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Abstract. This paper shows new preimage attacks on reduced Tiger
and SHA-2. Indesteege and Preneel presented a preimage attack on Tiger
reduced to 13 rounds (out of 24) with a complexity of 2'2%°. Our new
preimage attack finds a one-block preimage of Tiger reduced to 16 rounds
with a complexity of 215, The proposed attack is based on meet-in-the-
middle attacks. It seems difficult to find “independent words” of Tiger
at first glance, since its key schedule function is much more compli-
cated than that of MD4 or MD5. However, we developed techniques to
find independent words efficiently by controlling its internal variables.
Surprisingly, the similar techniques can be applied to SHA-2 including
both SHA-256 and SHA-512. We present a one-block preimage attack
on SHA-256 and SHA-512 reduced to 24 (out of 64 and 80) steps with a
complexity of 2240 and 2489 respectively. To the best of our knowledge,
our attack is the best known preimage attack on reduced-round Tiger
and our preimage attack on reduced-step SHA-512 is the first result. Fur-
thermore, our preimage attacks can also be extended to second preimage
attacks directly, because our attacks can obtain random preimages from
an arbitrary IV and an arbitrary target.
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1 Introduction

Cryptographic hash functions play an important role in the modern cryptology.
Many cryptographic protocols require a secure hash function which holds several
security properties such as classical ones: collision resistance, preimage resistance
and second preimage resistance. However, a lot of hash functions have been
broken by collision attacks including the attacks on MD4 [3], MD5 [11] and SHA-
1 [12]. These hash functions are considered to be broken in theory, but in practice
many applications still use these hash functions because they do not require
collision resistance. However, (second) preimage attacks are critical for many
applications including integrity checks and encrypted password systems. Thus
analyzing the security of the hash function with respect to (second) preimage
resistance is important, even if the hash function is already broken by a collision
attack. However, the preimage resistance of hash functions has not been studied
well.



Table 1. Summary of our results

Target Attack Attacked steps|Complexity
(first or second preimage)|  (rounds)
Tiger (full 24 rounds) first [4] 13 21285
first (this paper) 16 2101
second [4] 13 21275
second (this paper) 16 2100
SHA-256 (full 64 steps) first [10] 36 2749
first (this paper) 24 2770
second (this paper) 24 2770
SHA-512 (full 80 steps) first (this paper) 24 2780
second (this paper) 24 2780

Tiger is a dedicated hash function producing a 192-bit hash value designed
by Anderson and Biham in 1996 [2]. As a cryptanalysis of Tiger, at FSE 2006,
Kelsey and Lucks proposed a collision attack on 17-round Tiger with a com-
plexity of 249 [5], where full-version Tiger has 24 rounds. They also proposed a
pseudo-near collision attack on 20-round Tiger with a complexity of 24%. This
attack was improved by Mendel et al. at INDOCRYPT 2006 [8]. They proposed
a collision attack on 19-round Tiger with a complexity of 262, and a pseudo-near
collision attack on 22-round Tiger with a complexity of 244. Later, they proposed
a pseudo-near-collision attack of full-round (24-round) Tiger with a complexity
of 241, and a pseudo-collision (free-start-collision) attack on 23-round Tiger [9].
The above results are collision attacks and there is few evaluations of preim-
age resistance of Tiger. Indesteege and Preneel presented preimage attacks on
reduced-round Tiger [4]. Their attack found a preimage of Tiger reduced to 13
rounds with a complexity of 21285,

