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Abstract. We analyse the security of the cryptographic hash function
LAKE-256 proposed at FSE 2008 by Aumasson, Meier and Phan. By
exploiting non-injectivity of some of the building primitives of LAKE,
we show three different collision and near-collision attacks on the com-
pression function. The first attack uses differences in the chaining values
and the block counter and finds collisions with complexity 233. The sec-
ond attack utilizes differences in the chaining values and salt and yields
collisions with complexity 242. The final attack uses differences only in
the chaining values to yield near-collisions with complexity 299. All our
attacks are independent of the number of rounds in the compression func-
tion. We illustrate the first two attacks by showing examples of collisions
and near-collisions.

1 Introduction

The recent cryptanalytical results on the cryptographic hash functions following
the attacks on MD5 and SHA-1 by Wang et al. [17, 16, 15] have seriously under-
mined the confidence in many currently deployed hash functions. Around the
same time, new generic attacks such as multicollision attack [7], long message
second preimage attack [9] and herding attack [8], exposed some undesirable
properties and weaknesses in the Merkle-Damg̊ard (MD) construction [12, 5].
These developments have renewed the interest in the design of hash functions.
Subsequent announcement by NIST of the SHA-3 hash function competition,
aiming at augmenting the FIPS 180-2 [13] standard with a new cryptographic
hash function, has further stimulated the interest in the design and analysis of
hash functions.



The hash function family LAKE [1], presented at FSE 2008, is one of the
new designs. It follows the design principles of the HAIFA framework [2, 3] – a
strengthened alternative to the MD construction.

As the additional inputs to the compression function, LAKE uses a ran-
dom value (also called salt) and an index value, which counts the number of
bits/blocks in the input message processed so far.

The first analysis of LAKE, presented by Mendel and Schläffer [11], has
shown collisions for 4 out of 8 rounds. The complexity of their attack is 2109.
The main observation used in the attack is the non-injectivity of one of the
internal functions. This property allows to introduce difference in the message
words, which is canceled immediately, when the difference goes through the non-
injective function.

Our contributions Our attacks focus on finding collisions for the compression
function of LAKE. Let f(H,M,S, t) be a compression function of a HAIFA hash
function using chaining values H, message block M , salt S and the block index t.
We present the following three types of collision attacks. The first attack uses
differences in the chaining values H and block index t, so we are looking for
collisions of form f(H,M,S, t) = f(H ′,M, S, t′). We call it a (H, t)-type attack.
The complexity of this attack is 233 compression calls. The second attack deals
with the differences injected in the chaining values and salt S, we call it a (H,S)-
attack. We present how to find near-collisions of the compression function with
the complexity 230 of compression calls and extend it to full collisions with the
complexity 242. The final attack, called a H-type attack, uses only differences
in the chaining values and finds near-collisions for the compression function
with the complexity 299. The success of our collision attacks relies on solving
the systems of equations that originate from the differential conditions imposed
by the attacks. We present some efficient methods to solve these systems of
equations.

Our attacks demonstrate that increasing the number of rounds of LAKE does
not increase its security as they all aim at canceling the differences within the
first ProcessMessage function of the compression function.

2 Description of LAKE

In this section, we provide a brief description of the LAKE compression function,
skipping details that are not relevant to our attacks. See [1] for details.

Basic functions – LAKE uses two functions f and g defined as follows

f(a, b, c, d) = (a+ (b ∨ C0)) + ((c+ (a ∧ C1))≫ 7) +
((b+ (c⊕ d))≫ 13) ,

g(a, b, c, d) = ((a+ b)≫ 1)⊕ (c+ d) ,

where each variable is a 32-bit word and C0, C1 are constants.



The compression function of LAKE has three components: SaltState, Pro-
cessMessage and FeedForward. The functionality of these components are de-
scribed in Algorithms 1, 2 and 3, respectively. The whole compression function
of LAKE is presented as Algorithm 4. Our attacks do not depend on the con-
stants Ci for i = 0, . . . , 15 and hence we do not provide their actual values here.

Input: H = H0‖ . . . ‖H7, S = S0‖ . . . ‖S3, t = t0‖t1
Output: F = F0‖ . . . ‖F15

for i = 0, . . . , 7 do
Fi = Hi;

end
F8 = g(H0, S0 ⊕ t0, C8, 0);
F9 = g(H1, S1 ⊕ t1, C9, 0);
for i = 10, . . . , 15 do

Fi = g(Hi, Si, Ci, 0);
end

Algorithm 1: LAKE’s SaltState

Input: F = F0‖ . . . ‖F15, M = M0‖ . . . ‖M15, σ
Output: W = W0‖ . . . ‖W15

for i = 0, . . . , 15 do
Li = f(Li−1, Fi,Mσ(i), Ci);

end
W0 = g(L15, L0, F0, L1);
L0 = W0;
for i = 1, . . . , 15 do

Wi = g(Wi−1, Li, Fi, Li+1);
end

Algorithm 2: LAKE’s ProcessMessage

Input: W = W0‖ . . . ‖W15, H = H0‖ . . . ‖H7, S = S0‖ . . . ‖S3, t = t0‖t1
Output: H = H0‖ . . . ‖H7

H0 = f(W0,W8, S0 ⊕ t0, H0);
H1 = f(W1,W9, S1 ⊕ t1, H1);
for i = 2, . . . , 7 do

Hi = f(Wi,Wi+8, Si, Hi);
end

Algorithm 3: LAKE’s FeedForward



Input: H = H0‖ . . . ‖H7, M = M0‖ . . . ‖M15, S = S0‖ . . . ‖S3, t = t0‖t1
Output: H = H0‖ . . . ‖H7

F = SaltState(H,S, t);
for i = 0, . . . , r − 1 do

F = ProcessMessage(F,M, σi);
end
H = FeedForward(F,H, S, t);

Algorithm 4: LAKE’s CompressionFunction

3 Properties and Observations

We first present some properties of the f function used in our analysis.

Observation 1 Function f(x, y, z, t) is non-injective with respect to the first
three arguments x, y, z.

For example, for x there exist two different values x and x′ such that f(x, y, z, t)
= f(x′, y, z, t) for some y, z, t. The same property holds for y and z. This obser-
vation was mentioned by Lucks at FSE’08. Mendel and Schläffer independently
found and used this property to successfully attack four out of eight rounds of
LAKE-256. Non-injectivity of the function f can be used to cancel a difference
in one of the first three arguments of f , when the rest of the arguments are fixed.

The following observation of the rotation on the modular addition allows us
to simplify the analysis of f .

Lemma 1 ([6]) (a + b) ≫ k = (a ≫ k) + (b ≫ k) + α − β · 2n−k, where
α = 1[aRk + bRk ≥ 2k] and β = 1[aLk + bLk + α ≥ 2n−k].

Using Lemma (1), the function f can be written as

f(a, b, c, d) = a+ b ∨ C0 + (c≫ 7) + ((a ∧ C1)≫ 7) + (b≫ 13)

+ ((c⊕ d)≫ 13) + α1 + α2 − β1 · 225 − β2 · 219, (1)

where

α1 = 1[cL7 + (a ∧ C1)L7 ≥ 27], β1 = 1[cR7 + (a ∧ C1)R7 + α1 ≥ 225],

α2 = 1[bL13 + (c⊕ d)L13 ≥ 213], β2 = 1[bR13 + (c⊕ d)R13 + α2 ≥ 219].

Note that α2 and β2 are independent of a. Consider now the difference of the
outputs of f induced by the difference in the variable a, i.e.

