
Blockcipher Based Hashing Revisited

Martijn Stam∗

martijn.stam@epfl.ch
LACAL, EPFL, Switzerland

Abstract. We revisit the rate-1 blockcipher based hash functions as first
studied by Preneel, Govaerts and Vandewalle (Crypto’93) and later ex-
tensively analysed by Black, Rogaway and Shrimpton (Crypto’02). We
analyse a further generalization where any pre- and postprocessing is
considered. This leads to a clearer understanding of the current classifi-
cation of rate-1 blockcipher based schemes as introduced by Preneel et al.
and refined by Black et al. In addition, we also gain insight in chopped,
overloaded and supercharged compression functions. In the latter cate-
gory we propose two compression functions based on a single call to a
blockcipher whose collision resistance exceeds the birthday bound on the
cipher’s blocklength.

1 Introduction

One of the oldest ideas to create a hash function is to base it on a block-
cipher (e.g.,[11, 12, 14, 15]). Preneel et al. [15] studied the general con-
struction H(M,V) = E(K,X)⊕U where K,X,U ∈ {0,M, V,M⊕V } (or
affine offsets thereof). They concluded that of the 43 = 64 possibilities all
but 12 allow collision attacks on the compression function with a com-
plexity beating the birthday bound of 2n/2. Later Black et al. [5] showed
that in the ideal cipher model these 12 compression functions are indeed
collision resistant up to the birthday bound, an additional 8 constructions
were shown secure when properly iterated. Duo and Li [7] later gave an
alternative proof resulting in improved bounds. Unfortunately neither of
these articles provides a deeper understanding of what makes these 12
respectively 8 schemes special to make them secure as compression func-
tion respectively as iterated hash function: what do they have in common
that sets them apart from the other 44 schemes?

We isolate the properties that make Duo and Li’s proof go through
in the ideal cipher model for the collision resistance of rate-1 blockci-
pher based compression functions and their iterated hash functions. This

∗ This work was partially funded by the European Commission through the ICT
programme under Contract ICT-2007-216646 ECRYPT II.

sheds new light on what it is that provides the provable security for these
schemes; indeed the classification by Black et al. can be derived from
it. Central to our result is a more general type of compression function,
consisting of the following three simple steps (see Figure 1):

1. Prepare key and plaintext: (K,X)← Cpre(M,V);
2. Make the call: Y ← E(K,X);
3. Output the digest: W ← Cpost(M,V, Y).

Here E is a blockcipher (where key size k = |K| and blocksize n = |X| =
|Y | may differ) and Cpre and Cpost can be arbitrary functions given their
respective domain and codomain. To avoid complications we will initially
assume that input and output sizes of the compression function match
those of the blockcipher, that is m := |M | = k and s := |V | = |W | = n.

Similar to prior art we consider two types of schemes. Type-I schemes
give rise to collision resistant compression functions whereas Type-II
schemes give rise to compression functions that will turn into collision
resistant hash functions when (Merkle-Damg̊ard) iterated. Each type is
defined by a set of three conditions on Cpre and Cpost. Both types share
the first two conditions and only differ in the third. The first condition
is bijectivity of Cpre, ensuring that each query to E (or its inverse) can
only be used to evaluate the compression function for a single input. The
second condition is that for all M,V the postprocessing Cpost(M,V, ·)
is bijective. This causes optimal transfer of unpredictabilibity of encryp-
tion answers to the output W . For Type-I schemes, the third condition
is similar in nature to the second, making sure that the unpredictability
of decryption answers carries over to the digest W as well. Formally, for
all K,Y the modified postprocessing Cpost(C−pre(K, ·), Y) should be bi-
jective. For Type-II schemes, the third condition captures that for each
decryption answer the corresponding input chaining variable V is highly
unpredictable. Formally, for all K, the function C−pre(K, ·) restricted to
its second output V is bijective.

We provide a proof in the ideal cipher model that the probability of
finding a collision in the compression function (for Type-I) respectively
in the iterated hash function (for Type-II) is upper bounded by 1

2q(q −
1)/(2n−q), where q is the number of queries allowed to the adversary and
n is the block size. For Type-I schemes (everywhere) preimage resistance
is upper bounded by q/(2n − q). We also investigate the ramifications
of our general classification for the classical PGV schemes. We conclude
that the Type-I schemes are exactly those 12 identified before by Preneel
et al. and later Black et al. Our Type-II schemes include the 8 schemes

2

identified as Type-II by Black et al., plus an additional 8 schemes that
were already known to be Type-I.

The benefits of our generalized framework become even clearer when
analysing three more complex scenarios, when the restrictions on the
parameters n, k, s, and m are being relaxed. Here we achieve the following
results:

Chopped Compression Functions This corresponds to having an out-
put size s of the compression function smaller than the blocksize n
of the underlying blockcipher. A possible example is chopped Davies-
Meyer; we show that, as one might expect, it is optimally collision
resistant and preimage resistant. Note that chopping the output after
each encryption frees up n− s bits extra for message bits if we want
to maintain n+ k = s+m. In particular one can achieve compression
even for fixed-key (k = 0) blockciphers.

Overloaded Compression Functions Here one tries to cram the com-
pression function by having more input to the compression function
than the blockcipher can handle, i.e., s + m > n + k. Examples are
the sponge construction [3, 4] or the (related) compression function
of Cubehash [2]. Our bound on collision resistance of the compres-
sion function is worse than if we would chop the chaining variable (to
make space for the message), which is partially due to an overly loose
bound.