In this paper, we introduce a preimage attack on reduced-round Tiger. The
proposed attack is based on meet-in-the-middle attacks [1]. In this attack, we
need to find independent words (“neutral words”) in the first place. However, the
techniques used for finding independent words of MD4 or MD5 cannot be applied
to Tiger directly, since its key schedule function is much more complicated than
that of MD4 or MD5. To overcome this problem, we developed new techniques to
find independent words of Tiger efficiently by adjusting the internal variables. As
a result, the proposed attack finds a preimage of Tiger reduced to 16 (out of 24)
rounds with a complexity of about 2'6'. Surprisingly, our new approach can be
applied to SHA-2 including both SHA-256 and SHA-512. We present a preimage
attack on SHA-256 and SHA-512 reduced to 24 (out of 64 and 80) steps with a
complexity of about 2240 and 2*80, respectively. As far as we know, our attack
is the best known preimage attack on reduced-round Tiger and our preimage
attack on reduced-step SHA-512 is the first result. Furthermore, we show that
our preimage attacks can also be extended to second preimage attacks directly
and all of our attacks can obtain one-block preimages, because our preimage



attacks can obtain random preimages from an arbitrary IV and an arbitrary
target. These results are summarized in Table 1.

This paper is organized as follows. Brief descriptions of Tiger, SHA-2 and
the meet-in-the-middle approach are given in Section 2. A preimage attack on
reduced-round Tiger and its extensions are shown in Section 3. In Section 4, we
present a preimage attack on reduced-step SHA-2. Finally, we present conclu-
sions in Section 5.

2 Preliminaries

2.1 Description of Tiger

Tiger is an iterated hash function that compresses an arbitrary length message
into a 192-bit hash value. An input message value is divided into 512-bit message
blocks (M@, MM .. M®=1) by the padding process as well as the MD family.
The compression function of Tiger shown in Fig. 1 generates a 192-bit output

chaining value H*D from a 512-bit message block M) and a 192-bit input
(@)

. . J ’
BJ@ and C’;Z). The initial chaining value H(® = (A" B{” ¢V} is as follows:

chaining value H* where chaining values consist of three 64-bit variables, A

A = 0x0123456789ABCDEF,
BY”) = 0xFEDCBA9876543210,
C\”) = 0xFO9B6ABBAC3B2E187.

In the compression function, a 512-bit message block M) is divided into eight
64-bit words (Xo, X1, ..., X7). The compression function consists of three pass
functions and between each of them there is a key schedule function. Since each
pass function has eight round functions, the compression function consists of 24
round functions. The pass function is used for updating chaining values, and the
key schedule function is used for updating message values. After the third pass
function, the following feedforward process is executed to give outputs of the
compression function with input chaining values and outputs of the third pass
function,

Aby = Ao ® Aoy, By = By — Baa, Chy = Cp+ Cay,

where A;, B; and C; denote the i-th round chaining values, respectively, and
Ab,, Bh, and C%, are outputs of the compression function.

In each round of the pass function, chaining values A;, B; and C; are updated
by a message word X; as follows:

Bi1=Ci®X,, (1)

Ci—l—l = Az - even(Bi_H),
Aiy1 = (B + odd(Bi41)) x mul, (3)
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Fig. 1. Compression function f of Tiger

where mul is the constant value € {5,7,9} which is different in each pass func-
tion. The nonlinear functions even and odd are expressed as follows:

even(W) = Ty [wo] @ To[wa] & T3[ws] ® Tylwe], (4)
odd(W) = Ty[w1] ® Ta[ws] ® Talws] ® T [wr], (5)

where 64-bit value W is split into eight bytes {wz,we, ..., wo} with wy is the
most significant byte and T1, ..., Ty are the S-boxes: {0,1}% — {0,1}%%. Figure 2
shows the round function of Tiger.
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Fig. 2. Tiger round function Fig. 3. Key schedule function

The key schedule function (K SF) updates message values. In the first pass
function, eight message words Xy, ..., X7, which are identical to input message
blocks of the compression function, are used for updating chaining values. Re-
maining two pass functions use sixteen message words which are generated by
applying KSF":

(Xs, ..., X15) = KSF(Xo, ..., X7), (6)
(X16y ...y Xog) = KSF(Xg, ..., X15). (7)
The function K.SF which updates the inputs X, ..., X7 in two steps, is shown

in Table 2. The first step shown in the left table generates internal variables
Yo, ..., Y7 from inputs X, ..., X7, and the second step shown in the right table



calculates outputs Xy, ..., X15 from internal variables Yy, .., Y7, where const1 is
OxA5A5A5A5A5A5A5A5 and const?2 is 0x0123456789ABCDEF. By using the same
function, Xig, ..., Xog are also derived from Xg, ..., X15. Figure 3 shows the key
schedule function of Tiger.

