

1− 2−a). (37)

Hence, the data complexity is proportional to

N12 =
(

Φ−1(P12) + b
)2
/C(p), (38)

which can be used in approximating an upper bound forN2.We can approximateΦ(b) =
M+1√

1− 2−a ≈ 1− 2−m−a such thata ≈ b2/2−m and we can solve the advantagea as a
function ofN12 ≈ N2 from (38). We get the following theorem:

Theorem 2. Suppose the cipher satisfies Assumption 1 where q′ = θ and the p.d.’s
pg, g ∈ Vm andθ are close to each other. Then the advantage of the LLR-methodfor
finding the last round key k0 is given by

aLLR = (
√

NC(p) −Φ−1(P12))2/2−m≈ NC(p) −m. (39)

Here N is the amount of data used in the attack, P12 (> 0.5) is the probability of success
and C(p) and m are the capacity and the dimensions of the linear approximation(10),
respectively.

Theorem 2 now gives the trade-off between the search phase and the data complexity
of the algorithm. With fixedN and capacityC(p), the advantage decreases linearly with
m whereas in (20) the logarithm of advantage decreases linearly with m. For fixedm
andp, the advantage of the LLR-method seems to be larger than the advantage of the
χ2-method. The experimental comparison of the methods is presented Sect. 8



In [4] it is shown that the data complexity of Alg. 1 for findingthe right inner key
classg0 is proportional to

N1 =
16mln 2− 16P′1

C(p)
, (40)

whereP′1 = ln(
√

2π ln P−1
1 ). If we want to be certain that we have paired the right inner

key classg0 with k0, the data complexity is given by

NLLR = max(N1,N2) ∝ m
C(p)

. (41)

The data complexityN1 is an overestimate for the actual data complexity of Alg. 1 [9]
so in practice,N2 dominates.

7 Algorithms and Complexities

For comparing the two methods, LLR andχ2, we are interested in the complexities of
the first two phases of the Alg. 2 since the sorting and searching phase do not depend on
the chosen statistic. The counting phase is done on-line andall the other phases can be
done off-line. However, we have not followed this division [12] in our implementation,
as we do part of the analysis phase on-line. We will divide thealgorithm in two phases

initialise 2l × 2m countersF(k, η), k = 0, . . . ,2l − 1, η = 0, . . . ,M ;
for i = 1, . . . ,N do

for candidates k= 0, . . . ,2l − 1 do
decrypt the ciphertext partially: ˆzk

i = f −1(ŷi , k);
for j = 1, . . . ,m do

calculate bitη j = uj · x̂i ⊕ wj · ẑk
i ;

end
increment counterF(k, η) = #{i |Ux̂i +Wẑk

i = η}, whereη is the vector
(η1, . . . , ηm) interpreted as an integer;

end
end

Fig. 1. On-line phase of Matsui’s Alg. 2 in multiple dimensions

as follows: In theon-line phase, depicted in Fig. 1, we calculate the empirical p.d.’s
for the round key candidates. The marksS(k) for theχ2-method andL(k) for the LLR-
method are then assigned to the keys in theoff-line phase. The off-line phases forχ2-
method and LLR-method are depicted in Fig. 2 and Fig. 4, respectively. After the
keysk are each given the mark, they can be ranked according to the mark. If we wish to
recoverg0 with χ2-method, we also need to store, in addition to the marks, the empirical
p.d.’s qk. Given qk0, one can use the multidimensional Alg. 1 described in Fig. 3 for
finding g0 off-line. The version of Alg. 1 is based on LLR. Obviously, one could use



Input : tableF(k, η), k = 0, . . . ,2l − 1, η = 0, . . . ,M;
for k = 0, . . . ,2l − 1 do

computeS(k) =
∑M
η=0(F(k, η)/N − 2−m)2;

if wish to recover g0 then
store (S(k),F(k, 0), . . . , F(k,M));

else
storeS(k);

end
end

Fig. 2.Off-line phase of Alg. 2 usingχ2-method

Input : counter valuesF(k0,0), . . . , F(k0,M);
compute the theoretical distribution ofm-dimensional approximations for each value of
2m inner key classes and store them in a 2m × 2m tableP(g, η),g = 0, . . . ,M, η = 0, . . . ,M;
for inner key classes g= 0, . . . ,M do

calculateG(g) =
∑M
η=0 F(k0, η) log P(g, η);

end
Output : g0 such that maxg∈Vm G(g) = G(g0)

Fig. 3. Matsui’s Alg. 1 in multiple dimensions (using LLR)

some other method, e.g. use theχ2-based ranking statistic (21), which gives similar
results in practice even if the LLR-based method is more powerful in theory [9].

