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Abstract. In 1989–1990, two new hash functions were presented, Snefru
and MD4. Snefru was soon broken by the newly introduced differential
cryptanalysis, while MD4 remained unbroken for several more years. As
a result, newer functions based on MD4, e.g., MD5 and SHA-1, became
the de-facto and international standards. Following recent techniques of
differential cryptanalysis for hash function, today we know that MD4 is
even weaker than Snefru. In this paper we apply recent differential crypt-
analysis techniques to Snefru, and devise new techniques that improve
the attacks on Snefru further, including using generic attacks with dif-
ferential cryptanalysis, and using virtual messages with second preimage
attacks for finding preimages. Our results reduce the memory require-
ments of prior attacks to a negligible memory, and present a preimage
of 2-pass Snefru. Finally, some observations on the padding schemes of
Snefru and MD4 are discussed.

1 Introduction

Snefru [7] and MD4 [13] are two hash functions designed in 1989–1990. Soon
after, an attack on Snefru based on the newly introduced differential cryptanal-
ysis was published [2, 1]. As a result, MD4 became the de-facto standard. Later,
MD5 [14] and SHA-1 [8], which are improved functions of the MD4 family, re-
placed MD4 as the official and de-facto standards. Following the recent attacks
of Wang [15] we know that collisions of MD4 can be found by hand, with com-
plexity between 22 and 26, so that MD4 is even weaker than Snefru. Snefru
has several variants, varying in the number of passes and the hash sizes. The
supported hash sizes are 128 and 256 bits. The number of passes in the orig-
inal 2-pass variant of Snefru is two passes, while a more secure 4-pass version
is also available. After the prior attacks were published, an 8-pass version was
introduced as well. This 8-pass version is still considered secure.



The most basic and standard attacks on hash functions are the birthday
attacks. Their standard implementation requires a large memory (whose com-
plexity is typically the same as the time complexity). Memoryless generic attacks,
in which only a negligible amount of memory is required, can also be performed
with the same time complexity. The most well known of those is the Floyd [4,
Page 7] two-pointer cycle detection algorithm, for which there is a variant that
finds a collision. Floyd algorithm is also used in other cryptographic contexts,
e.g., the Pollard Rho factoring algorithm [11]. The algorithms of [12, 10] are
more efficient and parallelized versions. Another interesting algorithm (which is
between three and five times faster than Floyd) was designed by Nivasch [9].
This algorithm uses a single pointer and a small stack, and saves the overhead of
advancing two pointers, and applying the iterated function three times at each
step.

Soon after the introduction of Snefru, Biham and Shamir applied their newly
introduced techniques of differential cryptanalysis [2, 1] to Snefru, and presented
efficient second preimage and collision attacks on 2-pass Snefru, as well as many
instances of collisions and second preimages. Their attack could also find second
preimages and collisions of 3-pass and 4-pass Snefru, but the higher time com-
plexities and memory requirements prevented them from implementing these
attacks.

In this paper we present two main techniques that extend these attacks on
Snefru: one that combines differential cryptanalysis with generic collision search
techniques, in order to get the best of both worlds, i.e., the complexity of differ-
ential cryptanalysis, with the memory requirements of the generic memoryless
collisions search techniques. Using this technique, the first collision of 3-pass
Snefru was found. The other contribution presents a method that allows to use
a second preimage attack for finding preimages of the compression function of
Snefru, using specially crafted virtual messages, which are not preimages of the
function, but on which the second preimage attack can be applied, and find
a preimage of the function. Many such preimages of the compression function
of 2-pass Snefru were found using this technique. The same attack can also be
used for 3-pass and 4-pass Snefru, with higher complexities. We also discuss the
importance of the particular padding scheme of the hash function, and how it
affects the ability to find preimages of the full hash function. Finally, a very long
preimage of 2-pass Snefru is presented.