Table 2. Algorithm of the key schedule function K.SF

Yo = Xo — (X7 @ constl), (8) Xs =Yy + Y7, (16)
Y1 = X1 @Yo, (9) Xo=Y1— (Xs& (Y7 <19), (17)
Yy = Xo+ Y1, (10) X10 = Y2 & Xo, (18)
Ys = X3 — (Ya® (Y1 < 19)), (11) X11 = Y3 + Xio, (19)
Y= X403, (12) Xi2 = Ya — (X11 @ (X10 > 23)), (20)
Ys = X5 + Ya, (13) X153 = Y5 ® X12, (21)
Yo = X — (Y5 @ (Ya > 23)), (14) X114 =Ys + X3, (22)
Y= XD Ys. (15) X15 = Y7 — (X14 @ const2). (23)

2.2 Description of SHA-256

We only show the structure of SHA-256, since SHA-512 is structurally very
similar to SHA-256 except for the number of steps, word size and rotation values.
The compression function of SHA-256 consists of a message expansion function
and a state update function. The message expansion function expands 512-bit
message block into 64 32-bit message words W, ..., Wg3 as follows:

W, — M; (0 <i<16),
v O'l(Wi_Q) + Wi_7 + 00(W1_15) + Wi_16 (16 <1< 64),

where the functions 0o(X) and o1(X) are given by

(X)) =(X>Ta (X > 18)a (X > 3),
a(X)=(X>17)a (X > 19) @ (X > 10).



The state update function updates eight 32-bit chaining values, A, B, ...,G, H in
64 steps as follows:

Ty =H;+ X1(E;) + Ch(E;, F;,G;) + K; + W, (24)

Ty = Xo(A;) + Maj(A;, B, Cy), (25)
Aipr =T + Tz, (26)
Biy1 = Aj, (27)
Cit1 = B, (28)
Dit1=0C; (29)
Eiy1=D;+ 11, (30)
Fit1 = E;, (31)
Git1=F; (32)
Hiy = Gy, (33)

where K is a step constant and the function Ch, Maj, Xy and X are given as
follows:

Ch(X,Y,Z
Maj(X,Y, Z
So(X
SiX

=XYa®XZ,

=XY®YZDXZ,
=(X>2)0 (X > 13) (X > 22),
=(X>6)0 (X >11)@ (X > 25).

~— — — —

After 64 step, a feedfoward process is executed with initial state variable by
using word-wise addition modulo 232.

2.3 Meet-in-the-Middle Approach for Preimage Attack

We assume that a compression function F' consists of a key scheduling function
(KSF) and a round/step function as shown in Fig. 4. The function F' has two
inputs, an n-bit chaining variable H and an m-bit message M, and outputs
an n-bit chaining variable G. The function KSF' expands the message M, and
provides them into the round/step function.

We consider a problem that given H and G, find a message M satisfying
G = F(H,M). This problem corresponds to the preimage attack on the com-
pression function with a fixed input chaining variable. In this model, a feedfor-
ward function does not affect the attack complexity, since the targets H and G
are arbitrary values. If we obtain a preimage from arbitrary values of H and G,
we can also compute a preimage from H and H @ G instead of G.

In the meet-in-the-middle preimage attack, we first divide the round function
into two parts: the forward process (F'P) and the backward process (BP) so
that each process can compute an ¢-bit meet point S independently. We also
need independent words X and Y in KSF to compute S independently. The
meet point S can be determined from FP and BP independently such that
S=FP(H,X)and S=BP(G,Y).
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Fig. 4. Meet-in-the-middle approach

If there are such two processes F'P and B P, and independent words X and Y,
we can obtain a message M satisfying S with a complexity of 2¢/2 F evaluations,
assuming that F'P and BP are random ones, and the computation cost of BP
is almost same as that of inverting function of BP. Since remaining internal
state value T is (n — £) bits, the desired M can be obtained with a complexity
of 2n=4/2(= 2n=¢+t/2) Therefore, if FP and BP up to the meet point S can be
calculated independently, a preimage attack can succeed with a complexity of
2n—t/2_This type of preimage attacks on MD4 and MD5 was presented by Aoki
and Sasaki [1].