Supercharged Compression Functions The exact opposite of the pre-
vious two cases, since here one attempts to boost collision resistance
beyond the birthday bound on the blocksize by setting s > n. We
present a general framework for the collision resistance of single call
compression functions in the ideal cipher model. In particular, we
give a variant of Stam’s construction [18], collision resistant in the
ideal cipher model (against adaptive adversaries). We also give a rate-
1/2 compression function with collision resistance up to 23n/4 queries
based on a blockcipher with k = n bit keys.

2 Background

For a positive integer n, we write {0, 1}n for the set of all bitstrings
of length n. When X and Y are strings we write X ||Y to mean their
concatenation and X ⊕ Y to mean their bitwise exclusive-or (xor).

For positive integers k and n, we let Block(k, n) denote the set of all
blockciphers with k-bit key and operating on n-bit blocks. Given that

3

E(K, ·) is a permutation for all K ∈ {0, 1}k, we write D(K, ·) for its
inverse.

Unless otherwise specified, all finite sets are equipped with a uniform
distribution for random sampling. We use the convention to write oracles
that are provided to an algorithm as superscripts.

2.1 Compression Functions and Hash Functions

A compression function is a mapping H from {0, 1}m ×{0, 1}s to {0, 1}s
for some m, s > 0. A blockcipher-based compression function is a mapping
H : {0, 1}m × {0, 1}s → {0, 1}s given by a program that, given (M,V),
computes HE(M,V) via access to an oracle E : {0, 1}k×{0, 1}n → {0, 1}n
modeling an (ideal) blockcipher with k-bit key and operating on n-bit
blocks. A single-call blockcipher-based compression function calls its en-
cryption oracle only once. Compression of a message block then proceeds
as follows: Given an s-bit state V and m-bit message M , compute output
W = HE(M,V) by

1. Compute (K,X)← Cpre(M,V).
2. Set Y ← E(K,X).
3. Output W ← Cpost(M,V, Y).

as illustrated by Figure 1. We will refer to Cpre : {0, 1}m × {0, 1}s →
{0, 1}k × {0, 1}n as preprocessing and to Cpost : {0, 1}m × {0, 1}s ×
{0, 1}n → {0, 1}s as postprocessing.

V Cpre E Cpost W

M

m

s n n s

k

Fig. 1. General form of a m + s-to-s bit compression function based on a single call to
the underlying blockcipher with k-bit key operating on n-bit block.

Since a blockcipher is easy to invert (given its key), an adversary
trying to find for instance collisions will also have access to D. To deal
with inverse queries in our security analysis, we introduce the modified
postprocessing Caux(K,X, Y) = Cpost(C−pre(K,X), Y). In general, this
is a function mapping triplets of strings to subsets of strings, since the

4

result of C−pre can have varying cardinality. For simplicity, when Cpre is
bijective, we understand Caux to have {0, 1}n as its codomain.

A hash function is a mapping H from {0, 1}∗ (the set of arbitrary
length bitstrings) to {0, 1}s for some s > 0. A compression function can
be made into a hash function by iterating it. We briefly recall the standard
Merkle-Damg̊ard iteration [6, 13], where we assume that there is already
some injective padding from {0, 1}∗ → ({0, 1}m)∗\∅ in place (note that we
disallow the empty message M = ∅ as output of the injective padding).
Given an initial vector V0 ∈ {0, 1}s define HH : ({0, 1}m)∗ → {0, 1}s as
follows for M = (M1, . . . ,M`) with ` > 0:

1. Set Vi ← HE(Mi, Vi−1) for i = 1, . . . , `.
2. Output HH(M) = V`.

(Bearing this iteration in mind, given a compression functionH : {0, 1}m×
{0, 1}s → {0, 1}s we will refer to the {0, 1}m part of the input as ‘message’
and the {0, 1}s part as the state or chaining variable.)

Collision Resistance. A collision-finding adversary is an algorithm
with access to one or more oracles, whose goal it is to find collisions
in some specified compression or hash function. It is standard practice to
consider information-theoretic adversaries only. Currently this seems to
provide the only handle to get any provable results. Information-theoretic
adversaries are computationally unbounded and their complexity is mea-
sured only by the number of queries made to their oracles. Without loss of
generality, such adversaries are assumed not to repeat queries to oracles
nor to query an oracle outside of its specified domain. We also assume
that the adversary, before outputting a message, makes all calls necessary
to evaluate the compressing function on that message. This does not de-
crease the advantage of the adversary, though it does increase its query
complexity.

Despite the concept of initial vector being somewhat alien to a com-
pression function on its own, it turns out helpful to consider a preimage
to the initial vector a collision [5].

Definition 1. Let n, k,m, s > 0 be integer parameters. Let H : {0, 1}m×
{0, 1}s → {0, 1}s be a compression function taking oracle E ∈ Block(k, n).
The collision-finding advantage of adversary A is defined to be

Advcoll
H (A) = max

V0∈{0,1}s
Pr
[
E

$← Block(k, n), ((M,V), (M ′, V ′))← AE,D(V0) :

(M,V) 6= (M ′, V ′) and HE(M,V) ∈ {V0, H
E(M ′, V ′)}

]
.

5

Define Advcoll
H (q) as the maximum advantage over all adversaries making

at most q queries in total.

The quantity Advcoll
H (q) denoting collision for the iterated hash func-

tion HH is defined similarly: in this case the advantage of A is the max-
imum success probability taken over the choice of possible initial values
V0, which is input to A. It is well known that the iterated hash function
H is at least as secure as the compression function H it is based upon, as
far as collision resistance is concerned [5, Lemma 1].

Theorem 2. Let H be a blockcipher based compression function and let
H be the iterated hash function based on H. Then

Advcoll
H (q) ≤ Advcoll

H (q) .