The paper is organized as follows. Section 2 describes Snefru. Prior attacks
on Snefru are described in Section 3. Section 4 describes generic memoryless
collision search algorithms. In Section 5 memoryless collision attacks based on the
combination of differential cryptanalysis with generic attacks are described, and
Section 6 describes the preimage attacks on Snefru. Finally, Section 7 summarizes
the paper.
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Fig. 1. The Mode of Operation of Snefru

2 Description of Snefru

Snefru [7] is an iterative hash function that follows the Merkle-Damg̊ard con-
struction [5, 6, 3]. It was designed to be a cryptographic hash function which
hashes messages of arbitrary length into 128-bit values (a 256-bit variant based
on the same design was also introduced). Snefru uses a padding scheme that
always adds an additional padding block with the length of the message (unlike
the more compact padding scheme of MD4 [13], which adds another block only if
necessary). Messages are divided into 384-bit blocks, M1, . . . , Mn−1, where the
last block is padded by ‘0’s. An additional block Mn containing only the message
length (in bits) is appended. Each block is then mixed with the chaining value
(initially using IV = 0) by a compression function C. The compression function
C takes a 512-bit input composed of the chaining value and the current block,
and calculates a new chaining value. More formally, hi = C(hi−1‖Mi) for any
1 ≤ i ≤ n, where ‘‖’ is the concatenation operator of bit vectors, Mi is block
number i, and h0 = 0. The final hash is hn. This mode of operation is outlined
in Figure 1.

The compression function is based on an invertible 512-bit to 512-bit permu-
tation (which can be viewed as a keyless block cipher). The permutation mixes
the data in two passes in the standard two-pass version of Snefru, and in four
passes in the more secure four-pass Snefru. Each pass is composed of 64 mixing
rounds. In round i, the least significant byte of word i mod16 is used as an input
to an 8x32-bit S box, whose 32-bit output is XORed into the two neighboring
data words (all word indices are taken mod 16). After every set of 16 rounds
(to which we call a quarter), a rotation of each of the words is performed, in
order to ensure that each of the 64 bytes is used as an input to an S box once
every pass (64 rounds). The output of the compression function is the XOR of
the input chaining value with the last words of the output of the permutation.
The details of the compression function are described in Figure 2. A complete
description on Snefru, including the S boxes, can be found in [7].

3 Prior Attacks

Prior attacks on Snefru are discussed in [2, 1]. These attacks include collision
attacks as well as second preimage attacks. Some of the prior attacks even work
if the attacker does not know the details of the S boxes. In this section we
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function C (int32 input[16]) returns int32 output[4]

{
int32 block[16];

int32 SBoxEntry;

int i, index, byteInWord;

int shiftTable[4] = {16, 8, 16, 24};

block = input;

for index = 0 to NO OF PASSES-1 do { (pass index)
for byteInWord = 0 to 3 do { (quarter index*4+byteInWord)
for i = 0 to 15 do { (round index*64+byteInWord*16+i)

SBoxEntry = SBOX[2*index+((i/2) mod 2)][block[i] mod 256];

block[(i + 1) mod 16] ⊕= SBoxEntry;

block[(i - 1) mod 16] ⊕= SBoxEntry;

}
for i = 0 to 15 do

block[i] = block[i] ≫ shiftTable[byteInWord];

}
}

for i = 0 to 3 do

output[i] = input[i] ⊕ block[15-i];

return(output);

}

Fig. 2. The Compression Function of Snefru

describe the main ideas and basic techniques of the attacks, concentrating on
the variants with 128-bit hash values.

The second preimage attack is as follows: choose a random block-sized mes-
sage and prepend the given 128-bit input chaining value to form a 512-bit input
to the permutation of the compression function. We create a second message
from the first one by modifying two or more bytes in words 5–11, which are used
as inputs to the S boxes at rounds 53–59 (i.e., those bytes that do not affect the
computation before the fourth quarter). We hash both messages by the compres-
sion function and compare the outputs of the two executions. A fraction of 2−40

of these pairs of messages are hashed to the same value. Therefore, by hashing
about 241 messages we can find a second preimage. As described later in this
section, the number can be greatly reduced by using more structured messages.