∆f = f(a′, b, c, d)− f(a, b, c, d)
= [a′ + (a′ ∧ C1) + α′1 − β′1 · 225]− [a+ (a ∧ C1) + α1 − β1 · 225]
= a′ + ((a′ ∧ C1)≫ 7)− [a+ ((a ∧ C1)≫ 7)] + (α′1 − α1)− (β′1 − β1) · 225

= fa(a′)− fa(a) + (α′1 − α1)− (β′1 − β1) · 225,



where fa(a) def= a+ ((a ∧ C1)≫ 7).
A detailed analysis (cf. Lemma 5) shows that given random a, a′ and c,

P (α1 = α′1, β1 = β′1) = 4
9 , so with the probability 4

9 , a collision for fa is also
a collision of f when the input difference is in a only. Let us call this a carry
effect. However, if we have control over the variable c, we can adjust the values
of α1, α

′
1, β1, β

′
1 and always satisfy this condition. From here we can see that (a+

b)≫ k is not a good mixing function when modular differences are concerned.
This reasoning can be repeated for differences in the variable b and similarly

for differences in a pair of the variables c, d. It is easy to see that also for those
cases, with a high probability, collisions in f happen when the following functions
collide

fb(b)
def= b ∨ C0 + (b≫ 13) ,

fcd(c, d) def= (c≫ 7) + ((c⊕ d)≫ 13) .

So, when we follow differences in one or two variables only, we can consider
those variables without the side effects from other variables. We summarize the
above observations below.

Observation 2 Collisions or output differences of f for input differences in one
variable can be made independent from the values of other variables.

We denote the set of solutions for fa and fb with respect to input pairs and
modular differences as

Sfa
def= {(x, x′)|fa(x) = fa(x′)} , SAfa

def= {x− x′|fa(x) = fa(x′)} ,

Sfb
def= {(x, x′)|fb(x) = fb(x′)} , SAfb

def= {x− x′|fb(x) = fb(x′)} .

Choose the odd elements from SAfb and define them to be SAfbodd
. Note that we

can easily precompute all the above solution sets using 232 evaluations of the
appropriate functions and 232 words of memory (or some more computations
with proportionally less memory).

4 (H, t)-type Attack

First, let us try to attack only the middle part of the compression function, i.e.
ProcessMessage function. It consists of 8 rounds (10 rounds for LAKE-512). In
every round, first all of the 16 internal variables are updated by the function f ,
and then all of them are updated by the function g.

Our differential trail is as follows:

1. Introduce a carefully chosen difference in F0.
2. After the first application of the function f from all Li, only L0 has a non-

zero difference.
3. After the first application of the function g none of Wi have any difference.



Let us show that this differential is possible. First let us prove that Step 2 is
achievable. Considering that Li = f(Li−1, Fi,Mσ(i), Ci), we get that in Li a
difference can be introduced only through Li−1 and Fi (message words do not
have differences, Ci are simply constants). Note that in the first round σ(i) is
defined as the identity permutation hence we can write Mi instead of Mσ(i).

For ∆L0 we require a non-zero difference

∆L0 = f(F15, F
′

0,M0, C0)− f(F15, F0,M0, C0) 6= 0. (2)

For ∆L1 we require the zero difference

∆L1 = f(L
′

0, F1,M1, C1)− f(L0, F1,M1, C1) = 0. (3)

From Observation 1, it follows that it is possible to get zero for ∆L1. For all
the other ∆Li, i = 2..15 we require the zero difference. This is trivially fulfilled
because there are no inputs with difference. Now, let us consider Step 3. Note
that Wi = g(Wi−1, Li, Fi, Li+1), so we can introduce a difference in Wi by any
of Wi−1, Li, Fi and Li+1.

For ∆W0, we require the zero difference, so we get

∆W0 = g(L15, L
′

0, F
′

0, L1)− g(L15, L0, F0, L1) = 0. (4)

Note that there are differences in two variables, L0 and F0, hence the above
equation can be solved. For the indexes i = 1, . . . , 14, we obtain

∆Wi = g(Wi−1, Li, Fi, Li+1)− g(Wi−1, Li, Fi, Li+1) = 0. (5)

All the above equations hold as there are no differences in any of the arguments.
For W15, we have

∆W15 = g(W14, L15, F15,W0)− g(W14, L15, F15,W0) = 0.

Notice that the last argument is not L0 but rather W0 because there are no
temporal variables that store the previous values of Li (see ProcessMessage).
This non-symmetry in the ProcessMessage, which updates L registers stops the
flow of the difference from L0 to W15.

So, after only one round, we can obtain an internal state with all-zero differ-
ences in the variables. Then the following rounds can not introduce any difference
because there are no differences in the internal state variables or in the message
words. So, if we are able to solve the equations that we have got then the attack
is applicable to any number of rounds, i.e. increasing the number of rounds in
the ProcessMessage function does not improve the security of LAKE.

Let us take a closer look at our equations. Equation (2) can be written as

∆L0 = f(F15, F
′

0,M0, C0)− f(F15, F0,M0, C0) =

= (F
′

0 ∨ C0)− (F0 ∨ C0) + [F
′

0 + (M0 ⊕ C0)]≫ 13− [F0 + (M0 ⊕ C0)]≫ 13.



Hereafter we will use that (A+B)≫ r = (A≫ r) + (B≫ r) with the prob-
ability 1

4 (see [6]). The same holds when rotation to the left is used. Therefore,
the above equation can be rewritten as

∆L0 = (F
′

0 ∨ C0)− (F0 ∨ C0) + F
′

0 ≫ 13− F0 ≫ 13. (6)

Equation (3) can be written as

∆L1 =f(L
′

0, F1,M1, C1)− f(L0, F1,M1, C1) =

=L
′

0 − L0 + [M1 + (L
′

0 ∧ C1)]≫ 7− [M1 + (L0 ∧ C1)]≫ 7 =

=L
′

0 − L0 + (L
′

0 ∧ C1)≫ 7− (L0 ∧ C1)≫ 7 = 0.

Equation (4) can be written as

∆W0 =g(L15, L
′

0, F
′

0, L1)− g(L15, L0, F0, L1) =

=[(L15 + L
′

0)≫ 1]⊕ (F
′

0 + L1)− [(L15 + L0)≫ 1]⊕ (F0 + L1) = 0.

Let us try to extend the collision attack on the ProcessMessage function to
the full compression function. First, let us deal with the initialization (function
SaltState).

From the initialization of LAKE, it can be seen that the variables H0 through
H7 are copied into F0 through F7. The variable F8 depends on H0 and t0.
Similarly, F9 depends on H1 and t1. The rest of the variables do not depend
on either t0 or t1. Since we need a difference in F0 (for the previous attack on
ProcessMessage function), we will introduce difference in H0. Further, we can
follow our previous attack on the ProcessMessage block and get collisions after
the ProcessMessage function. The only difficulty is how to deal with F8 since it
does depend on H0, which now has a non-zero difference. As a way out, we use
the block index t0. By introducing a difference in t0 we can cancel the difference
from H0 in F8. So we get the following equation

∆F8 = g(H
′

0, S0 ⊕ t
′

0, C0, 0)− g(H0, S0 ⊕ t0, C0, 0) =

= ((H
′

0 + (S0 ⊕ t
′

0))≫ 1⊕ C0)− ((H0 + (S0 ⊕ t0))≫ 1⊕ C0) = 0.

Let t̃′0 = t
′

0 ⊕ S0 and t̃0 = t0 ⊕ S0. Then, the above equation gets the following
form

∆F8 = H
′

0 −H0 + t̃
′
0 − t̃0 = 0.

Now, let us deal with the last building block of the compression function, the
FeedForward function. Note that we have differences in H0 and t0 only. If we take
a glance at the FeedForward procedure, we can see that H0 and t0 can be found
in the same equation, and only there, which defines the new value for H0. Since
we require the zero difference in all of the output variables, we get the following
equation

∆H0 = f(F0, F8, H
′

0, S0 ⊕ t
′

0)− f(F0, F8, H0, S0 ⊕ t0) =

= t̃
′
0 ≫ 7− t̃0 ≫ 7 + (t̃′0 ⊕H

′

0)≫ 13− (t̃0 ⊕H0)≫ 13 = 0.



This concludes our attack. We have shown that if we introduce a difference
in the chaining value H0 and the block index t0 only, it is possible to reduce
the problem of finding collisions for the compression function of LAKE to the
problem of solving a system of equations.