Preimage Resistance. A preimage-finding adversary is an algorithm
with access to one or more oracles, whose goal it is to find preimages in
some specified compression function. There exist several definitions de-
pending on the distribution of the element of which a preimage needs to be
found. We opt for everywhere preimage resistance [16], which intuitively
states that all points are hard to invert.

Definition 3. Let n, k,m, s > 0 be integer parameters. Let H : {0, 1}m×
{0, 1}s → {0, 1}s be a compression function taking oracle E ∈ Block(k, n).
The everywhere preimage-finding advantage of adversary A is defined to
be

Advepre
H (A) = max

W∈{0,1}s
Pr
E

(
M ′, V ′)← AE,D(W) : W = HE(M ′, V ′)

]
.

Define Advepre
H (q) as the maximum advantage over all adversaries mak-

ing at most q queries in total.

The quantity Advepre
H (q) denoting preimage resistance for the iterated

hash function HH is defined similarly (in this case the advantage of A
is the maximum success probability taken over the choice of possible
initial values V0, which is input to A). Everywhere preimage resistance is
preserved in the (MD-)iteration [1], so we get:

Theorem 4. Let H be a blockcipher based compression function and let
H be the iterated hash function based on H. Then

Advepre
H (q) ≤ Advepre

H (q) ≤ Advcoll
H (q) .

6

3 Classical Rate-1 Blockcipher Based Compression
Functions

In this section we will deal with classical rate-1 blockcipher based com-
pression functions, where the state size s equals the block length n of
the blockcipher and the message size m matches the keysize k of the
blockcipher. This includes the famous PGV hash functions [15].

Following in the footsteps of Black et al. [5], we consider Type-I and
Type-II compression functions. The former give optimal collision and
preimage resistance in the compression function. The second type gives
optimal collision resistance in the iteration; its preimage resistance can
only be proved up to the birthday bound. One of the important differences
with prior art is that we specify in very broad terms the requirements on
Cpre and Cpost. Essentially our primary concern here is for the proof to
go through. In Section 3.3 we will discuss what our classification of Type-I
and Type-II implies for the PGV hash functions.

The proof for Type-I schemes is fairly standard and straightforward.
However, for the Type-II schemes we deviate from the one by Black et
al. [5]. In particular, their proof is based upon colouring a directed graph
where the vertices represent queries with all possible answers and arcs
are drawn according to whether the input to one query is consistent with
the output of the former, given the compression function under consider-
ation. This leads to unwieldy graphs with a complicated notion of what
consitutes a collision.

This counterintuitive use of graphs was fixed by Duo and Li [7] (as well
as by Lucks [10]), who consider a directed graph where vertices correspond
to chaining values and edges are drawn (or coloured) whenever a query
has been made that would allow to move from one chaining value to the
next. Moreover, for the actual bounding of collision resistance Duo and Li
dispense with the direction of the arcs (that thus become edges). Although
this seemingly aids the adversary (certain patterns in the graph will be
deemed a success even when the underlying event on the hash function is
not), this simplification leads to a tighter bound for the Type-II schemes,
mainly because there is no longer any need to distinguish between several
cases (whose success probability are subsequently added). Our proof (of
Theorem 9) closely follows that of Duo and Li.

Note that even for Type-I schemes our bound appears a bit tighter
than the one by Black et al., which is due to their simplification based
on the the inequality 2(2n− q) > 2n, at least for q < 2n−1 (and for larger
q most of the bounds become vacuous anyway). We believe the choice

7

between tightness and simplicity in this case is one mainly of taste; we
have opted for the former.

3.1 Type-I: Collision Resistant Compression Functions

Definition 5. A single call blockcipher based compression function HE

is called rate-1 Type-I iff n = s, k = m and the following three hold:

1. The preprocessing Cpre is bijective.
2. For all M,V the postprocessing Cpost(M,V, ·) is bijective.
3. For all K,Y the modified postprocessing Caux(K, ·, Y) is bijective.

Theorem 6. Let HE be a rate-1 Type-I compression function (based on
a blockcipher with block size n). Then the advantage of an adversary in
finding a collision in HE after q queries can be upper bounded by

Advcoll
H (q) ≤ 1

2
q(q + 1)/(2n − q) .

Proof. Let V0 ∈ {0, 1}n be given. A collision consists of two pairs (M,V)
and (M ′, V ′) satisfying HE(M,V) = {V0, H

E(M ′, V ′)} yet (M,V) 6=
(M ′, V ′). We will maintain a list of triples (M,V,W) such that W =
HE(M,V) and the adversary has made the relevant queries to E and/or
D. The list is initialized with (−,−, V0). Since we require the adversary
to have made all relevant queries when outputting a collision, we can
upper bound the success probability of the adversary by bounding the
probability of a collision occuring in this list. We show that any query,
be it forward or inverse, will add at most one triple (M,V,W) to this list
of computable compression functions, moreover the value W is almost
completely out of the adversary’s control.

Consider a forward query (K,X). By bijectivity of Cpre, there is
a unique pair (M,V) corresponding to this query. Thus, each forward
query will add one triple (M,V,W) to the adversary’s list of computable
values. Since Cpost(M,V, ·) is bijective for all M,V , the distribution of
compression function output W is closely related to that of blockcipher
output Y , which is close to being uniform. More precisely, suppose that
so far t queries to E (and D) have been made involving key K, re-
sulting in t plaintext-ciphertext pairs (Xi, Yi) with Yi = E(K,Xi) for
i = 1, . . . , t. The answer to a fresh query to E(K, ·) will therefore be
Y ∗ 6= Yi, i = 1, . . . , t. Moreover, each of the 2n − t answers is equally
likely if E is an ideal cipher. Each possible answer Y ∗ will combine under
Cpost with the pair (M,V) consistent with the (K,X) query being made,

8

leading to a possible compression function outcome W ∗. Because Cpost is
bijective when (M,V) are fixed, distinct Y ∗ lead to distinct W ∗, so there
are 2n − t possible outcomes W ∗, all equally likely.