In general, it is difficult to find such independent words in a complicated
KSF. We developed new techniques to construct independent transforms in
KSF by controlling internal variabes to obtain independent words.

3 Preimage Attack on Reduced-Round Tiger

In this section, we propose a preimage attack on 16-round Tiger with a com-
plexity of 26!, This variant shown in Fig. 5 consists of two pass functions and
one key schedule function. First, we show properties of Tiger which are used for
applying the meet-in-the-middle attack. Next, we show how to apply the meet-
in-the-middle attack to Tiger, and then introduce the algorithm of our attack.
Finally, we evaluate the required complexity and memory of our attack.
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Fig. 5. Reduced-round Tiger (2-pass = 16-round)



3.1 Properties of Tiger

We show five properties of Tiger, which enable us to apply the meet-in-the-
middle attack.

Property 1 : The pass function is easily invertible.

Property 1 can be obtained from the design of the round function. From Eq. (1)
to Eq. (3), 4;, B;, and C; can be determined from A; 1, B;11, Ci+1 and X;. The
computation cost is almost same as the cost of calculating A;41, B;+1 and Cjqq
from A;, B;, C; and X;. Since the round function is invertible, we can construct
the inverse pass function.

Property 2 : In the inverse pass function, the particular message words are
independent of particular state value.

The detail of the Property 2 is that once X;, A;y3 B;ts and C;y3 are fixed,
then C;, Biy1, ;42 and B; o can be determined from Eq. (1) to Eq. (3) inde-
pendently of X; 1 and X;;9. Thus the property 2 implies that X;;; and X, o
are independent of C; in the inverse pass function.

Property 3 : In the round function, Ciy1 is independent of odd bytes of X; .

The property 3 can be obtained from the property of the non-linear function
even.

Property 4 :The key schedule function KSF' is easily invertible.

The property 4 implies that we can build the inverse key schedule function
KSF~1. Moreover, the computation cost of K SF~! is almost the same as that
of KSF.

Property 5 :In the inverse key schedule function KSF™', if input values are
chosen appropriately, there are two independent transforms.

The property 5 is one of the most important properties for our attack. In the
next section, we show this in detail.

3.2 How to Obtain Two Independent Transforms in the KSF~!

Since any input word of K.SF~! affects all output words of KSF~1!, it appears
that there is no independent transform in the K SF~! at first glance.

However, we analyzed the relation among the inputs and the outputs of
KSF~! deeply, and then found a technique to construct two independent trans-
forms in the KSF~! by choosing inputs carefully and controlling internal vari-
ables. Specifically, we can show that a change of input word Xg only affects
output words X, X1, X and X3, and also modifications of Xi3, X14 and X5
only affect X5 and Xy if these input words are chosen properly. We present the
relation among inputs, outputs and internal variables of K.SF~! and then show
how to build independent transforms in the K.SF~1.



As shown in Fig. 6, changes of inputs Xi3, X14 and X5 only propagate
internal variables Yy, Y7, Ys, Y5 and Y7. If internal variables Ys and Y7 are fixed
even when X3, X14 and X5 are changed, it can be considered that an internal
variable Yy, Y7 and an output X; are independent of changes of Xi3, X14 and
Xi5. From Eq. (22) and (23), Y5 and Y7 can be fixed to arbitrary values by
choosing X713, X714 and X5 satisfying the following formulae:

X4 = Y5 + Xu3, (34)
Xi5=Y; — (X14 D COIlStQ). (35)

Therefore modifications of inputs X713, X14 and X35 only propagate X5 and Xg
by selecting these input values appropriately. In addition, a modification of Xjg
only affects X, ..., X3.