4.1 Solving Equation Systems

To find a collision for the full compression function of LAKE, we have to solve
the equations that were mentioned in the previous sections. As a result, we get
the following system equations (note that H0 = F0)

L
′

0 − L0 + (L
′

0 ∧ C1)≫ 7− (L0 ∧ C1)≫ 7 = 0; (7)

L
′

0 − L0 = (H
′

0 ∨ C0)− (H0 ∨ C0) +H
′

0 ≫ 13−H0 ≫ 13; (8)

[(L15 + L
′

0)≫ 1]⊕ (H
′

0 + L1)− [(L15 + L0)≫ 1]⊕ (H0 + L1) = 0; (9)

H
′

0 −H0 + t̃
′
0 − t̃0 = 0; (10)

t̃
′
0 ≫ 7− t̃0 ≫ 7 + (t̃′0 ⊕H

′

0)≫ 13− (t̃0 ⊕H0)≫ 13 = 0. (11)

Let us analyze Equation (7). By fixing L
′

0 − L0 = R and rotating to the left by
7 bits, this equation can be rewritten as

(X +A) ∧ C = X ∧ C +B, (12)

where X = L0, A = R,B = (−R) � 7, C = C1. Now, let us analyze Equation
(8). Again, let us fix L

′

0−L0 = R and H
′

0−H0 = D. Then Equation(8) gets the
following form

(X +A) ∨ C = X ∨ C +B, (13)

where X = H0, A = D,B = R − (D ≫ 13), C = C0. In Equation (9), if we
regroup the components, we obtain

[(L15 + L
′

0)⊕ (L15 + L0)]≫ 1 = (H
′

0 + L1)⊕ (H0 + L1).

Then, the above equation is of the following form

((X +A)⊕X)≫ 1 = (Y +B)⊕ Y, (14)

where X = L15 + L0, A = L
′

0 − L0, Y = L1 +H0, B = H
′

0 −H0.
Now, let us analyze Equations (10) and (11). Let us fix H

′

0 −H0 = D. Note
that from Equation (10), we have t̃′0 − t̃0 = −D. If we rotate everything by 13
bits to the left in Equation (11), we get

(−D)� 6 + (t̃′0 ⊕H
′

0)− (t̃0 ⊕H0) = 0; (15)

t̃0 = [(t̃′0 ⊕H
′

0)−D � 6]⊕H0. (16)



If we substitute t̃0 in Equation (10) by the above expression, then we have

D + t̃
′
0 − [(t̃′0 ⊕H

′

0)−D � 6]⊕H0 = 0; (17)

t̃
′
0 = [(t̃′0 ⊕H

′

0)−D � 6]⊕H0 −D. (18)

If we XOR the value of H
′

0 to the both sides, we get

t̃
′
0 ⊕H

′

0 = ([(t̃′0 ⊕H
′

0)−D � 6]⊕H0 −D)⊕H
′

0. (19)

Let us denote t̃′0 ⊕H
′

0 = X. Then we can write

X = [(X −D � 6)⊕H0 −D]⊕H
′

0; (20)

X ⊕H
′

0 = (X −D � 6)⊕H0 −D. (21)

Finally, we get an equation of the following form

(X ⊕K1) +A = (X +B)⊕K2, (22)

where K1 = H
′

0, A = R,B = −R� 6,K2 = H0.

Lemma 2 There exist efficient algorithms Al1,Al2,Al3,Al4 for finding solu-
tions for equations of type (12),(13),(14),(22).

The description of these algorithms can be found in Appendix B.
Now, we can present our algorithm for finding solutions for the system of

equations. With Al1 we find a difference R (and values for L0, L
′

0) such that
Equation (7) holds. Actually, for the same difference R many distinct solutions
(L0, L

′

0) exist (experiments show that when Equation (7) is solvable, then there
are around 25 solutions). Next, we pass as an input to Al2 the difference R and
we find a difference D (and values for H0, H

′

0) such that Equation (8) holds.
Again for a fixed R and D, many pairs (H0, H

′

0) exist. We verified experimen-
tally that for a random R and a “good” D, there are around 210 solutions.
Using Algorithm Al3, we check if we can find solutions for Equation (9), i.e.
we try to find L1 and L15. Note that the input of Al3 is the previously found
sequence (L0, L

′

0, H0, H
′

0). If Al3 can not find a solution, then we get another
pair (H0, H

′

0) (or generate first a new difference D and then generate another
210 pairs (H0, H

′

0)). If Al3 finds a solution to (9), then we use Algorithm Al4
and try to find solutions for Equations (10) and (11), where the input to Al4
is already found as the pair (H0, H

′

0). If Al4 can not find a solution, then we
can take a different pair (H0, H

′

0) (or generate first a new difference D and then
generate (H0, H

′

0)) and then apply first Al3 and then Al4.

4.2 Complexity of the Attack

Let us try to find the complexity of the algorithm. Note that when analyz-
ing the initial equations, we have used the assumption that (A+B)≫ r =



(A≫ r) + (B≫ r), which holds with the probability 1
4 (see [6]). In total, we

used this assumption 5 times. In the equation for ∆F0, we can control the exact
value of M1, so in total, we have used the assumption 4 times. Therefore, the
probability that a solution of the system is a solution for the initial equations
is 2−8. This means that we have to generate 28 solutions for the system. Let us
find the cost for a single solution.

The average complexity for both Al1 and Al2 is 21 steps. We confirmed
experimentally that, for a random difference R, there exists a solution for Equa-
tion (7) with the probability 2−27. So this takes 227 · 21 = 228 steps using Al1
and it finds 25 solutions for Equation (7). Similarly, for a random difference D,
there is a solution for Equation (8) with the probability 2−27. Therefore, this
consumes 227 · 21 = 228 steps and finds 210 pairs (H0, H0) for Equation (8). The
probability that a pair is a good pair for Equation (9) is 2−1 and that it is a good
pair for Equations (10) and (11) is 2−12 (as explained in Appendix B). Thus,
we need 21 · 212 = 213 pairs, which we can be generated in 228 · 23 = 231 steps.
Since we need 28 solutions, the total complexity is 239. Note that this complexity
estimate (a step) is measured by the number of calls to the algorithms that solve
our specific equations. If we assume that a call to the algorithms is four times
less efficient than the call to the functions f or g (which on average seems to
be true), and consider the fact that the compression function makes a total of
around 28 calls to the functions f or g, then we get that the total complexity of
the collision search is around 233 compression function calls.

Note that when a solution for the system exists, then this still does not
mean that we have a collision. This is partially because we cannot control some
of the values directly. Indeed, we can control directly only H0, H

′

0, t0, t
′

0. The
rest of the variables, i.e. L0, L

′

0, L1, L15, we can control through the message
words Mi or with the input variables Hi, where i > 0. Since we pass these val-
ues as arguments for the non-injective function f , we may experience situation
when we cannot get the exact value that we need. Yet, with an overwhelming
probability, we can find the exact values. Let us suppose that we have a solu-
tion (H0, H

′

0, L0, L
′

0, L1, L15, t0, t
′

0) for the system of equations. First, we find a
message word M0 such that f(F15, H0,M0, C0) = L0. Notice that F15 can be
previously fixed by choosing some value for H7. Then, f(F15, H

′

0,M0, C0) = L
′

0.
We choose M1 such that [M1 + (L

′

0 ∧ C1)] ≫ 7 − [M1 + (L0 ∧ C1)] ≫ 7 =
(L
′

0 ∧ C1) ≫ 7 − (L0 ∧ C1) ≫ 7. This way the probability that the previous
identity holds becomes 1. Then we find H1 such that f(L0, H1,M1, C1) = L1.
At last, we find M15 such that f(L14, F15,M15, C15) = L15. If such M15 does
not exist, then we can change the value of L14 by changing M14 and then try to
find M15.

5 (H, S)-type Attack

The starting idea for this attack is to inject differences in the input chaining
variable H and the salt S and then cancel them within the first iteration of
ProcessMessage. Consequently, no difference appears throughout the compression



function until the FeedForward step. If the differences in the chaining and salt
variables are selected properly, we can hope they cancel each other, so we get no
difference at the output of the compression function.