Similarly, consider an inverse query (K,Y). This yields a unique X
and hence by bijectivity of Cpre, there is a unique pair (M,V) corre-
sponding to this query once answered. Thus, each inverse query will add
one triple (M,V,W) to the adversary’s list of computable values. This
time bijectivity of Caux(K, ·, Y) implies that the distribution of W is
closely related to the (almost uniform) output distribution of D. Indeed,
suppose that so far t queries to E have been made involving key K, re-
sulting in t plaintext-ciphertext pairs (Xi, Yi) with Yi = E(K,Xi) for
i = 1, . . . , t. The answer to a fresh query to D(K, ·) will therefore be
X∗ 6= Xi, i = 1, . . . , t. Moreover, each of the 2n − t answers is equally
likely if E is an ideal cipher. Each possible answer X∗ will combine under
C−pre and Cpost with K and Y to a triple (M,V,W). Because for all K
and Y the mapping from X to W is bijective (by assumption on Caux),
distinct X∗ lead to distinct W ∗, so there are 2n − t possible outcomes
W ∗, all equally likely.

As a result, after i− 1 queries the list of computable values contains i
triples (M,V,W). The i’th query will add one triple with W uniform over
a set of size at least 2n − i+ 1. Thus the probability that the i’th query
causes a collision with any of these triples is at most i/(2n− i+ 1). Using
a union bound, the probability of a collision after q queries can then be
upper bounded by

∑q
i=1 i/(2

n − i+ 1) ≤ 1
2q(q + 1)/(2n − q). ut

Theorem 7. Let HE be a rate-1 Type-I compression function (based on
a a blockcipher with block size n). Then the advantage of an adversary in
finding a preimage in HE after q queries can be upper bounded by

Advepre
H (q) ≤ q/(2n − q) .

Proof. Let A be an adversary that tries to find a preimage for its input
σ. Assume that A asks its oracles E and D a total of q queries.

We recall the proof of Theorem 6, where we show that after i−1 queries
(to E or D) the list of computable values W = HE(M,V) contains i− 1
triples (M,V,W). The i’th query will add one triple with W uniform over
a set of size at least 2n − i+ 1. Thus the probability that the i’th query
hits σ is at most 1/(2n − i+ 1). Using a union bound, the probability of
finding a preimage for σ after q queries can then be upper bounded by∑q

i=1 1/(2n − i+ 1) ≤ q/(2n − q). ut

9

3.2 Type-II: Collision Resistance in the Iteration

Definition 8. A single call blockcipher based compression function HE

is called rate-1 Type-II iff n = s, k = m, and the following three hold:

1. The preprocessing Cpre is bijective.
2. For all M,V the postprocessing Cpost(M,V, ·) is bijective.
3. For all K, C−pre(K, ·) restricted to V , its second output, is bijective.

Theorem 9. Let HE be a rate-1 Type-II compression function. If E is
an ideal cipher with block size n, then the advantage of an adversary in
finding a collision in the iterated hash function HH after q queries is
upper bounded by

Advcoll
H (q) ≤ 1

2
q(q + 1)/(2n − q) .

Proof. Let V0 ∈ {0, 1}n be H’s initial vector.
We define an undirected graph G = (VG, EG) with vertex set VG =

{0, 1}n—corresponding to all 2n possible chaining values—and initially
an empty edge set EG = ∅. We will dynamically add edges based on the
queries to E and D. In particular, we add an edge (V,W), labelled by M ,
if we know a message M such that W = HE(M,V) (or V = HE(M,V))
and the relevant query to either E or D has been made. We claim that to
find a collision would require constructing a ρ-shape containing the initial
vector V0. Suppose that H(M) = H(M′) with M 6= M′. Write M =
(M1, . . . ,M`) and M′ = (M ′1, . . . ,M

′
`′) and correspondingly V0, . . . , V`

respectively V ′0 , . . . , V
′
`′ for the chaining values of the iterated hash. Note

that V0 = V ′0 and V` = V ′`′ . Assume ` ≤ `′. Because M 6= M′, there exists a
t such thatMi = M ′i for all 0 ≤ i < t butMt 6= M ′t (or possibly ` < t ≤ `′).
As a result, the paths (V0, . . . , Vt) and (V ′0 , . . . , V

′
t) are identical, but the

edges (Vt, Vt+1) and (V ′t , V
′
t+1) are distinct, even when V ′t+1 happens to

equal Vt+1 (in particular, the edges are labelled differently). Since V` = V ′`′
at some point the paths need to come together again, completing the ρ-
shape. Note that due to our use of an undirected graph not every ρ-shape
will lead to a collision though.

Since we are dynamically adding edges to the graph, components in
the graph will also grow dynamically. Let T be the set of all nodes that
are in a component containing a cycle or the initial vector V0. The first
claim is that after i queries, the set T has cardinality at most i + 1.
Indeed, the component containing V0 has at most i′ + 1 nodes when i′

edges are used. A cyclic component based on i′ edges has at most i′ nodes.
Thus the initial vector component is the only component in T that causes

10

the number of nodes larger than the number of edges, by at most one.
Bijectivity of Cpre implies that a query (either forward or inverse) will
add at most one edge to the graph, so after i queries, there are at most i
edges in the entire graph and at most i+ 1 nodes in T .