As a result, we obtain two independent transforms in K.SF~! by choosing
X13, X714 and X5 properly, since in this case a change of Xg only affects X, ...,
X3, and changes of X753, X714 and Xi5 only propagate X5 and Xg.

n ] e &) 0 ox
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Fig. 6. Relation among inputs and outputs of K.SF ™1

3.3 Applying Meet-in-the-Middle Attack to Reduced-Round Tiger

We show the method for applying the meet-in-the-middle attack to Tiger by
using above five properties. We define the meet point as 64-bit Cg, the process
1 as rounds 1 to 6, and the process 2 as rounds 7 to 16.

In the process 2, intermediate values Ag, Bg and Cy can be calculated from
Ajg, B1g, C16 and message words Xg to Xi5, since Tiger without the feedforward
function is easily invertible. From the property 2, Cs can be determined from
Ag, Bg and Xg. It is also observed that Ag and Bg are independent of Xg, because
these values are calculated from Ag, Bg and Cy. From the property 5, Xg does



not affect Xg. Therefore, Cg, the output of the process 2, can be determined
from Xg, Xg to X15, AlG,Blﬁ and 016-

In the process 1, the output Cg can be calculated from X to X5, Ag, By and
Cp. If some changes of the message words used in each process do not affect the
message words used in the other process, Cg can be determined independently
in each process.

The message words Xy to X4 are independent of changes of Xg and X3
to X5, if X9 to Xq9 are fixed and X3 to X5 are calculated as illustrated in
the section 3.2. Although changes of Xi3, X14 and Xj5 propagate X5, from the
property 3, C in the process 1 is not affected by changes of odd bytes of X5.
Therefore, if even bytes of X5 are fixed, Cg in the process 1 can be determined
independently from a change of Xs.

We show that the even bytes of X5 can be fixed by choosing X1, X712 and
X3 properly. From Eq. (21), Y5 is identical to X713 when X192 equals zero, and
from Eq. (13), X5 is identical to Y5 when Y} equals zero. Thus X5 is identical to
X173 when both X715 and Y} are zero. Consequently, if the even bytes of X3 are
fixed, and X35 and Y, equal zero, the even bytes of X5 can be fixed. Y can be
fixed to zero by choosing X7 as X771 «— X10 > 23. Therefore, if the following
conditions are satisfied, Cj in the process 1 can be independent of changes of
X13,X14 and X15.

— X9 and X7 are fixed arbitrarily,
— X11 = X10> 23, X12=0,
— Xi3, X714 and Xy5 are chosen properly.

By choosing inputs of the inverse pass function satisfying the above condi-
tions, we can execute the process 1 and the process 2 independently. Specifically,
if only X413, X14 and X5 are treated as variables in the process 2, then the pro-
cess 2 can be executed independently from the process 1. Similarly, if only Xg is
treated as a variable in the process 1, then the process 1 is independent of the
process 2, as long as Xg to X5 satisfy the above conditions. These results are
shown in Fig. 7.

3.4 (Second) Preimage Attack on 16-Round Tiger Compression
Function

We present the whole algorithm of the (second) preimage attack on the com-
pression function of Tiger reduced to 16 rounds. The attack consists of three
phases: preparation, first and second phase.

The preparation phase sets X;(i € {4,7,9,10,11,12}), Y;(i € {2,3,4,6,7})
and even bytes of X3 as follows:

Preparation

1: Let Alg, Big and Cfg be given targets. Choose Ag, By and Cy arbitrarily, and
set A1, Big and Cig as follows:

A16 — AO o) A,16a Big — By — Bi67 016 — 016 — C().
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Fig. 7. Meet-in-the-middle attack on 16-round Tiger

2: Choose Xg, X190, Ys, Y7 and even bytes of Xi3 arbitrarily, set X715 and Yy to
zero, and set X7, X1, Yo, Y3 and X, as follows:

X7« Ys®DY7, X171 « Xq9 > 23, Yo «+— Xg®Xyp, Y3 — X11—Xqg, Xy « V3.