The data, time and memory complexities for on-line and off-line phase for both
methods are shown in Table 1. Given success probabilityPS and advantagea, the data

Table 1.Data, time and memory complexities of theχ2- and LLR-method

On-line Off-line
χ2 for k0 χ

2 for k0,g0 LLR χ2 for k0 χ
2 for k0,g0 LLR

Data Nχ2 Nχ2 NLLR – – –
Time Nχ22lm Nχ22lm NLLR2lm 2l+m 2l+m 2l+m

Memory 2l+m 2l+m 2l+m 2l 2m max(2l ,2m) 2m max(2l ,2m)

complexityNχ2 is given by (18). If we want to recoverg0 also, then theoretically, data
complexityN1 given by (40) is needed to successfully run Alg. 1 given in Fig. 3. As
noted in [9], the theoretical valueN1 is an overestimate and the total data complexity in
practice is probably dominated by the data complexityNχ2 of rankingk0 high enough.
Nevertheless, the data complexity of the LLR-method is smaller than theχ2-method.
Otherwise, the complexities for the LLR-method are mostly the same as forχ2-method
provided thatm is not much larger thanl which is usually the case. Thus, we recommend



Input : tableF(k, η), k = 0, . . . ,2l − 1, η = 0, . . . ,M;
compute the theoretical distribution ofm-dimensional approximations for each value of
2m inner key classes and store them in a 2m× 2m tableP(g, η), g = 0, . . . ,M, η = 0, . . . ,M;
for k = 0, . . . ,2l − 1 do

for g = 0, . . . ,M do
L(k,g) = LLR(q̂k, pg, θ), whereq̂k

η = F(k, η)/N;
end
storeL(k) = maxg∈Vm L(k,g);

end

Fig. 4. Off-line phase of Alg. 2 using LLR-method

using the LLR-method rather thanχ2-method unless there is great uncertainty about the
validity of the approximative p.dp of the linear relation (10).

In some situations it may also be advantageous to combine thedifferent methods.
For example, one may want to first find, say,r best round keys byχ2, such that the data
complexityNχ2 is given by (18), where the advantage isa = l− r. Then one can proceed
by applying the LLR-method to the remainingr keys, thus reducing the size of the
round key space to be less than 2l . Other similar variants are possible. Their usefulness
depends on the cipher that is being studied.

8 Experiments

The purpose of the experiments was to test the accuracy of thederived statistical mod-
els and to demonstrate the better performance of the LLR-based method in practice.
Similarly as in previous experiment on multiple linear cryptanalysis, see [16] and [3],
the Serpent block cipher was used as a test-bed. The structure of Serpent is described,
for example, in [18]. We have searched for a 12-bit part of thefifth round key based
on m linear approximations with differentm. Each experiment was performed for 16
different keys.

We calculated the capacities for the approximation (10) over 4-round Serpent for
differentm. Practical experiments were used in confirming thatCmin(p) ≈ C(p) and
especiallyCmin(p) , 0. We also saw that|pg

η − pg′
η | < 1

150pg
η, for all g, g′ andη ∈ Vm.

Hence,pg’s can be considered to be close to each other andθ.

The theoretical advantage of theχ2-method predicted in (20) has been plotted as
a function of data complexity in Fig. 5(a). The figure shows that increasingm larger
than 4, the attack is weakened. This suggests usingm = 4 base approximations in the
χ2-attack. Since we should havem at least 5 for the normal approximation ofχ2

M to
hold, the theoretical calculations do not necessarily holdfor small m. However, the
experiments, presented in Fig. 5(b), seem to confirm the theory for m = 1 andm = 4,
too. The most efficient attack is obtained by usingm = 4 equations. Increasingm (and
hence, the time and memory complexities of the attack, see Table 1) actually weakens
the attack. The optimal choice ofm depends on the cipher. However, the theoretical
calculations suggest that usingm≥ 5 is usually not advantageous.
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(b) Empirical advantage forχ2-method
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(c) Theoretical advantage for LLR-method
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(d) Empirical advantage for LLR-method
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(e) Empirical and theoretical advantage forχ2 for
m= 1 andm= 4
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(f) Empirical and theoretical advantage for LLR for
m= 1 andm= 12

Fig. 5. Theoretical and empirical advantages forχ2- and LLR-method for differentm andPS =

P12 = 0.95.