The second claim is that to complete a ρ-shape, either a cycle has
to be completed within the V0-component, or the V0-component needs to
be connected with a cycle. Either way, an edge has to be found of which
both nodes are already part of T . The probability that on the i’th query
a collision is found by a forward query is at most i/(2n− i): bijectivity of
Cpost(M,V, ·) ensures that W is uniformly distributed over a set of size at
least 2n− i, so hitting a set of size i occurs at most with said probability.
Similarly, for an inverse query the probability of finding a collision on the
i’th query using an inverse query is at most i/(2n−i): this time bijectivity
of Caux(K, ·, Y) ensures that V is uniformly distributed over a set of size
at least 2n − i.

We can now wrap up and conclude that the probability of finding a
collision on the i’th query is at most i/(2n − i) and the probability after
q queries is at most

∑q
i=1 i/(2

n − i) ≤ 1
2q(q + 1)/(2n − q). ut

3.3 Implications to the PGV Schemes

In this section we investigate how the 64 PGV schemes [15] fit in the
general Type-I and Type-II framework. Recall that for the PGV-style
schemes the blockcipher has key size equal to the block length; the com-
pression function will look likeHE(M,V) = E(K,X)⊕U whereK,X,U ∈
{C,M, V,M ⊕ V } and C is some fixed, publicly known bitstring. These
restrictions can also be expressed in terms of Cpre and Cpost. Our results
are in line with the classification of Black et al. [5] and the tighter bounds
by Duo and Li [7].

Let us first set up some notation. As is customary [8] for schemes
with linear processing Cpre and Cpost, we will represent the linear PGV
schemes using matrices. We will use Z2

2 to express the way K,X, and U
are functions of M and V : a vector X ∈ Z2

2 corresponds to X = X ·
(
M
V

)
,

making a distinction between the linear map X ∈ Z2
2 and the value X ∈

{0, 1}n. We will also write X = (XM , XV). We can safely ignore any affine
part, so U = (00) can be thought of to correspond to the aforementioned
U ← C. (This is without loss of generality, since translation by a constant
will not affect bijectivity in either of the criteria used in Definitions 5
and 8.) Since there are 4 elements in Z2

2 and we have to pick 3 (K,X, and
U), there are 64 constructions to consider in total, corresponding to the
64 PGV schemes.

11

(
k
x

)
\s (00) (01) (10) (11)(

0 1
1 0

)
insecure insecure EV (M)⊕M1 EV (M)⊕W 3(

0 1
1 1

)
insecure insecure EV (W)⊕M4 EV (W)⊕W 2(

1 0
0 1

)
EM (V)15 EM (V)⊕ V 5 EM (V)⊕M17 EM (V)⊕W 7(

1 0
1 1

)
EM (W)19 EM (W)⊕ V 8 EM (W)⊕M20 EM (W)⊕W 6(

1 1
0 1

)
EW (V)16 EW (V)⊕ V 10 EW (V)⊕M12 EW (V)⊕W 18(

1 1
1 0

)
EW (M)13 EW (M)⊕ V 11 EW (M)⊕M9 EW (M)⊕W 14

Table 1. The 20 Secure PGV-style schemes, writing EK(X) for E(K, X) and W for
M ⊕ V . Superscripted are the ı-indices from [5, Fig. 1 and 2]

We are now ready to see what the requirements from Definitions 5
and 8 mean in terms of the vectors K,X and U and hence for the clas-
sification and security of the PGV schemes. The 20 interesting schemes
are listed in Table 1, where we have also included the ı-indices assigned
to these schemes by Black et al. [5]. When we write Hı resp. Hı for
ı ∈ {1, . . . , 20} we refer to this enumeration. Proofs are to be found in the
full version [19].

Lemma 10. A PGV scheme is Type-I iff
(
K
X

)
and

(
K
U

)
are both invertible

matrices. In particular, H1..12 are Type-I schemes.

The requirements for the Type-II schemes turn out surprisingly sim-
ple: indeed apart from the preprocessing having full rank, the only re-
quirement is that the key depends on the message. Consequently we end
up with 16 Type-II schemes as opposed to only 8 given by Black et al.
The ‘additional’ 8 schemes we identify are also Type-I, which explains
why previously they were not classified as Type-II. Our results therefore
suggest a subdivision of the PGV Type-I schemes, namely those that are
also Type-II (being those with a key depending on the message) and those
that are just Type-I (those whose key equals the chaining variable). The
same subdivision was made by Duo and Li [7] in the context of second
preimage resistance.

Lemma 11. A PGV scheme is Type-II iff
(
K
X

)
is an invertible matrix

with KM = 1. In particular, H5..20 are Type-II schemes.

12

Combining Lemmas 10 and 11 with Theorems 6, 7, and 9 then yields
Corollary 12 below. For completeness [5, 15], it is known that the given
upper bounds on the advantages are tight up to a small constant factor.
Moreover, for H13..20 preimage resistance is worse than desired, namely
Advepre

H (q) = Θ(q2/2n) (due to a meet-in-the-middle attack). The remain-
ing 44 PGV schemes do not offer any collision resistance in the iteration.

Corollary 12. (Security of the PGV schemes) For H1..12 it holds that
Advcoll

H (q) ≤ 1
2q(q + 1)/(2n − q), and Advepre

H (q) ≤ q/(2n − q); for H13..20

it holds that Advcoll
H (q) ≤ 1

2q(q + 1)/(2n − q).

4 Generalized Single Call Compression Functions

In the previous section we discussed the standard (single call) case where
the input and output sizes of the compression function neatly matched
those of the underlying blockcipher, in particular m = k and s = n. In
this section we let go of these restrictions and consider three more general
scenarios.