5.1 Finding high-level differentials

To find a suitable differential for the attack, an approach similar to the one
employed to analyse FORK-256 [10, Section 6] can be used. We model each of
the registers a, b, c, d, as a single binary value δa, δb, δc, δd that denotes whether
there is a difference in the register or not. Moreover, we assume that we are able
to make any two differences cancel each other to obtain a model that can be
expressed in terms of arithmetics over F2. We model the differential behavior of
function g simply as δg(δa, δb, δc, δd) = δa⊕δb⊕δc⊕δd, where δa, δb, δc, δd ∈ F2,
as this description seems to be functionally closest to the original. For example,
it is impossible to get collisions for g when only one variable has differences and
such a model ensures that we always have two differences to cancel each other
if we need no output difference of g. When deciding how to model f(a, b, c, d),
we have more options. First, note that when looking for collisions, there are
no differences in message words and the last parameter of f is a constant, so
we need to deal with differences in only two input variables a and b. Since we
can find collisions for f when differences are only in a single variable (either a
or b), we can model f not only as δf(δa, δb) = δa ⊕ δb but more generally as
δf(δa, δb) = γ0(δa)⊕ γ1(δb), where γ0, γ1 ∈ F2 are fixed parameters. Let us call
the pair (γ0, γ1) a γ-configuration of δf and denote it by δf[γ0,γ1], As an example,
δf[1,0] corresponds to δf(δa, δb) = δa, which means that whenever a difference
appears in register b, we need to use the properties of f to find collisions in
the coordinate b. For functions f appearing in FeedForward, we use the model
δf = δa⊕ δb⊕ δc⊕ δd.

With these assumptions, it is easy to see that such a model of the whole
compression function is linear over F2 and finding the set of input differences (in
chaining variables H0, . . . ,H7 and salt registers S0, . . . , S3) is just a matter of
finding the kernel of a linear map. Since we want to find only simple differentials,
we are interested in those that use as few registers as possible. To find them,
we can think of all possible states of the linear model as a set of codewords of
a linear code over F2. That way, finding differentials affecting only few registers
corresponds to finding low-weight codewords. So instead of an enumeration of
all 212 possible states of of H0, . . . ,H7, S0, . . . , S3 for each γ-configuration of f
functions, this can be done more efficiently by using tools like MAGMA [4].

We implemented this method in MAGMA and performed such a search for
all possible γ-configurations of the 16 functions f appearing in the first Pro-
cessMessage. We used the following search criteria: (a) as few active f functions
as possible; (b) as few active g functions as possible; (c) non-zero differences ap-
pear only in the first few steps using function g as it is harder to adjust the values
for later steps due to lack of variables we control; (d) we prefer γ-configurations
[1, 0] and [0, 1] over [1, 1] because it seems easier to deal with differences in one
register than in two registers simultaneously.



The optimal differential for this set of criteria contains differences in regis-
ters H0, H1, H4, H5, S0, S1 with the following γ-configurations of the first seven f
functions in ProcessMessage: [0, 1], [1, 1], [0, 1], [·, ·], [0, 1], [1, 1], [0, 1] (Note a sim-
pler configuration (H0, H4, S0) is not possible here). Unfortunately, the system
of constraints resulting from that differential has no solutions, so we introduced
a small modification of it, adding differences in registers H2, H6, S2, ref. Fig-
ure 1. After introducing these additional differences, we gain more freedom at
the expense of dealing with more active functions and we can find solutions for
the system of constraints. The labels for all constraints are defined by Figure 1,
we will refer to them throughout the text.

SaltState
input: H0, . . . , H7, S0, . . . , S3, t0, t1
∆F0 ←∆H0

∆F1 ←∆H1

∆F2 ←∆H2

F3 ← H3

∆F4 ←∆H4

∆F5 ←∆H5

∆F6 ←∆H6

F7 ← H7

F8 ← g(∆H0,∆S0 ⊕ t0, C8, 0) {s1}
F9 ← g(∆H1,∆S1 ⊕ t1, C9, 0) {s2}
F10 ← g(∆H2,∆S2, C10, 0) {s3}
F11 ← g(H3, S3, C11, 0)
F12 ← g(∆H4,∆S0, C12, 0) {s4}
F13 ← g(∆H5,∆S1, C13, 0) {s5}
F14 ← g(∆H6,∆S2, C14, 0) {s6}
F15 ← g(H7, S3, C15, 0)
output: F0, . . . , F15

FeedForward
input: R0, . . . , R15, H0, . . . , H7,

S0, . . . , S3, t0, t1
H0 ← f(R0, R8,∆S0⊕t0,∆H0) {f1}
H1 ← f(R1, R9,∆S1⊕t1,∆H1) {f2}
H2 ← f(R2, R10,∆S2,∆H2) {f3}
H3 ← f(R3, R11, S3, H3)
H4 ← f(R4, R12,∆S0,∆H4) {f4}
H5 ← f(R5, R13,∆S1,∆H5) {f5}
H6 ← f(R6, R14,∆S2,∆H6) {f6}
H7 ← f(R7, R15, S3, H7)
output: H0, . . . , H7

ProcessMessage
input: F0, . . . , F15, M0, . . . ,M15, σ
L0 ← f(F15,∆F0,Mσ(0), C0) {p1}
∆L1 ← f(L0,∆F1,Mσ(1), C1) {p2}
∆L2 ← f(∆L1,∆F2,Mσ(2), C2) {p3}
L3 ← f(∆L2, F3,Mσ(3), C3) {p4}
L4 ← f(L3,∆F4,Mσ(4), C4) {p5}
∆L5 ← f(L4,∆F5,Mσ(5), C5) {p6}
∆L6 ← f(∆L5,∆F6,Mσ(6), C6) {p7}
L7 ← f(∆L6, F7,Mσ(7), C7) {p8}
L8 ← f(L7, F8,Mσ(8), C8)
...
L15 ← f(L14, F15,Mσ(15), C15)

W0 ← g(L15, L0,∆F0,∆L1) {p9}
W1 ← g(W0,∆L1,∆F1,∆L2) {p10}
W2 ← g(W1,∆L2,∆F2, L3) {p11}
W3 ← g(W2, L3, F3, L4)
W4 ← g(W3, L4,∆F4,∆L5) {p12}
W5 ← g(W4,∆L5,∆F5,∆L6) {p13}
W6 ← g(W5,∆L6,∆F6, L7) {p14}
W7 ← g(W6, L7, F7, L8)
...
W15 ← g(W14, L15, F15,W0)
output: W0, . . . ,W15

Fig. 1. High-level differential used to look for (H,S)-type collisions



The process of finding the actual pair of inputs following the differential can
be split into two phases. The first one is to solve the constraints from ProcessMes-
sage to get the required F s (same as Hs used in SaltState). Then, in the second
phase, we look at the SaltState to find appropriate salts to have constraints in
FeedForward satisfied. We can do this because the output from ProcessMessage
has only a small effect on the solutions for FeedForward.

5.2 Solving the ProcessMessage

An important feature of our differentials in ProcessMessage is that it can be sep-
arated into two disjoint groups, i.e. (F0, F1, F2, L1, L2) and (F4, F5, F6, L5, L6).
Differentials for these two groups have exactly the same structure. Thanks to
that, if we can find values for the differences in the first group, we can reuse
them for the second group by making corresponding registers in the second
group equal to the ones from the first group. Following Observation 2 we can
safely say that the second group also follows the differential path with a high
probability. Algorithm 5 gives the details of solving the constrains in the first
group of ProcessMessage.