The first phase makes a table of (Cg, odd bytes of X13) pairs in the process
2 as follows:

First Phase

—

: Choose odd bytes of X13 randomly.
2: Set X5, Xg, X14 and X715 as follows:

X5 — Xi3, Xo — Ys+X13, X1a — Ys+X13, X15 — Y7—((Ys+X13)Dconst2).

: Compute Cg from Ayg, Big, C16, X6 and Xg to Xi5.

Place a pair (Cg, odd bytes of X;3) into a table.

: If all 232 possibilities of odd bytes of X3 have been checked, terminate this
phase. Otherwise, set another value, which has not been set yet, to odd bytes
of X713 and return to the step 2.

AN

The second phase finds the desired message values Xy to Xi5 in the process
1 by using the table as follows:

Second Phase

1: Choose Xg randomly.



2: Set Yy, Y7, Xo, X1, X2 and X3 as follows:

Yo — Xg — X7,

Vi Xo + (Xs @ (Y7 < 19)),
Xo — Yo+ (X7 @ constl),
X1 Y0V,

Xo Yo — 11,

X3 Y3+ (Y2 @ (Y1 < 19)).

3: Compute Cg from X to X4, even bytes of X5, Ag, By and Cy.

4: Check whether this Cg is in the table generated in the first phase. If Cg is in
the table, the corresponding X, to X; are a preimage for the compression
function of the target Alg, Big, C1g and successfully terminates the attack.
Otherwise, set another value, which has not been set yet, to Xg and return
to the step 2.

By repeating the second phase about 232 times for different choices of Xg,
we expect to obtain a matched Cg. The complexity of the above algorithm is
232 (= 232. 1% +232. %—g) compression function evaluations, and success probability
is about 27128, By executing the above algorithm 2'2® times with different fixed
values, we can obtain a preimage of the compression function. In the prepara-
tion phase, Ay, By, Cy, Xo, X190, Ys, Y7 and even bytes of Xy3 can be chosen
arbitrarily. In other words, this attack can use these values as free words. These
free words are enough for searching 2'2® space. Accordingly, the complexity of
the preimage attack on the compression function is 2169 (= 232.2128)_ Also, this

algorithm requires 232 96-bit or 23°6 bytes memory.

3.5 One-Block (Second) Preimage Attack on 16-Round Tiger

The preimage attack on the compression function can be extended to the one-
block preimage attack on 16-round Tiger hash function. For extending the attack,
Ap, By, Cy are fixed to the IV words, the padding word X, is fixed to 447
encoded in 64-bit string, and the remaining 224 bits are used as free bits in the
preparation phase. Although our attack cannot deal with another padding word
X, the attack still works when the least significant bit of Xg equals one.

Hence, the success probability of the attack on the hash function is half of
that of the attack on the compression function. The total complexity of the
one-block preimage attack on 16-round Tiger hash function is 2'6! compression
function computations.

This preimage attack can also be extended to the one-block second preimage
attack directly. Our second preimage attack obtains a one-block preimage with
the complexity of 2161, Moreover, the complexity of our second preimage attack
can be reduced by using the technique given in [4]. In this case, the second
preimage attack obtains the preimage which consists of at least two message
blocks with a complexity of 2160



4 Preimage Attack on Reduced-Round SHA-2

We apply our techniques to SHA-2 including both SHA-256 and SHA-512 in
straightforward and present a preimage attack on SHA-2 reduced to 24 (out
of 64 and 80, respectively) steps. We first check the properties of SHA-2, then
introduce the algorithm of the preimage attack on 24-step SHA-2.

4.1 Properties of 24-step SHA-2

We first check whether SHA-2 has similar properties of Tiger. The pass function
of Tiger corresponds to the 16-step state update function of SHA-2, and the key
schedule function of Tiger corresponds to the 16-step message expansion function
of SHA-2. Since the state update function and the message expansion function
of SHA-2 are easily invertible, the compression function of SHA-2 without the
feedforward function is also invertible.