First we will consider what could be called chopping the output of the
compression (or really the scenario where s < n). For instance, the Davies-
Meyer construction is optimally collision and preimage resistant, but what
happens if you chop the output: is the security still optimal given the new
output length (it is). A welcome benefit of chopping the output is that it
frees up bits for the message. More precisely, if s < n then we can have
a larger m while maintaining m + s = n + k. In particular, compression
becomes feasible even for fixed permutations (corresponding to k = 0).
In view of the recent availability of huge size permutations constructions
with s < n gain traction; an example is Grindahl[9]. We will refer to this
scenario as compression in the postprocessing, the corresponding HE ’s
are called chopped compression functions.

Similarly, one might also try to improve efficiency by squeezing in
more bits of input in the compression function than can be input to the
primitive (this corresponds to m + s > n + k). We call this compression
in the preprocessing and speak of overloaded compression functions. Like
the previous scenario, this opens up the possibility of achieving compres-
sion based on a single fixed permutation. We suggest a general Type-I
compression function and give a bound on its collision resistance and
preimage resistance. Security in the iteration is more complicated here:
we discuss related work and point out some challenging open problems.

Finally we deal with the problem of getting security beyond the block
length of the blockcipher, that is s > n. Here we say that expansion

13

in the postprocessing gives rise to supercharged compression functions.
Promising results were previously given by Lucks [10] in the iteration and
Stam [18] for a compression function. We develop a general theory and
give two concrete examples based on the latter work.

(Any missing proofs, as well as an expanded treatment of supercharged
compression functions, can be found in the full version [19].)

4.1 Chopping: Compression in the Postprocessing

Let us consider an m+ s-to-s bit compression function based on a single
call to a blockcipher with key size k and block size n. In this section we
will assume that m+s = n+k and s < n. What can we say of the collision
and preimage resistance of the compression function resp. iterated hash
function, under which conditions will we achieve optimal security?

If we go through the criteria from the previous section, it is clear we
can no longer satisfy them all. More to the point, whereas the first con-
dition (bijectivity of the preprocessing) still applies, the postprocessing
now becomes a mapping from n to s bits, which cannot be bijective since
s < n. The natural generalization is to replace being a bijection with be-
ing balanced: all elements in the codomain should have the same number
of preimages, namely 2n−s. It turns out that this fairly simple modifi-
cation works quite well. Again we have two types: the first one giving
optimal collision and preimage resistance for the compression function;
the second one giving optimal collision resistance in the iteration only
(and guaranteed preimage resistance only up to the collision resistance).

Definition 13. A single call blockcipher based compression function HE

is called chopped single call Type-I iff s < n,m + k = n + s, and the
following three hold:

1. The preprocessing Cpre is bijective.
2. For all M ,V the postprocessing Cpost(M,V, ·) is balanced.
3. For all K,Y the modified postprocessing Caux(K, ·, Y) is balanced.

Definition 14. A single call blockcipher based compression function HE

is called chopped single call Type-II iff s < n,m + k = n + s and the
following three hold:

1. The preprocessing Cpre is bijective.
2. For all M ,V the postprocessing Cpost(M,V, ·) is balanced.
3. For all K the inverse preprocessing C−pre(K, ·) when restricted to its

V output is balanced.

14

Theorem 15. Let HE be a chopped single call Type-I compression func-
tion. Then the advantage of an adversary in finding a collision, resp. a
preimage in HE after q queries can be upper bounded by

Advcoll
H (q) ≤ q(q + 1)/2s, Advepre

H (q) ≤ q/2s−1 .

Theorem 16. Let HE be a chopped single call Type-II compression func-
tion. Then the advantage of an adversary in finding a collision in the
iterated hash function HH after q queries is upper bounded by

Advcoll
H (q) ≤ q(q + 1)/2s .

4.2 Overloading: Compression in the Preprocessing

Another way to improve efficiency it to keep s = n, but allow m > k. In
this case bijectivity of the preprocessing can no longer be satisfied, which
has ramifications throughout.

Firstly, for a given pair (K,X) it is now the case that C−pre yields
a set of 2m−k pairs (M,V). Consequently, the modified postprocessing
Caux(K, ·, Y) becomes a function from n-bits to subsets of size (up to)
2m−k of {0, 1}n. Our requirement on this new type of Caux is a natural
generalization of balancedness.

Secondly, although the condition that Cpost(M,V, ·) is bijective is
still well-defined, it is no longer sufficient. For instance, if Cpre(M,V) =
Cpre(M ′, V ′) for certain values of (M,V) 6= (M ′, V ′) and the bijections
Cpost(M,V, ·) and Cpost(M ′, V ′, ·) are identical, then collisions can very
easily be found. To avoid this problem we explicitly rule out collisions in
the output whenever (M,V) and (M ′, V ′) already collide during prepro-
cessing (in Cpre).

Definition 17. A single call blockcipher based compression function HE

is called overloaded single call Type-I iff s = n,m ≥ k, and the following
four hold:

1. The preprocessing Cpre is balanced.
2. For all (M,V) 6= (M ′, V ′) with Cpre(M,V) = Cpre(M ′, V ′) and all

Y it holds that Cpost(M,V, Y) 6= Cpost(M ′, V ′, Y).
3. For all M,V the postprocessing Cpost(M,V, ·) is bijective.
4. For all K,Y the modified postprocessing Caux(K, ·, Y) is balanced in

the sense that for all V the number of X such that V ∈ Caux(K,X, Y)
equals 2m−k.

15

Theorem 18. Let HE be an overloaded single call Type-I compression
function. Then the advantage of an adversary in finding a collision, resp.
a preimage in HE after q queries can be upper bounded by

Advcoll
H (q) ≤ q(q + 1)/22k+n−2m, Advepre

H (q) ≤ q/2n+k−m−1 .