1: Randomly pick (L2, L
′
2) ∈ Sfa

2: repeat
3: Randomly pick F1, compute F ′1 = −1−∆L2 − F1

4: until fb(F1)− fb(F ′1) ∈ SAfbodd

5: repeat
6: Randomly pick L1, F2

7: Compute L′1 = fb(F
′
1)− fb(F1) + L1

8: Compute F ′2 so that fb(F
′
2) = ∆L2 + fa(L1)− fa(L′1) + fb(F2)

9: until p11 is fulfilled
10: Pick (F0, F

′
0) ∈ Sfb so that ∆F0 +∆L1 = 0

Algorithm 5: Find solutions for the first group of differences of ProcessMes-
sage

Correctness We show that after the execution of Algorithm 5, it indeed finds
values conforming to the differential. In other words, we show that constraints
p1− p4 and p9− p11 hold. Referring to Algorithm 5:

Line 1: (L2, L
′
2) is chosen in such a way that p4 is satisfied.

Line 3: F ′1 is computed in such a way that (F1 + L2)⊕ (F ′1 + L′2) = −1
Line 4: ∆L1 = ∆fb(F1) is odd together with (F1 + L2) ⊕ (F ′1 + L′2) = −1.
This implies that p10 could hold, which will be discussed later in Lemma 3.
The fact that ∆L1 ∈ SAfbodd

makes it possible that p1 and p9 hold.
Line 7: L′1 is computed in such a way that p2 holds.
Line 8: F ′2 is computed in such a way that p3 holds.
Line 9: after exiting the loop p11 holds.
Line 10: (F0, F

′
0) is chosen in such a way that p1, p9 hold.



Probability and Complexity Analysis Let us consider the probability for
exiting the loops in Algorithm 5. We require fa(F1) − fa(F ′1) ∈ SAfbodd

and the
constraint p11 to hold. The size of the set SAfbodd

is around 211. By assuming that
fa(F1)−fa(F ′1) is random, the probability to have it in SAfbodd

is 2−21. This needs
to be done only once. Now we show that the constraint p11 is satisfied with the
probability 2−24. We have sufficiently many choices, i.e. 264, for (L1, F2) to have
p11 satisfied. The constraint p11 requires that [(W1 + L2)≫ 1]⊕ (F2 + L3) =
[(W1 +L′2])≫ 1]⊕ (F ′2 +L3), which is equivalent to [(W1 +L2)⊕ (W1 +L′2)]≫
1 = (F2+L3)⊕(F ′2+L3), where W1, L2, L

′
2, F2, F

′
2 are given from previous steps.

We have choices for L3 by choosing an appropriate Mσ(3). The problem could
be rephrased as follows: given random A and D, what is the probability to have
at least one x such that x⊕ (x+D) = A?

To answer this question, let us note first that x⊕y = (1, . . . , 1) iff x+y = −1.
This is clear as y = x and always (x⊕x)+1 = 0. Now we can show the following
result.

Lemma 3 For any odd integer d, there exist exactly two x such that x⊕(x+d) =
(1, . . . , 1). They are given by x = (−1− d)/2 and x = (−1− d)/2 + 2n−1.

Proof. x⊕ (x+ d) = −1 implies that x+ x+ d = −1 + k2n for an integer k, so
x = −1−d+k2n

2 . Only when d is odd, x = −1−d
2 +k2n−1 an integer and a solution

exists. As we are working in modulo 2n, k = 0, 1 are the only solutions. �

Following the lemma, given an odd ∆L1 and (F1 +L2)⊕ (F ′1 +L′2) = −1, we can
always find two W0 such that (W0+L1)⊕(W0+L′1) = −1, then p10 follows. Such
W0 could be found by choosing an appropriate L15, which could be adjusted by
choosing Mσ(15) (if such Mσ(15) does not exist, although the chance is low, we
can adjust L14 by choosing Mσ(14)).

Coming back to the original question, consider A as “0”s and blocks of “1”s.
Following the lemma above, for Ai = 0, we need Di = 0 (except “0” as MSB
followed by a “1”); for a block of “1”s, say Ak = Ak+1 = · · · = Ak+l = 1, the
condition that needs to be imposed on D is Dk = 1. By counting the number of
“0”s and the number of blocks of “1”s, we can get number of conditions needed.
For an n-bit A, the number is 3n

4 on average (cf. Appendix Lemma 4).
For LAKE-256, it is 24, so the probability for p11 to hold is 2−24. We will need

to find an appropriate L3 so that p11 holds. Note that we have control over L3 by
choosing the appropriate Mσ(3). For each differential path found, we need to find
message words fulfilling the path. The probability to find a correct message is
1− 1

e for the first path by assuming fc is random (because for a random function
from n bits to n bits, the probability that a point from the range has a preimage
is 1− 1

e ), and 4
9 for the second path because of the carry effect. For example, given

L0, F15, F0, C0, the probability to have Mσ(0) so that L0 = f(F15, F0,Mσ(0), C0)
is 1− 1

e . The same Mσ(0) satisfies L′0 = f(F ′15, F
′
0,Mσ(0), C0) (note for this case

F ′15 = F15 and L0 = L′0) with the probability 4
9 . So for each message word, the

probability for it to fulfill the differential path is 2−2. We have such restrictions
on Mσ(0) −Mσ(2),Mσ(4) −Mσ(6) (we don’t have such restriction on Mσ(3) and



Mσ(7) because we still have control over F3 and F7), so overall complexity for
solving ProcessMessage is 5 · 236 in terms of calls to fa or fb. The compression
function of LAKE-256 calls functions f and g 136 times each and fa, fb contain
less than half of the operations used in f . So the complexity for this part of the
attack is 230 in terms of the number of calls to the compression function.

Solving the second group of ProcessMessage After we are done with the
first group, we can have the second group of differential path for free by assigning
Fi+4 = Fi, F ′i+4 = F ′i for i = 0, 1, 2 and Li+4 = Li, L

′
i+4 = L′i for i = 1, 2. In

this way, we can have the constrains p5 − p8 and p12 automatically satisfied.
Similarly, for the constraints p13 and p14, we will need appropriate W4 and L7.
We have control over W4 by choosing F3 and L4 (note we need to keep L3 stable
to have p11 satisfied, this can be achieved by choosing appropriate Mσ(3)). We
also have control over L7 by choosing Mσ(7). That way we can force the difference
to vanish within the first ProcessMessage. Table 2 in Appendix shows an example
of a set of solutions.

5.3 Near collisions

In this section we explain how to get a near collision directly from collisions
of ProcessMessage. Refer to SaltState and FeedForward in Fig. 1. Note that the
function g(a, b, c, d) with differences at positions (a, b) means ∆a+∆b = 0, then
constraints (s1− s6) in SaltState can be simplified to

s1 : ∆H0 +∆S0 = 0; (23)
s2 : ∆H1 +∆S1 = 0; (24)
s3 : ∆H2 +∆S2 = 0. (25)

Note that Hi+4 = Hi, H
′
i+4 = H ′i for i = 0, 1, 2 as required by ProcessMessage,

Let t0 = t1 = 0, then conditions s4−s6 follow s1−s3. Conditions in FeedForward
could be simplified to

f1 : fcd(S0, H0) = fcd(S′0, H
′
0), (26)

f2 : fcd(S1, H1) = fcd(S′1, H
′
1), (27)

f3 : fcd(S2, H2) = fcd(S′2, H
′
2) (28)

and f4 − f6 follow f1 − f3. This set of constraints can be grouped into three
independent sets (si, fi) for i = 0, 1, 2 each one of the same type, i.e. ∆H+∆S =
0 and fcd(S,H) = fcd(S′, H ′).

To find near collisions, we proceed as follows. First we choose those Si with
S′i = Si −∆Hi so that the Hamming weight of fcd(S′i, H

′
i)− fcd(Si, Hi) is small

for i = 0, 1, 2. Thanks to that, only small differences are expected in the final
output of the compression function, due to the fact that inputs from a, b of
the function f have only carry effect to the final difference of f when inputs
differ in c, d only. We choose values of Si without going through the compression



function, so the number of rounds of the compression function does not affect our
algorithm. Further, the complexity for finding values of Si is much smaller than
that of ProcessMessage, so it does not increase the 230 complexity. Experiments
show that, based on the collision in ProcessMessage, we can have near collisions
with a very little additional effort. Table 3 in Appendix shows a sample result
with 16-bit of differences out of 256 bits of the output.