The reason is theχ2-squared statistic itself: it only measures if the data follows
a certain distribution, the uniform distribution in this case. The more approximations
we use, the larger the distributions become and the more uncertainty we have about
the “fitting” of the data. Small errors in experiments generate large errors inχ2 as the
fluctuations from the relative frequency 2−m become more significant.

The theoretical advantage of the LLR-method (39) is plottedagainst the data com-
plexity in Fig. 5(c) for differentm. The empirical advantages for several differentm
are shown in Fig. 5(d). Unlike forχ2 we see that the method can be strengthened by
increasingm, until the increase in the capacityC(p) becomes negligible compared to
increase inm. For 4-round Serpent, this happens whenm≈ 12.

Experimental results presented in Figures 5(d) and 5(b) confirm the theoretical pre-
diction that the LLR-method is more powerful than theχ2-method. Also the theoreti-
cal and empirical curves seem to agree nicely. For example, the full advantage of 12
bits with m = 7 achieved at logN = 27.5 for LLR whereasχ2-method needs about
logN = 28. Moreover, the LLR can be strengthened by increasingm. For m = 12, the
empirical logarithmic data complexity is about 26.5.

9 Conclusions

There are several approaches of realising Matsui’s Alg. 2 using multiple linear approx-
imations. In this paper, methods based on two standard statistics, LLR andχ2, were
studied. Selçuk’s theory of advantage describing the trade-off between data complex-
ity and search phase was extended to multiple dimensions. The advantages of the two
methods in key ranking were then determined. A description of the multidimensional
Alg. 2 for both methods was given so that their performance measured in time, memory
and data could be compared.

Theχ2-statistic, based on the classic goodness-of-fit test, was observed to perform
poorly for large dimensionsm of linear approximation, whereas the LLR-statistic, an
optimal statistic for testing two known hypotheses, was shown to improve with the
dimensionm of the linear approximation much further. In particular, the advantage
of using multiple linear approximations instead of just oneis significant and of real
practical importance if LLR-statistic is used in Alg. 2. In general, it was shown that
the LLR-method is usually more advantageous compared to theχ2-method. As long
as there is no significant error, stemming from the linear hull-effect, for example, in
determining the approximate p.d. of the multidimensional linear approximation, we
recommend to use the LLR-method proposed in this paper rather than theχ2-method.

Acknowledgements

We would like to thank Christophe de Cannière for insightful discussions and the anony-
mous referees for comments that helped us to improve the presentation of this paper.



References

1. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In Helleseth, T., ed.: Advances
in Cryptology – EUROCRYPT ’93. Volume 765 of Lecture Notes inComputer Science.,
Berlin/Heidelberg, Springer (1994) 386–397

2. Burton S. Kaliski, J., Robshaw, M.J.B.: Linear Cryptanalysis Using Multiple Approxima-
tions. In Desmedt, Y.G., ed.: Advances in Cryptology – CRYPTO ’94. Volume 839 of Lecture
Notes in Computer Science., Berlin/Heidelberg, Springer (1994) 26–39

3. Biryukov, A., Cannière, C.D., Quisquater, M.: On Multiple Linear Approximations. In
Franklin, M., ed.: Advances in Cryptology – CRYPTO ’04. Volume 3152 of Lecture Notes
in Computer Science., Berlin/Heidelberg, Springer (2004) 1–22

4. Hermelin, M., Nyberg, K., Cho, J.Y.: Multidimensional Linear Cryptanalysis of Reduced
Round Serpent. In Yi Mu, Willy Susilo, J.S., ed.: Information Security and Privacy. Volume
5107 of Lecture Notes in Computer Science., Berlin/Heidelberg, Springer (2008) 203–215

5. Baignères, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear Cryptanalysis?
In Lee, P.J., ed.: Advances in Cryptology – ASIACRYPT ’04. Volume 3329 of Lecture Notes
in Computer Science., Berlin/Heidelberg, Springer (2004) 432–450

6. Junod, P.: On the optimality of linear, differential and sequential distingishers. In Biham,
E., ed.: Advances in Cryptology – EUROCRYPT 2003. Volume 2656 of Lecture Notes in
Computer Science., Berlin/Heidelberg, Springer (2003) 17–32

7. Baignères, T., Vaudenay, S.: The Complexity of Distinguishing Distributions (Invited Talk).
In Safavi-Naini, R., ed.: Information Theoretic Security.Volume 5155 of Lecture Notes in
Computer Science., Berlin/Heidelberg, Springer (2008) 210–222
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