The characteristic used in this attack is outlined in Figure 3. In the figure
each column represents a word of data and each row represents a quarter (16
rounds), where each round is marked by a thin line along the edges. The input
appears at the top of the figure, and the calculation is performed downwards.
The gray area in the middle represents arbitrary non-zero differences, while the
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Fig. 3. Graphic Description of the Characteristic

white areas represent zero differences. The two thick black lines at the top-
left and the bottom-right corners point to the words which are used in the
calculation of the hash value by the compression function. Since both of them
occur in the white part of the block, such two messages hash to the same value.
In this characteristic, no difference is propagated till round 53 (fourth quarter),
in which the difference affects the input of the S box for the first time. The
output of the S box then affects the two neighboring words, and so repeatedly
in the next rounds till round 58. With some luck, which comes with probability
2−8, the output of the S box of round 58 cancels the difference of the least
significant byte in the next word, leading to a zero difference in the input to
the S box in round 59, and then to zero differences in the inputs to the S boxes
of the following rounds till the next quarter. The difference propagates again in
round 68–74 (fifth quarter), and with some luck, the difference in the S box of
round 75 is zero again. Similarly, if we are lucky three more times (in rounds 91,
107, and 123), then the difference of the last four words of the permutation is
zero, which after XORed with the input chaining value, is leading to a collision
of the output. We call this pillar of lucks a wall (as all lucks stand on top of each
other), and the slow propagation of the differences at the left hand side a stairs

shape. The total probability of all the five “lucks” in the wall is 2−8·5 = 2−40.
As the first two “lucks” can be assured deterministically by a simple selection
of the changes, the actual probability is 2−24. Thus, a second preimage attack
using this characteristic and all these techniques has complexity 2 · 224 = 225.

5



Fig. 4. A Characteristic with Modification at an Intermediate Round

These ideas lead to very efficient collision attacks, by using structures of
messages. We randomly choose about 212.5 messages in which all the inputs in
the white area are the same in all messages, while the messages differ in (up
to seven) gray bytes. For each message, we apply the needed (deterministic)
modifications to fix the difference of the “lucky” S boxes of quarters 4 and 5.

We then hash all these messages. We get about (212.5)2

2 = 224 pairs of messages
which are then subjected to the second preimage attack. With high probability
such a structure contains a right pair, i.e., a pair whose two messages hash to the
same value. Such a pair can be easily found by sorting the 212.5 hashed values.
The memory complexity of this attack is the same as the time complexity, due to
the need to keep all the computed values, for performing the tests for collisions.
This attack can also be used when Snefru is considered as a black box, which
hides the choice of the S boxes.

An important observation is that whenever the S boxes are known to the at-
tacker, the modification of the bytes may be performed at an intermediate round
rather than in the message itself. In this case we choose a message and partially
hash it, in order to get the value of the data block at some intermediate round.
Figure 4 describes such a characteristic, which modifies the data at the interme-
diate round denoted by the dashed line. The attack modifies the gray bytes at
the marked location, rather than in the message itself. Then, the input of the
permutation is calculated by performing the inverse of the compression function
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No. of passes Second Preimage Collision
(time) (time & memory)

2 224 212.5

3 256 228.5

4 288–2112 244.5–256.5

Table 1. Summary of the Complexities of the Prior Attacks

backwards from the marked location, and its output is calculated forward. From
the input and the output of the permutation, the output of the compression
function is then calculated. The remaining details of the attacks are the same as
in the prior case.

Characteristics may also have differences in all the bytes of words in the
marked location (rather than just one in each word). Such characteristics are
very useful for longer versions of the hash function, i.e., 3-pass and 4-pass Snefru.

A summary of the prior second preimage and collision attacks on Snefru is
given in Table 1.

4 Generic Memoryless Collision-search Algorithms

In this section we briefly describe two generic memoryless collision-search algo-
rithms.