5.4 Extending the attack to full collisions

It is clear that finding full collisions is equivalent to solving Equations (26)-(28).
The complexity to solve a single equation is around 212 (as done for solving
Equations (10) and (11)). Looking at Algorithm 5, (s1, f1) can be checked when
F1 and F ′1 are chosen, so it does not affect the overall complexity. The pair
(s0, f0) can be checked immediately after (L1, L

′
1) is given as show in Line 7

of Algorithm 5. Similarly, (s2, f2) can be checked after (F2, F
′
2) is chosen in

Line 8. So the overall complexity for our algorithm to get a collision for the full
compression function is 254.

5.5 Reducing the Complexity

In this subsection, we show a better way (rather than randomly) to choose
(L2, L

′
2) so that the probability for the constraint p11 to hold increases, which

reduces the complexity for collision finding to 242.
Note the constraint p11 is as follows. Given W1, L2, L

′
2, what is the probabil-

ity to have L3 and (F2, F
′
2) so that ((W1 + L2)⊕ (W1 + L′2))≫ 1 = (F2 +L3)⊕

(F ′2+L3). We calculate the probability by counting the number of 0s and block of
1s in ((W1 + L2)⊕(W1 + L′2))≫1 (let’s denote it as α = #(((W1+L2)⊕(W1+L′2))
≫ 1)). Now we show that the number α can be reduced within the first loop
of the algorithm, i.e. given only (L2, L

′
2) and (F1, F

′
1), we are able to get α

and hence, by repeating the loop sufficiently many times, we can reduce α to a
number smaller than 24 (we don’t fix it here, but will give it later).

Note that to find α, we still need W1 besides (L2, L
′
2). Now we show W1 can

be computed from (L2, L
′
2) and (F1, F

′
1) only.W1

def= ((W0+L1)≫ 1)⊕(F1+L2),
where we restrict (W0 +L1)⊕ (W0 +L′1) = −1. Denote S = (W0 +L1), then the
equation can be derived to S⊕ (S+∆L1) = −1, where ∆L1

def= fb(F ′1)− fb(F1).
So let’s make 2y more effort in the first loop so that α is reduced by y. The

probability for the first loop to exit becomes 2−33−y and for the second loop, the
probability becomes 2−60+y. Choosing the optimal value y = 13 (y must be an
integer), the probabilities are 2−46 and 2−47, respectively. Hence this gives final
complexity 242 for collision searching.

6 (H)-type Attack

Let us introduce difference only in the chaining value H0. Hence, this difference
after the SaltState procedure, will produce differences in F0 and F8. In the first
application of the ProcessMessage procedure the following differential is used:



1. Let F0 has some specially chosen difference. Also, F8 has some difference
that depends on the difference in F0.

2. After the first application of the function f only L0, L1, . . . , L8 have non-zero
differences

3. After the first application of the function g all Wi have zero differences

Again, we should prove that this differential is possible. Basically, we should
check only for the updates with non-zero input differences and zero output dif-
ference (other updates hold trivially). Hence, we should prove that we can get the
zero difference in L9 and Wi, i = 0, . . . , 8. Since f is non-injective, it is possible
to get the zero difference in L9. For W0, . . . ,W8 is also possible to get zero dif-
ferences because their updating functions g always have at least two arguments
with differences. Therefore, this differential is valid.

Now, let us write the system of equations that we require. Note that Li−L
′

i =
δi, i = 0, . . . , 8. The system is as follows

f (F15, L0,M0, C0) = L0, f(F15, L
′
0,M0, C0) = L′0, (29)

f (L0, F1,M1, C1) = L1, f(L′0, F1,M1, C1) = L′1, (30)
f (Li−1, Fi,Mi, Ci) = Li, f(L′i−1, Fi,Mi, Ci) = L′i, i = 2, . . . , 6, (31)
f (L7, L8,M8, C9) = L8, f(L7, L

′
8,M8, C9) = L′8, (32)

f (L8, F9,M9, C9) = L9, f(L′8, F9,M9, C9) = L9, (33)
g (L15, L0, F0, L1) = W0, g(L15, L

′
0, F

′
0, L
′
1) = W0, (34)

g (Wi−1, Li, Fi, Li+1) = Wi, g(Wi−1, L
′
i, Fi, L

′
i+1) = Wi, i = 1, . . . , 7, (35)

g (W7, L8, L8, L9) = g(W7, L
′

8, L
′

8, L9). (36)

Let us focus on Equation (35). It can be rewritten as

(Wi−1 + Li)≫ 1⊕ (Fi + Li+1) = (Wi−1 + L
′

i)≫ 1⊕ (Fi + L
′

i+1) (= Wi).

Similarly as in the previous attacks, we get the following equation

((X +A)⊕X)≫ 1 = (Y +B)⊕ Y, (37)

where X = Wi−1 + L
′

i, A = Li − L
′

i, Y = Fi + L
′

i+1, B = Li+1 − L
′

i+1. In Al3 of
Appendix B, we have explained how to split this equation into two equations,
((X +A)⊕X) = −1,(Y +B)⊕ Y=-1, and solve them separately. The solution
X = A� 1, Y = B � 1 exists when LSB of A and B are 1. Hence, for Wi−1

and Fi we get

Wi−1 = (Li − L
′
i)� 1− L

′

i = δi � 1− L
′

i, (38)

Fi = (Li+1 − L
′
i+1)� 1− L

′

i+1 = δi+1 � 1− L
′

i+1. (39)

If we put these values in the equation for Wi we obtain

Wi = (Wi−1 + L
′

i)≫ 1⊕ (Fi + L
′

i+1) = δi � 1≫ 1⊕ δi+1 � 1. (40)



This means that we can split equations of the type (35) into two equations and
solve them separately. Also, from (38) and (39) we get that Wi = Fi.

Now let us explain how to get two pairs that satisfy the whole differential.
First, by choosing randomly L0, L

′

0, F15,M0, F1, and M1, we produce a solution
for Equations (29),(30), (34) and (35). Actually, we need to satisfy only Equa-
tion (35), i.e. W0 = (L1 − L

′
1)� 1 − L′1 = δ1 � 1 − L′1, because the values of

Lj0, L
j
1, j = 1, 2 can be any, and finding a solution for (34) is trivial. Then, by

taking some M2 and F2 we produces Lj2 = f(Lj1, F2,M2, C2), j = 1, 2. Having
the values of δ1 and δ2, we can find the new value of F1

F1 = W1 = δ1 � 1≫ 1⊕ δ2 � 1.

Since we have changed the value of F1, then the values of L1 and L
′

1 might
change. Therefore, we find another value of M1 such that the old values of L1, L

′

1

stay the same. Note, that is is not always possible. Yet, with the probability 2−2

this value can be found. As a result, we have fixed the values of M1, F1, L2, and
L
′

2. Using the same technique, we can fix the values ofM2, . . . ,M6, F2, F6, L
j
3, L

j
7, j =

1, 2 such that (35) would hold for i = 2, . . . , 6. In short, the following is done. Let
the values of Wi−1,Mi, Fi, Li, and L

′

i be fixed. First we generate any Li+1 and
L
′

i+1. Then we find the value of Fi from (39). Then, we change the value of Mi.
This way, the values of Li, L

′

i stay the same, but now Wi+1, L
j
i ,Mi, Fi, L

j
i+1, j =

1, 2 satisfy (35).
Now let us fix the right L8, L

′

8 such that

f(L8, F9,M9, C9) = f(L
′

8, F9,M9, C9). (41)

We try different M8, S0 (notice that the values of F8, F
′

8 depend on F0, F
′

0, and
S0), and create different pairs (L8, L

′

8). If this pair satisfies (41) and (38) then
we change M7 and F7 as described previously. Finally, we change M9 and F9

so that (36) will hold. First, we find the good value of L9 from the equation
L9 = ∆2 � 1 − L

′

8 and than change M9 and F9 to achieve this value. As a
result, we have fixed all the values such that all equations hold.