In the inverse state update function, Aig, Bis, ..., Hig are determined from
A24,BQ4, ...,H24 and ng to ng, and A11 only depends on Alg, ...,Hls. Thus
Aqq is independent of Wy, to Wi7 when Ajsg, ..., Hig and Wig to Wag are fixed.
It corresponds to the property 2 of Tiger.
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Fig. 8. Message expansion function of 24-step SHA-2

Then we check whether there are independent transforms in the inverse mes-
sage expansion function of SHA-2. It corresponds to the property 5 of Tiger. For
the 24-step SHA-2, 16 message words Wy to Wi5 used in the first 16 steps are
identical to input message blocks of the compression function, and 8 message
words Wig to Wag used in the remaining eight steps are derived from Wy to Wiy
by the message expansion function shown in Fig. 8. Table 3 shows the relation
among message words in the message expansion function. For example, Wig is
determined from Wy4, Wy, W7 and Wy. By using these relation and techniques
introduced in previous sections, we can configure two independent transforms in
the message expansion function of SHA-2.

We show that, in the inverse message expansion function of 24-step SHA-
2, i) a change of Wi7 only affects Wy, W1, W3 and Wiy, and ii) Wig, Wa; and
Was only affect Wis by using the message modification techniques. In Tab. 3,
asterisked values are variables of i), and underlined values are variables of ii).



Table 3. Relation among message values Wig to Was.

computed value|values for computing
W16 W14,W9,W1*,W0*
Wiz Wis, Wio, Wa, Wi
Wig Wie, Wik, Wsx, Wa
@ W17*,m7 W4,W3*
Wao Wig, Wiz, Ws, Wy
Wa1 Wig, Wia, Ws, W5
Waz Wao, Wis, Wz, We
Was Wai, Wie, We, Wr

First, we consider the influence of Ws3. Though Wy3 affects Wy, Wy, Wig
and W, this influence can be absorbed by modifying Wy, — Wig — Wis.
Consequently, we obtain a result that Wig, Wo; and Was only affect Wio by
choosing these values properly, since W35 does not affect any other values in the
inverse message expansion function.

Similarly, we consider the influence of Wy7 in the inverse message expansion
function. Wy affects Wy, Wy, Wy and Wis. This influence can be absorbed by
modifying W7 — Wy. Wiz is also used for generating Wig. In order to cancel
this influence, W3 — W7, are also modified. As a result, we obtain a result that
Wiz only affects Wy, Wy, W3 and W7; by choosing these values appropriately.

4.2 (Second) Preimage Attack on 24-Step SHA-256 Compression
Function

As shown in Fig. 9, we define the meet point as 32-bit Aj;, the process 1 as
steps 1 to 11, and the process 2 as steps 12 to 24. In the process 1, A;; can be
derived from Ay, ..., Hy and Wy to Wiyg. Similarly, in the process 2, A1 can be
determined from Aoy, ..., Hoy and Wig to Whs. Since the process 1 and process
2 are independent of each other for A;; by using the above properties of SHA-2,
we apply the meet-in-the-middle attack to SHA-2 as follows:

Preparation

1: Let Al,, ..., H), be given targets. Choose Ay, ..., Hy arbitrarily, and compute
Aoy, ..., Hay by the feedforward function.

2: Choose 32-bit value CON and W;(i € {2,4,5,6,7,8,9,10,13,14,15,16,18})

arbitrarily, and then calculate W5y and Wss.

First Phase

1: Choose Ws3 randomly.
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Fig. 9. Meet-in-the-middle attack on 24-step SHA-2

: Determine Way, Wig and Wiy as follows!:

Way Ufl(W23 — Wig — ao(Wg) — Wr),
Wig « oy H(Way — Wig — 0o(Ws) — Ws),
Wis «+— Wi9 — CON.

: Compute Ay from Aoy, ..., Hoy and Wig to Wag.

Place a pair (A1, Was) into a table.

: If 26 pairs of (A1, Wa3) have been listed in the table, terminate this algo-

rithm. Otherwise, set another value, which has not been set yet, to Wa3 and
return to the step 2.