4.1 Floyd Algorithm

Floyd algorithm [4, Page 7] traverses the graph generated by iterative application
of a function f . It is used by Pollard’s Rho factoring algorithm [11], and variants
of which are used in the attacks on hash functions of Oorschot and Wiener [10].
In this algorithm, two pointers to the graph are used, one advances by one edge
at a time, while the other advances by two at a time. At some moment, the
slower pointer enters a cycle, and some time afterwards, their distance would be
a multiple of the cycle size, i.e., they will both point to the same location inside
the cycle. Once we identify this fact, we deduce the size of the cycle (actually
a multiple of the cycle size), and an approximate information on the length of
the path from the starting point to the cycle. The collision search variant of
Floyd algorithm repeats the process, one pointer starts from the starting point,
and the other from the reached location on the cycle, and both advance at the
same speed of one edge at a time. After some time they will both point to the
first location of the cycle. The previous values of these two pointers form the
collision. A detailed description is given in Figure 5. The expected complexity
of this attack is about 2m/2, and it calls the function f up to five times for each
value in the path to the collision.
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1. Let f be the hash function.
2. Select some starting point v0 at random.
3. u = f(v0), v = f(f(v0)).
4. while u 6= v do

(a) u = f(u).
(b) v = f(f(v)).

5. If v = v0, the starting point v0 is in the cycle – stop, and try again with another
starting point.

6. u = v0.
7. repeat

(a) u′ = u, v′ = v.
(b) u = f(u).
(c) v = f(v).
until u = v.

8. Now u′ 6= v′, and f(u′) = f(v′).

Fig. 5. Floyd Algorithm with Collision Search

1. Let f be the hash function.
2. Initialize a stack.
3. Select some starting point v0 at random, and assign u = v0.
4. while stack is empty or u 6= top(stack)

(a) Push u to the stack.
(b) Compute u = f(u).
(c) While stack is not empty and top(stack) > u, remove the top entry from the

stack.
5. Once this line is reached, u is the minimal value in the cycle.

Fig. 6. Nivasch Cycle Detection Algorithm

4.2 Nivasch Algorithm

In 2004, Nivasch described another cycle detection algorithm [9] that uses only a
single pointer into the graph, but keeps a small stack that consists of increasing
values of the vertices. At each step, the stack contains all the values in the
path that satisfy the property that no smaller value exists in the path anywhere
between them and the current point. Therefore, the current value is at the top
of the stack, just below it resides the last value in the path that is smaller than
it, and so on. The idea is that once we reach the minimal point in the cycle the
second time, the minimal point is the only point in the cycle that remains on
the stack, so it is easy to identify this point. This cycle detection is described
in Figure 6. The expected size of the stack is logarithmic with the number
of computations of f(u), which in practical cases is only a few tens up to an
hundred. This algorithm is up to three times faster than Floyd’s. The difference
is especially meaningful when the tail of the path is larger than the cycle. A multi-
stack variant of Nivasch algorithm can detect the cycle even earlier by utilizing
several stacks without loss of efficiency [9]. An adaptation of the multi-stack
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1. Let f be the hash function.
2. Initialize an array of S stacks.
3. Let g : range(f) → {0, . . . , S−1} be an efficient balanced function, e.g., a function

that truncates the input to log
2
S bits.

4. Select some starting point v0 at random, and assign u = v0.
5. Compute s = g(u).
6. Initialize a counter c = 0.
7. while stack[s] is empty or u 6= top(stack[s])

(a) Push the pair (u, c) to stack[s].
(b) Compute u = f(u).
(c) Compute s = g(u).
(d) Increment c.
(e) While stack[s] is not empty and top(stack[s]).u > u, remove the top entry from

stack[s].
8. Compute the size of the cycle p = c−top(stack[s]).c.
9. Assign c = cm = top(stack[s]).c.

10. Assign v = v0 and d = 0.
11. For each stack[s], s ∈ {0, . . . , S − 1}

– If there is a pair (u′, c′) in stack[s] (including in popped entries that were not
yet overwritten) such that d < c′ < cm, assign v = u′ and d = c′ (if there are
several such pairs, use the one with the largest c′).

12. For each stack[s], s ∈ {0, . . . , S − 1}
– If there is a pair (u′, c′) in stack[s] (including in popped entries that were not

yet overwritten) such that c < c′ ≤ d + p, assign u = u′ and c = c′ (if there
are several such pairs, use the one with the largest c′).