After the ProcessMessage procedure, there are no differences in any of the
state variables. The FeedForward procedure, which produces the new chaining
value, depends on the initial chaining value, the internal state variables, the
salt, and the block index. Since there is a difference only in the initial chaining
value (only in H0), it means that there has to be a difference in the new chaining
variable H0 (and only there). If we repeat the attack on ProcessMessage with dif-
ferent input difference ∆1, we can produce a near collision with a low Hamming
difference. If, in the truncated digest LAKE-224, the first 32 bits were truncated
instead of the last 32 bits, we could find a real collisions for the compression
function of LAKE-224.

Now, let us estimate the complexity of our attack. For finding good random
L0, L

′

0, F15,M0, F1, and M1 that satisfies the first set of equations we have to
try 232 different values. For successfully fixing the correct Fi,Mi, i = 1, . . . , 7,
we have to start with (22)7 = 214 different δ1. For finding a good pair (L8, L

′

8)



that satisfies (41) and (38) we have to try 227 ·232 = 259 different M8, S8. Hence,
the total attack complexity is around 2105 computations. If we apply the same
reasoning for computing the complexity in the number of compression function
calls as it was done in the two previous attacks, we will get that the near collision
algorithm requires around 299 calls to the compression function of LAKE-256.

7 Conclusions

We presented three different collision attacks on the compression function of
LAKE-256. All of them make use of some weaknesses of the functions used to
build the compression function. The first two of them facilitate the additional
variables of salt and block counter required by the HAIFA compression functions.
Due to a weak mixing of those variables, we were able to better control diffusion
of differences.

All our attacks cancel the injected differences within the first ProcessMessage
and later only in the final FeedForward again and therefore are independent of
the number of rounds.

The SHA-3 first round candidate BLAKE, a successor of LAKE, uses a dif-
ferent ProcessMessage function. Hence, our attacks do not apply to BLAKE. We
believe that the efficient methods to solve the systems of equations and to find
high level differentials presented in this paper may be useful to analyse other
dedicated designs based on modular additions, rotations and XORs and con-
stitute a nice illustration of how very small structural weaknesses can lead to
attacks on complete designs.
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Table 1. (H, t)-colliding pair for the compression function of LAKE

h0 63809228 6cc286da 00000000 00000000 00000000 00000000 00000000 00000540

h
′
0 ba3f5d77 6cc286da 00000000 00000000 00000000 00000000 00000000 00000540

M 55e07658 00000009 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000002 5c41ab0e

F0 0265e384 00000000
F1 aba71835 00000000

S 00000000 00000000 00000000 00000000

H 79725351 e61a903f 730aace9 756be78a b679b09d de58951b f5162345 14113165

Table 2. Example of a pair of chaining values F , F ′ and a message block M that yield
a collision in ProcessMessage

F 1E802CB8 799491C5 1FE58A14 07069BED 1E802CB8 799491C5 1FE58A14 74B26C5B
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

F ′ C0030007 B767CE5E 30485AE7 07069BED C0030007 B767CE5E 30485AE7 74B26C5B
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

M 683E64F1 9B0FC4D9 0E36999A A9423F09 27C2895E 1B76972D BEF24B1C 78F25F25
00000000 00000000 00000000 00000000 00000000 00000000 657C34F5 3A992294

L D0F3077A 31A06494 395A0001 10E105FC 82026885 31A06494 395A0001 10E105FC
ECF7389A 2F4D466F 9FFC71E1 54BAFAE6 FCDDBCDB E635FFB7 5D302719 CD102144

L′ D0F3077A 901D9145 95A99FDB 10E105FC 82026885 901D9145 95A99FDB 10E105FC
ECF7389A 2F4D466F 9FFC71E1 54BAFAE6 FCDDBCDB E635FFB7 5D302719 CD102144

L⊕ 00000000 A1BDF5D1 ACF39FDA 00000000 00000000 A1BDF5D1 ACF39FDA 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

W 1F210513 1A8E2515 1932829B 1C00C039 1F210513 1A8E2515 1932829B F4A060BE
5F868AC3 D8959978 E8F3FF4A E20AC1C3 8941C0F8 EA8BC74E 6ECDD677 82CFFECE

W ′ 1F210513 1A8E2515 1932829B 1C00C039 1F210513 1A8E2515 1932829B F4A060BE
5F868AC3 D8959978 E8F3FF4A E20AC1C3 8941C0F8 EA8BC74E 6ECDD677 82CFFECE

Table 3. Example of a pair of chaining values F , F ′, salts S, S′ and a message block
M that yield near collision in CompressionFunction with 16 bits differences out of 256
bits output. Hs are final output.

F 7B2000C4 23E79FBD 73D102C3 88E0E02B 7B2000C4 23E79FBD 73D102C3 00000000

F ′ 801FF801 18C0005E 846FD480 88E0E02B 801FF801 18C0005E 846FD480 00000000

S 00010081 23043423 03C5B03E D44CFD2C

S′ FB010944 2E2BD382 F326DE81 D44CFD2C

M 00000012 64B31375 CFA0A77E 8F7BE61F 1E30C9D3 6A9FB0DA 290E506E 3AAE159C
00000000 00000000 00000000 00000000 00000000 00000000 00000000 1B89AA75

H 261B50AA 3873E2BE BDD7EC4D 7CE4BFF8 007BB4D4 869473FF 833D9EFA 9DABEDDA

H′ 361150AA 387BE23E FDD6E84D 7CE4BFF8 1071B4D4 869C737F C33C9AFA 9DABEDDA

H⊕ 100A0000 00080080 40010400 00000000 100A0000 00080080 40010400 00000000

A Collision Examples

B Lemmas and proofs

Lemma 4 Given random x of length n, then the average number of “0”s and
block of “1”s, excluding the case “0” as MSB followed by “1”, is 3n

4 .



Proof. Denote Cn as the sum of the counts for “0”s and blocks of “1”s for all x
of length n, denote such x as xn. Similarly we define Pn as the sum of the counts
for all x of length n with MSB “0” (let’s denote such x as x0

n); and Qn for the
sum of the counts for all x of length n with MSB “1” (denote such x as xn). It
is clearly that

Cn = Pn +Qn (42)

Note that there are 2n−1 many x with length n− 1, half of them with MSB “0”,
which contribute to Pn−1 and the other half with MSB “1”, which contribute
to Qn−1. Now we construct xn of length n from xn−1 of length n − 1 in the
following way:

– Append “0” with each xn−1, this “0” contribute to Cn once for each xn−1

and there are 2n−2 many such xn−1.
– Append “1” with each xn−1, this “1” does not contribute to Cn
– Append “0” with each x0

n−1, this contributes 2n−2 to Cn
– Append “1” with each x0

n−1, this contributes 2n−2 to Cn

So overall we have Cn = Pn−1 + Pn−1 + 2n−2 +Qn−1 + 2n−2 +Qn−1 + 2n−2 =
3 · 2n−2 + 2Cn−1. Note C1 = 2, solving the recursion, we get Cn = 3n+1

4 · 2n.
Exclude the exceptional case, we have final result 3n

4 on average.

Lemma 5 Given random a, a′, x ∈ Z2n and k ∈ [0, n), α def= 1[aLk + xLk ≥
2k], α′ def= 1[a′Lk + xLk ≥ 2k], β def= 1[aRk + xRk + α ≥ 2n−k], β′ def= 1[a′Rk + xRk + α ≥
2n−k] as defined in Lemma 1, then P (α = α′, β = β′) = 4

9 .

Proof. Consider α and α′ first, P (α = α′ = 1) = P (aLk +xLk ≥ 2k, a′Lk +xLk ≥ 2k).
This is equal to P (xLk ≥ (2k −min{aLk , a′Lk })) what in turns can be rewritten as
P (aLk ≥ a′Lk )P (xLk ≥ 2k−a′Lk )+P (a′Lk > aLk )P (xLk ≥ 2k−aLk ) = 1

2 ·
1
3 + 1

2 ·
1
3 = 1

3 .
Similarly we can prove P (α = α′ = 0) = 1

3 , so P (α = α′) = 2
3 . Note the

definitions of β and β′ contain α and α′, but α, α′ ∈ {0, 1}, which is generally
much smaller than 2n−k, so the effect of α to β is negligible. We can roughly say
P (β = β′) = 2

3 . So P (α = α′, β = β′) = P (α = α′)P (β = β′) = 4
9 .