Theorem 18 can be reinterpreted by saying that to find collisions
roughly 2n/2+k−m queries are required; to find preimages roughly 2n+k−m

queries should suffice. It is interesting to compare the collision resis-
tance thus achieved with recently conjectured optimal bounds [17, 18].
A straightforward generalization of Rogaway and Steinberger’s result [17]
suggests the best we can achieve is collision resistance up to 2n/2+k−m

queries, neatly corresponding to our construction. However, Stam [18]
conjectures collision resistance is feasible up to 2(n+k−m)/2 queries, based
on an ideal state size s of n + k −m bits. Using this state size actually
brings us back exactly to compression in the postprocessing as discussed
in the previous section: by reducing s we can increase m while maintaining
n+ k = m+ s and Theorem 15 essentially guarantees collision resistance
up to 2(n+k−m)/2 queries. So here is another scenario where reducing the
state size mysteriously seems to boost collision resistance.

But all is not as it seems. An example overloaded single call Type-I
compression function is Davies-Meyer with the m−k superfluous message
bits xored directly into the output. It is not hard to show that in this case
the collision finding advantage is much smaller than Theorem 18 makes
believe:

Advcoll
H (q) ≤ q(q + 1)/2k+n−m .

Iterated Case. For rate-1 and chopped compression functions, look-
ing at the iteration gave rise to a second class of schemes that had the
same collision resistance in the iteration as the main schemes, but inferior
preimage resistance. For overloaded compression functions, we do not give
a classificiation of Type-II schemes (also in light of our Type-I bounds’
lack of tightness). However, we do point out that some non-trivial results
in this setting were previously achieved for sponge functions [4], whose
collision resistance (in the iteration) holds roughly up to 2(n−m)/2 queries
(k = 0). This matches the collision resistant compression function of the
previous paragraph.

However, recent developments indicate that iteration might boost col-
lision resistance even further. In particular, the sponge construction has
rate α = m/(n−m) achieving collision resistance up to roughly 2n(1−α)/2

queries. Rogaway and Steinberger [17] have shown that for any rate-α

16

construction after 1.9n2n(1−α) queries collisions are guaranteed. This still
leaves a considerable gap.

4.3 Supercharging: Expansion in the Postprocessing

Whereas for chopped and overloaded compression functions we sacrificed
security for the sake of efficiency, in this section we will attempt the
exact opposite: sacrificing efficiency for the sake of security. We do this
by extending the state size, so s > n. Not to complicate things further,
we will assume that m + s = n + k (and let Cpre be bijective). For any
fixed pair (M,V) we have that Cpost maps {0, 1}n to {0, 1}s. Since n < s
this cannot be a bijection, but at best an injection (similar for Caux).
If all these injections have exactly the same range, we are not using our
codomain of 2s values to the full; indeed we might have well been padding
the state with a constant. This leads us to the following formalization.

Definition 19. A single call blockcipher based compression function HE

is called supercharged single call Type-I with overlap γ iff s ≥ n,m+ s =
n+ k and the following three hold:

1. The preprocessing Cpre is bijective.
2. For all M,V the postprocessing Cpost(M,V, ·) is injective, with effec-

tive range Rpost,(M,V).
3. For all K,Y the modified postprocessing Caux(K, ·, Y) is injective,

with effective range Raux,(K,Y).

Where the overlap γ is defined as:

γ = max
{
|RZ ∩RZ′ | : Z,Z ′ ∈ {post,aux} × {0, 1}k+n, Z 6= Z ′

}
.

Theorem 20. Let HE be a supercharged single call Type-I compression
function with overlap γ. Then the advantage of an adversary in finding a
collision after q ≤ 2n−1 queries can be upper bounded by

Advcoll
H (q) ≤ qκ/2n−1 + 2m+s+1

(
eγq

(κ− 1)2n−1

)κ−1

for arbitrary positive integer κ > qγ/2n−1.

Corollary 21. Let HE be a supercharged single call Type-I compression
function with overlap γ. Then for q < 2n−1/γ

1
2 the probability of finding

a collision can be upper bounded by

Advcoll
H (q) ≤ 2 max(2eγ

1
2 ,m+ n+ s+ 2)q/2n .

17

In practice this means that we get good security up to q of order
2n/γ

1
2 . Stam [18] suggests that finding collisions can be expected after

2(n+k−m)/2 queries. Since n+ k = m+ s this neatly corresponds to 2s/2,
in other words optimal collision resistant compression functions of this
type might actually exist. Note that the rate is lower than before, ar-
guably m/n. As we show in Lemma 22, the best we can hope for is γ of
order 22n−s, giving collision resistance up to 2s/2 queries. Whether for all
relevant settings of n, s, k, and m there exists a postprocessing Cpost with
overlap γ close to 22n−s is an open problem. Below we give two examples
where it does though, based on an earlier construction [18].

Lemma 22. Let HE be a supercharged single call Type-I compression
function then overlap

γ ≥ 2(22n+m − 2n)
2s+m − 1

(≈ 22n−s+1) .

Example I: A Double-Length Construction. We recall the construc-
tion [18] for a double length compression function based on a single ideal
3n-to-n compression function F . Split the 2n-bit state V in two equally
sized parts V1 and V2. Then given an n-bit message block M , compression
proceeds as follows:

1. Compute Y ← F (M,V1, V2).
2. Output (W1,W2)← (Y, V2Y

2 + V1Y +M).

where the polynomial evaluation is over F2n . Originally only a proof of
collision resistance against non-adaptive adversaries was given, based on
random functions instead of random permutations (so in particular an
adversary would not have access to an inversion oracle). We would like to
port the scheme to the ideal cipher model, based on a blockcipher with
k = 2n.

1. Set K ← (V1, V2) and X ←M .
2. Compute Y ← E(K,X).
3. Compute W1 ← Y + M and W2 ← MW 2

1 + V1W1 + V2; output
(W1,W2).