– Otherwise, there is a pair with a minimal c′ such that cm ≤ c′, if also c < c′

assign u = u′ and c = c′

13. if c − p > d, iteratively compute v = f(v), c − p − d times.
14. if c − p < d, iteratively compute u = f(u), d − c + p times.
15. If u = v, the starting point v0 is in the cycle – stop, and try again with another

starting point.
16. repeat

(a) u′ = u, v′ = v.
(b) u = f(u).
(c) v = f(v).
until u = v.

17. Now u′ 6= v′, and f(u′) = f(v′).

Fig. 7. Nivasch Multi-Stack Algorithm with Collision Search

variant of Nivasch’s algorithm, with collision search (using a second pointer),
which makes an optimal use of the values in the stacks, is given in Figure 7. At
first reading, it is advisable to follow the cycle detection part of this algorithm up
to Step 8 in order to understand the stacks method, and then follow it again with
a single stack (by assuming that S = 1 and g(·) ≡ 0), and ignore Steps 11–12
(which are optimization steps, and the algorithm would work correctly without
them), so that only the collision search is added on top of the original algorithm.
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Fig. 8. A Three-Pass Characteristic

5 Using Generic Algorithms for Attacking Snefru

The main drawback of the prior attacks on Snefru is the requirement for a large
memory, which in the case of a 3-pass Snefru is about eight gigabytes, and in
the case of a 4-pass Snefru is many thousands of terabytes.

In this section we describe a new technique which uses a generic collision
search algorithm in conjunction with differential cryptanalysis. This combination
was not known in the past, and shows that seemingly unrelated techniques may
be combined to form better attacks.

The collision attack on 3-pass Snefru uses the characteristic given in Figure 8.
In this characteristic, more than 64 bits may be modified in the marked location.
As the conditions of the first six quarters (on the marked location and above
it) can be ensured with probability 1 by various simple changes to the message
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block, the probability of this characteristic is 2−56, i.e., a second preimage can
be found after about 256 trials, and a collision may be found after 228.5 trials
but using 228.5 records of memory. Let k be the number of trials required for the
collision attack (e.g., k = 228.5 in the case of 3-pass Snefru).

We observe that the prior attack on Snefru makes various tweaks to a message
block (or intermediate data) with the hope that some of the tweaks will have
the same hash result. The attack can be summarized as follows:

1. Select a block, and compute the values in the location marked by a dashed
line.

2. Do about k times:
(a) Select a “random” tweak for the active bytes in marked location.
(b) Assign the tweak to the active bytes in the marked location.

(c) Modify the required bytes to control the first six quarters.

(d) Compute backwards to get the message block.

(e) Compute forward to get the output of the permutation.

(f) Compute the XOR of the last output words with the chaining

value, resulting with the output of the compression function

for that block.

(g) Insert to a hash table.
(h) If a collision is found: report the collision and stop.

Though it is not impossible these days to apply this attack on 3-pass Snefru
using about 8GB of RAM, this is certainly a limit on the practicality of the
attack. For 4-pass Snefru the required memory size ensures that the attack would
be impossible to apply for many years to follow. We would thus prefer to need
a smaller amount of memory.

We observe that Steps 2b–2f can be viewed as a function f of the tweak.
With this notation, the attack becomes:

1. Select a block, and compute the values in the location marked by a dashed
line.

2. Do about k times:
(a) Select a “random” tweak for the active bytes in marked location.

(b–f) Compute y = f(tweak).
(g) Insert to a hash table.
(h) If a collision is found: report the collision and stop.

However, once we model the attack as a repetitive application of the function
f and a search for a collision of the outputs, we are able to use memoryless
collision search techniques instead, using the same function f .

Note that for using the memoryless algorithms, f should have the same num-
ber of input and output bits, which is reached by truncating the output to the
size of the tweak. In the case of the 3-pass example, f processes 64-bit values
into 64-bit values (by truncating the 128-bit output to 64 bits). We expect a
random collision (of the truncated values) after 232 iterations — such a collision
is a false alarm. We expect a real collision, due to the differential characteristic,
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First message: 00000000 00000000 00000000 014A2500 D5717D14 06A9DE9B

12DB2554 304D2ECE 421F027B 063C73AD 1AF7BDC1 A1654FED

Second message: 00000000 00000000 00000000 9F713600 69B6241A 25DE987C

D142F521 F1A56064 D9BF9D7E E03501DA 680D062F D136E7EA

Common
compressed value: 70DE98A5 4FA2634A E57E0F2D 7F93FCD9

Table 2. An Example Collision of 3-Pass Snefru (in hexadecimal)

after about 228.5 iterations — such a collision is a collision on the full 128-bit
original output. As the probability that a random collision would occur within
the first 228.5 iterations is small, with a very high probability the collision found
by the memoryless collision search algorithm is a collision of the attacked hash
function.