Lemma 6 There exist an algorithm (Al1) for finding all the solutions for the
equation of the form (X∧C)+A = (X+B)∧C. The complexity of Al1 depends
only on the constant C.

Lemma 7 There exist an algorithm (Al2) for finding all the solutions for the
equation of the form (X∨C)+A = (X+B)∨C. The complexity of Al2 depends
only on the constant C.

Proof. The proofs for the two facts are very similar with some minor changes,
so we will prove only Lemma 6.

LetX = x31 . . . x1x0, A = a31 . . . a1a0, B = b31 . . . b1b0, C = c31 . . . c1c0. Then
for each i we have:

(xi ∧ ci)⊕ ai ⊕ Fi = (xi ⊕ bi ⊕ ri) ∧ ci, (43)



where Fi = m(xi−1 ∧ ci−1, ai−1, Fi−1) is the carry at the (i − 1)th position of
(X ∧ C + A), ri = m(xi−1, bi−1, ri−1) is the carry at the (i − 1)th position of
X +B, and m(x, y, z) = xy ⊕ xz ⊕ yz.

Equation (43), simplifies to ai ⊕ Fi = 0 when ci = 0 and when ci = 1 we get
ai ⊕ Fi = bi ⊕ ri.

Let us assume that we have found the values for Fi and ri for some i. We
find the smallest j > 0 such that ci+j = 0. Then from the fact that ai ⊕ Fi = 0
and the definition of Fi we get:

ai+j =Fi+j = m(xi+j−1, ai+j−1, Fi+j−1) =
=m(xi+j−1, ai+j−1,m(xi+j−2, ai+j−2, Fi+j−2)) = . . .

=m(xi+j−1, ai+j−1,m(xi+j−2, ai+j−2,m(. . . ,m(xi, ai, Fi)) . . .))

In the above equation, only xi, xi+1, . . . xi+j−1 are unknown. So we can try all
the possibilities, which are 2j , and find all the solutions. Let us denote by X̃ the
set of all solutions.

Now, let us find the smallest l > 0 such that ci+j+l = 1. Notice that we can
easily find Fi+j+1 if considering ci+j+F0 = 0 for F0 ∈ (0, l) and using ai⊕Fi = 0:

Fi+j+1 =m(0, ai+j , Fi+j) = m(0, ai+j , ai+j) = ai+j

Fi+j+2 =m(0, ai+j+1, Fi+j+1) = m(0, Fi+j+1, Fi+j+1) = m(0, ai+j , ai+j) = ai+j

. . .

Fi+j+l =m(0, ai+j+l−1, Fi+j+l−1) = ai+j

From the relationship ai ⊕ Fi = bi ⊕ ri and definition of ri we get:

ai+j+l ⊕ Fi+j+l ⊕ bi+j+l = ri+j+l = m(xi+j+l−1, bi+j+l−1, ri+j+l−1) =
=m(xi+j+l−1, bi+j+l−1,m(xi+j+l−2, bi+j+l−2, ri+j+l−2)) = . . .

=m(xi+j+l−1, bi+j+l−1,m(. . . ,m(xi, bi, ri) . . .))

In the above equation, only xi, xi+1, . . . , xi+j+l−1 are unknown. So we check all
the possibilities by taking (xi, xi+1, . . . , xi+j−1) from the set X̃ and the rest of
the variables take all the possible values. If the equation has a solution, then
this means we have fixed another Fi+j+l, ri+j+l, and we can continue searching
using the same algorithm.

The complexity of the algorithms is 2q, where q is size of the longest consec-
utive sequence of ones followed by consecutive zero sequence (in the case above
q = j+ l) in the constant C. Taking into consideration the value of the constant
C1 used in the compression function of LAKE-256, we get that complexity of
our algorithm for this special case is 28. Yet, the average complexity can be de-
creased additionally if first the necessary conditions are checked. For example,
if we have two consecutive zeros in the constant C1 at positions i and i+ 1 then
it has to hold ai+1 = ai. If we check for all zeros, then only with probability of
2−10 a constant A can pass this sieve. Therefore, the math expectancy of the
complexity for a random A is less than 21. Note that when ∨ function is used



instead of ∧, than 0 and 1 change place. Therefore, our algorithm has a com-
plexity of 26 when C0 is used as a constant. Yet, same as for ∧, early break-up
strategies significantly decrease these complexities for the case when solution
does not exist. Again, the average complexity is less than 21. ut

Lemma 8 There exist an algorithm (Al3) for finding a solution for the follow-
ing equation: ((X +A)⊕X)� 1 = (Y +B)⊕ Y .

Proof. Instead of finding a solution w.r.t. X and Y we split the equation into a
system

(X +A)⊕X = −1, (Y +B)⊕ Y = −1 . (44)

We can do this because the value of −1 is invariant of any rotation. We may
loose some solutions, but further we will prove that if such a solution exist then
our algorithm will find it with probability 2−2.

We will analyze only left equation of (44); the second one can be solved
analogously. Let X = x31 . . . x0, A = a31 . . . a0. Then for ith bit we get: (xi ⊕
ai ⊕ ci) ⊕ xi = 1, where ci is the carry at (i − 1) position of X + A, i.e. ci =
m(xi−1, ai−1, ci−1). Obviously, this equation can be rewritten as ai = ci⊕1. For
the (i+1)th bit we get ai+1 = ci+1⊕1 = m(xi, ai, ci)⊕1 = m(xi, ai, ai⊕1)⊕1 =
xiai⊕xi(ai⊕1)⊕ai(ai⊕1)⊕1 = xi⊕1. So, we can easily find the value of xi for
each i. When i = 31, x31 can be arbitrary. For the case when i = 0, considering
that c0 = 0, from ai = ci ⊕ 1 we get a0 = 1. Therefore, if a0 = 1 then (44) is
solvable in constant time. The solutions are X = A� 1 + i232, i = 0, 1. Finally,
for the whole system, we have that solution exist if a0 = b0 = 1, which means
with probability 2−2. ut

Lemma 9 There exists an algorithm (Al4) for finding all the solutions for equa-
tions of the type (X ⊕ C) +A = (X +B)⊕K.

Proof. We base our algorithm fully on the results of [14]. There, Paul and Preneel
show, in particular, how to solve equations of the form: (x+ y)⊕ ((x⊕α) + (y⊕
β)) = γ. Let us XOR to the both sides of the initial equation the expression
A ⊕ B ⊕ C and denote K̃ = K ⊕ A ⊕ B ⊕ C. Then, the equation gets the
following form: ((X ⊕C) +A)⊕A⊕B⊕C = (X +B)⊕ K̃. For the (i+ 1)th bit
position, we have k̃i+1 = si+1⊕Fi+1, where si is the carry at the ith position of
(X⊕C) +A, and Fi is the carry at ith position of X+B. From the definition of
si we get si+1 = (xi ⊕ ci)ai ⊕ (xi ⊕ ci)si ⊕ aisi = (xi ⊕ ci)ai ⊕ (xi ⊕ ci ⊕ ai)si =
(xi ⊕ ci)ai ⊕ (xi ⊕ ci ⊕ ai)(k̃i ⊕ Fi).

From the definition of Fi we get Fi+1 = xibi ⊕ xiFi ⊕ biFi. This means that
k̃i+1 can be computed from xi,ai,bi,ci,Fi, and k̃i. Further, we apply the algorithm
demonstrated in [14]. The only difference is that for each bit position we have
only two unknowns xi and Fi, whereas in [14] have three unknowns. Yet, this
difference is not crucial, and the algorithm can be applied.

Our experimental results (Monte-Carlo with 232 trials), show that the proba-
bility that a solution exists, when A,B,C and K are randomly chosen is around
2−12. ut