Lemma 23. For the compression function above, γ = 3.

Proof. To determine the overlap γ it helps to first write down the effective
ranges Rpost,(M,V) and Raux,(K,Y) explicitly. It is easy to see that

Rpost,(M,V1,V2) =
{

(W,MW 2 + V1W + V2)|W ∈ {0, 1}n
}

18

and with a little bit more effort, using that M = Y +W and (K1,K2) =
(V1, V2),

Raux,(K1,K2,Y) =
{

(W,W 3 + YW 2 +K1W +K2)|W ∈ {0, 1}n
}
.

As a result, for (W1,W2) to be in the intersection of RZ and RZ′ , we
require W1 to be a root of the difference of the two polynomials that
define W2 for Z resp. Z ′. It can be readily verified that Z 6= Z ′ implies the
relevant two polynomials are distinct as well, and the resulting difference
is a non-zero polynomial of degree at most three. It will therefore have at
most three roots over F2n . ut

Corollary 24. For the compression function above, for q ≤ 2n−
3
2 :

Advcoll
H (q) ≤ (n+

1
2

)q/2n−3 .

Curiously, if we would change the computation of W2 even slightly,
for instance W2 ← V2W

2
1 + V1W1 + M , the impact on the overlap γ is

dramatic. Suddenly Raux,(K1,K2,Y) = {W,K2W
2 + (K1 + 1)W + Y |W ∈

{0, 1}n} and consequently Raux,(V1+1,V2,M) = Rpost,(V1,V2,M), so that γ =
2n. As a result, Theorem 20 can only be used to guarantee collision resis-
tance up to roughly 2n/2 queries.

We note that like the original [18], our double length construction has
some obvious shortcomings (see the full version [19] for more details).

Example II: An Intermediate Construction. We conclude with a
construction based on a 3n/2 bit state (split into three parts of n/2 bits
each), that compresses n/2 message bits.

1. X ← (M,V1),K ← (V2, V3);
2. Y ← E(K,X);
3. W1 ← Y1 +M,W2 ← Y2 +V1, and W3 ←MW 3

1 +V1W
2
1 +V2W1 +V3.

Lemma 25. For the compression function above, γ = 22+n/2.

Corollary 26. For the compression function above and all q < 23n/4−2

Advcoll
H (q) ≤ eq/23n/4−3 .

Acknowledgements

The author would like to thank John Black, Phil Rogaway and Onur
Özen for useful ideas on the presentation; Elena Andreeva, Lars Knudsen
and the anonymous FSE’09 referees for pointing out certain problems
with preimage resistance; and Tom Shrimpton for great advice for the
duration of the project.

19

References

[1] E. Andreeva, G. Neven, B. Preneel, and T. Shrimpton. Seven-property-preserving
iterated hashing: Rox. In Asiacrypt’07, LNCS 4833, pages 130–146. Springer,
2007.

[2] D. J. Bernstein. Cubehash specification (2.b.1). Submission to NIST, 2008.
[3] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions. Ecrypt

Hash Workshop, 2007.
[4] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the indifferentia-

bility of the sponge construction. In Eurocrypt’08, LNCS 4965, pages 181–197.
Springer, 2008.

[5] J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis of the block-cipher-
based hash-function constructions from PGV. In Crypto’02, LNCS 2442, pages
320–335. Springer, 2002.

[6] I. Damg̊ard. A design principle for hash functions. In Crypto’89, LNCS 435,
pages 416–427. Springer, 1990.

[7] L. Duo and C. Li. Improved collision and preimage resistance bounds on PGV
schemes. Technical Report 462, IACR’s ePrint Archive, 2006.

[8] W. Hohl, X. Lai, T. Meier, and C. Waldvogel. Security of iterated hash functions
based on block ciphers. In Crypto’93, LNCS 773, pages 379–390. Springer, 1993.

[9] L. R. Knudsen, C. Rechberger, and S. S. Thomsen. The Grindahl hash functions.
In FSE’07, LNCS 4593, pages 39–57. Springer, 2007.

[10] S. Lucks. A collision-resistant rate-1 double-block-length hash function. In
Symmetric Cryptography, number 07021 in Dagstuhl Seminar Proceedings, IBFI,
2007.

[11] S. Matyas, C. Meyer, and J. Oseas. Generating strong one-way functions with
cryptographic algorithms. IBM Technical Disclosure Bulletin, 27(10a):5658–5659,
1985.

[12] A. Menezes, P. van Oorschot, and S. Vanstone. CRC-Handbook of Applied Cryp-
tography. CRC Press, 1996.

[13] R. C. Merkle. One way hash functions and DES. In Crypto’89, LNCS 435, pages
428–446. Springer, 1990.

[14] S. Miyaguchi, M. Iwata, and K. Ohta. New 128-bit hash function. In Proceedings
4th International Joint Workshop on Computer Communications, pages 279–288,
1989.

[15] B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on block
ciphers: A synthetic approach. In Crypto’93, LNCS 773, pages 368–378. Springer,
1993.

[16] P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions,
implications and separations for preimage resistance, second-preimage resistance,
and collision resistance. In FSE’04, LNCS 3017, pages 371–388. Springer, 2004.

[17] P. Rogaway and J. Steinberger. Security/efficiency tradeoffs for permutation-
based hashing. In Eurocrypt’08, LNCS 4965, pages 220–236. Springer, 2008.

[18] M. Stam. Beyond uniformity: Better security/efficiency tradeoffs for compression
functions. In Crypto’08, LNCS 5157, pages 397–412. Springer, 2008.

[19] M. Stam. Blockcipher based hashing revisited. Technical Report 071, IACR’s
ePrint Archive, 2008.

20