An example collision of 3-pass Snefru found by this technique is given in
Table 2. Using Nivasch algorithm, this collision was found in about half an hour
on a personal computer (Intel Core Duo, 1.6GHz), using an unoptimized code.

In the case of a collision of 4-pass Snefru, the time complexity remains as in
the prior attack (244.5–256.5), but without the need for a huge memory.

6 Virtual Messages and Preimages of the Compression

Function

6.1 A Preimage Attack on the Compression Function

In this section we describe a technique that uses the second preimage attack
in order to find preimages of the compression function. The second preimage
attack on 3-pass Snefru has complexity 256 using the characteristic of Figure 8.
In order to use the second preimage attack, we need to find a message block with
the same chaining value and output of a compression function. But this message
block would also form a preimage, which would cause the rest of the technique
to be redundant. Moreover, it would require to find a preimage in order to find
a preimage, which makes such an attack impossible.

We observe that the second preimage attack can actually find blocks with
different chaining values and/or different outputs than the given message, as long
as they satisfy several compatibility criteria related to the values of the bytes in
the walls, the input chaining value, and the output of the permutation. We call
such a compatible message, which is not a preimage, but can be used with the
second preimage attack to find a preimage, a virtual message. Thus, in order
to find a preimage, we only need to apply the second preimage attack on the
virtual message, and control the output so that the attack will find a collision.

We emphasize that the virtual message does not have the required chaining
value nor output. In some cases, it could be viewed as a combination of two parts,
one corresponding to the chaining value and the wall that protects it (the top
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left white area of the characteristic), and one to the output and the walls that
protects it (the bottom right white area of the characteristic). During the second
preimage attack the two parts would be fully combined into a real preimage.

Consider the characteristic of Figure 8. During a compression of a second
preimage, the original message and the second preimage should have the same
values in all the white areas. In case the original message is a virtual message,
the situation is more complicated, as the virtual message does not fulfill the
requirements of a real original message. Instead, it should satisfy the following
extra conditions

1. It should be possible to replace the input chaining value of the virtual mes-
sage by the required input chaining value (the one needed by a real preimage)
without affecting the other requirements (with minimal additional changes).

2. It should be possible to replace the output area after the last round by the
required output (the one needed by a real preimage) without affecting the
other requirements.

If those two requirements would be independent, the attack may have been
easy. However, these two replacements affect the first words and last words of
the data block (words 0 and 15), which in turn affect each other (cyclically).
Therefore, they should be performed without disturbing each other, meaning
without affecting the input to the S boxes of the first and last words (in rounds 0,
16, . . . , 176 for the first word, and rounds 15, 31, . . . , 191 for the last word).
Therefore, it also should satisfy the following condition

3. When replacing any of the above values, no changes are allowed in the inputs
of the S boxes of rounds 0, 16, . . . , 176, and 15, 31, . . . , 191.

We now observe that once these inputs (and corresponding outputs) of the
S boxes of the last word (rounds 15, 31, . . . , 191) are fixed, the input chaining
value fully controls the inputs to the S boxes of rounds 0, 16, 32, and 48. In the
case of round 0, the input to the S box is just one of the bytes of the chaining
value. In the case of round 16 the input is an XOR of the first word of the
chaining value, the output of the S box at round 1 (whose input is the XOR of
the output of the S box of round 0 with another byte of the chaining value), and
the fixed output of the S box of round 15. The other two cases (in rounds 32
and 48) are more complex functions of the fixed values and the input chaining
value.