Second Phase

: Choose W17 randomly.
: Determine Wy, W1, W3 and W7y as follows:

W1 — Wiz — 01(Wis) — Wig — 0o(Wa),
Wo «— Wie — 01(Wis) — Wy — ao(W1),
W3« CON — 01 (Wi7) — 09(Wa),

Wiy« Wig — 01(Wie) — o0(W3) — Wa.

Compute A1y from Ay, ..., Hy and Wy to Wry.

! The method how to calculate oy ! is illustrated in the appendix.



4: Check whether this Ay; is in the table generated in the first phase. If Ay; is
in the table, the corresponding Wy to Ws3 is a preimage of the compression
function of the target Al,, ..., H}, and successfully terminates the attack.
Otherwise, set another value, which has not been set yet, to W37 and return
to the step 2.

By repeating the second phase about 2'6 times for different W7, we expect to
obtain a matched A;1. The complexity of the preimage attack on the compression
function is 2240(= 2256-32/2) compression function evaluations. The required
memory is 2!6 64-bit or 2! bytes. In this attack, the words Ay, ..., Hy, CON and
Wi € {2,4,5,6,7,8,9,10,13,14,15,16,18}) can be used as free words. The
total free words are 22 words or 704 bits.

4.3 One-Block (Second) Preimage Attack on 24-Step SHA-2 Hash
Function

The preimage attack on the compression function can be extended to the (sec-
ond) preimage attack on the hash function directly, since our preimage attack
can obtain random preimages from an arbitrary IV and an arbitrary target,
and can deal with the padding words Wy4 and Wi5. Thus the complexities of
the preimage attack and the second preimage attack on 24-step SHA-256 are
2240 Furthermore, this attack can also be extended to the (second) preimage
attack on 24-step SHA-512. The complexities of the (second) preimage attack
on 24-step SHA-512 are 2480(= 2512-64/2),

5 Conclusion

In this paper, we have shown preimage attacks on reduced-round Tiger, reduced-
step SHA-256 and reduced-step SHA-512. The proposed attacks are based on
meet-in-the-middle attack. We developed new techniques to find “independent
words” of the compression functions. In the attack on reduced-round Tiger,
we found the “independent transforms” in the message schedule function by
adjusting the internal variables, then we presented there are independent words
in the compression function of Tiger. In the attack on reduced-round SHA-2,
we found the “independent transforms” in the message expansion function by
modifying the messages, then we showed that there are independent words in
the compression function of SHA-2.

Our preimage attack can find a preimage of 16-step Tiger, 24-step SHA-
256 and 24-step SHA-512 with a complexity of 2161, 2240 and 2480 respectively.
These preimage attacks can be extended to second preimage attacks with the
almost same complexities. Moreover, our (second) preimage attacks can find a
one-block preimage, since it can obtain random preimages from an arbitrary IV
an arbitrary target, and can also deal with the padding words.
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Appendix A

Here, we show how to calculate the inverse function o, L Let (z31, ..., o) and
(y31, .-, Yo) be outputs and inputs of o * respectively, where z;,; € {0,1}, and
x31 and y3; are the most significant bit. The inverse function oy Lis calculated
as follows:

(x3171‘307 "'7I0)t = Ma—;l : (y317y307 "'7y0)t7



where

10010111001000101110101000011000
01001011100100010111010100001100
00100101110010001011101010000110
10000101110001101011011101011011
01110001010111000000101100111001
100111000011001110111111000100060
01001110000110011101111110001000
00100111000011001110111111000100
10000100101001001001110111111010
01000010010100100100111011111101
00010010100101100111011111101010
00001001010010110011101111110101
00110111000110101100110101101110
10001100101011111000110010101111
01110101111010001001011011000011
10011110011010011111000111101101
01111100100010111010100001100010
10101001011001110011111000101001
11110000001011100010010110011000
11101111001101011111100011010100
11100000101110000001011001110010
11100111011111101110000100100001
110101110010001011001010000111060
01101011100100010110010100001110
10100010111010100101100010011111
11110101111010001001011011000011
11011110011010011111000111101101
01011100100010111010100001100010
00101110010001011101010000110001
10110011101111110101000010010100
11001110111111010100001001010010
01100111011111101010000100101001