The search for a virtual message block starts by selecting the output of the
last round (where the last four words are the value needed for the preimage),
and computing backwards to receive the input chaining value and block. The
probability to receive the required input chaining value is negligible (2−128).

Recall that the original second preimage attack fixes all the white areas in
Figure 8, and fixes the wall of the least significant bytes of word 6 in the first six
quarters and the wall of the bytes that become least significant bytes of word 11
in the last eight quarters. The values that are fixed in the walls are selected to
be their values in the original message.
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In our case, we fix the wall of the last rounds to be equal to the message
we start with (as the output of the last round has the required value), and we
fix the wall of the first rounds to be compatible with both the required input
chaining value and the required values of word 0 in all the quarters (which also
behaves like a wall of 12 quarters height). This compatibility is not automatic,
as the input chaining value reached by computing backwards is not expected to
be compatible.

We can view our attack as having two sets of requirements, one ensures the
expected behavior in the white left hand side (without difference compared to
the message we start with), and ensures compatibility to the required initial
value at that side. Similarly, the other ensures the expected behavior in the
right hand side, and ensures compatibility of the output. Both are protected
from each other by the three requirements mentioned above, including the walls.
The virtual message block tries to emulate both requirements simultaneously,
the first as if it had the required input chaining value, and the latter as if it
had the required output value (while still satisfying the requirements on words 0
and 15).

This latter compatibility is achieved by replacing the chaining value resulting
from the backward computation mentioned above, along with fixation of the wall
of word 0, and selection of the wall of word 6 as becomes necessary. These changes
in the wall in word 6 can then easily be compensated later during the second
preimage attack.

Only in one of every 232 trials of a backward computation, the replacement
of the chaining value results with compatibility with the required chaining value,
without affecting the wall of word 0. The search for the virtual message starts by
about 232 such trials, till a message in which we can replace the chaining value to
the one we want, and in which the first four quarters of the wall at word 0 remain
valid, is found. Once such a message is found, the remainder of the quarters of
the wall at word 0 can be directly controlled by modifying words 4 and 5 and by
changing the fixation of the wall at word 6. This direct control is very efficient.
For example, assume that all the wall of word 0 but the last quarter is already
selected as required, then the input to the S box in round 176 is 1-1 related to
the least significant byte in the sixth quarter of the wall at word 6 (as the S
boxes are byte-wise invertible).

Once all these changes are made, and the values of the wall in word 6 are
decided, the computation can be performed in the forward direction from round 0
to the marked round, starting with the modified chaining value and modified
values of words 4 and 5. The walls at words 0 and 6 ensure that words outside
this range do not affect the values of words 0–5 at the marked location. These
six words are now injected to replace the original values of these words at the
marked location as received from the original backward computation.

As a result, words 0–5 are computed by this last forward computation, and
fit to the change in the chaining value (the left white area). Words 12–15 remain
as decided by the original backward computation. If only the wall at word 11 and
the wall at word 15 are kept as decided, the result at the output is necessarily
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Input chaining value: 00000000 00000000 00000000 00000000 (standard IV)
Message block: 79F6A75E 0397C368 F60C88DE 3133A55E 6D00251C 8ED3567B

CA49F82B A32E5DC4 8F86E479 DD3FF4D6 14DD88C1 A2322E00

Compressed value: 00000000 00000000 00000000 00000000

Table 3. An Example Preimage of the Compression Function of Snefru (in hexadeci-
mal)

as required, independently of any changes in other words. Words 6–11 may be
freely selected by the attacker, just as in the second preimage attack, and whose
role is to allow the attacker to control the walls of words 6 and 11 as required.

Note that the received intermediate block, located at the marked location
is now a combination of three parts. If we would take this block and compute
backwards and forward to receive an input chaining value, and output, without
the extra control and changes of the second preimage attack, the received values
would not be those that we want, as each side would be affected by the other.
But when used with the second preimage attack, with the selected values of the
walls, the second preimage attack is able to find a preimage.

We applied this attack on 2-pass Snefru (where the complexity of the second
preimage attack is practical), and found many preimages. An example preimage
of the compression function of 2-pass Snefru is given in Table 3. Note that this
preimage is also a fixpoint of the compression function, and thus it can be easily
repeated, without changing the output chaining value.

6.2 Preimage Attacks and the Importance of Padding Schemes

The padding scheme of MD4/SHA optimizes the last block, so that no additional
padding block is added unless absolutely necessary (i.e., no extra block is added
if the message length and single ‘1’ bit of the padding fit at the end of the last
existing block). Thus, the content of the last block can mostly be controlled by
the attacker, by selecting messages that are 65-bit short of a multiple of a block.
We expect that in such a case, our attack on the compression function would be
applicable to the last block, thus leading to a preimage attack on the full hash
function (rather than on the compression function only).

However, the padding scheme of Snefru always adds a padding block con-
taining the length only (left filled by ‘0’s). Assuming that the length is bounded
by 64 bits, the more restrictive padding scheme of Snefru makes it much more
complicated (or maybe impossible using our techniques) to find the preimage of
the length block, as the words that the attacker needs to control are fixed to
zero. Therefore, the attack on the compression function, as described, cannot
work.

It may be the case that an attack can still be found, with a huge complexity
(still faster than a generic attack), by changing the locations of the controlled
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Fig. 9. A free-start preimage of the length block suffices for finding a preimage

words to the area of the input chaining value and the length, and performing a
much more complicated computation, but this would require further research.

Though it looks impossible, we observe that such an attack does not have
to follow all the requirements of a preimage attack on the compression function.
In particular, such an attack does not have to fix the input chaining value in
advance — input chaining value can thus be the output of the attack — making
the attack a free-start preimage of the compression function on the length block.
This kind of attack may be simpler to find, due to the weaker requirements.

A free-start preimage of the length block suffices for finding a preimage of the
full hash function, as after this last block along with it’s input chaining value are
found, we know the output chaining value required from the previous block. All
we need to do at that stage, is to apply the preimage attack on the compression
function of that previous block. This situation can be seen in Figure 9, which
describes the mode of operation used by Snefru, where the attack needs to control
only the last two blocks (the last block of the message as well as the length block),
but in the reverse order (starting from the last block).

6.3 A Preimage of Snefru

We carefully checked the definition of Snefru, and in particular the definition of
the padding block. There is no mentioned limit on the message size, as long as
the length fits in the last block. Therefore, the attacker can fully control the last
block, at the expense of creating messages with a huge number of blocks. There
is no difficulty in creating such huge messages, as fixpoints can be found (e.g.,
the one from Table 3), and iterated as many times as required.

As the length of the block is 384 bits, the length of the iterated message must
be a multiple of 384 bits. We would thus need a length block whose content
divides by 384. The block of Table 3 is congruent to 256 modulo 384, thus
cannot be used as the length block. On the other hand, the preimage of the
compression function described in Table 4 represents a multiple of 384, and is also
a fixpoint. Therefore, when this block is iterated 79F6A75E CB8E7368 A8532FD9

81175859 CCE2C60C 734D51CF 5E8B7F23 F48893F9 EE56676D 6E565530 9864E5B1

A2322E00x/384≈ 2374 times, it becomes a preimage of the zero hash value! This
huge message is a preimage of 2-pass Snefru. By iterating this fixpoint, and using
an alternate padding block, it is possible to find preimages for any hash value.

Note that, unfortunately, sending this message would take a huge time. Even
verification of this message by the receiver would take a huge time (much more
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Input chaining value: 00000000 00000000 00000000 00000000

Message block: 79F6A75E CB8E7368 A8532FD9 81175859 CCE2C60C 734D51CF

5E8B7F23 F48893F9 EE56676D 6E565530 9864E5B1 A2322E00

Compressed value: 00000000 00000000 00000000 00000000

Table 4. The Block Used for the Preimage of Snefru (in hexadecimal)

Number of Second preimage of Preimage of Collision
Passes Compression Function Compression Function Attack

(time) (time) (time)

Novelty: Old New Memoryless

2 224 232 212.5

3 256 256 228.5

4 288–2112 288–2112 244.5–256.5

Table 5. Summary of the Attacks on Snefru

than the preimage attack itself). It would even be faster for the receiver to
find another single-block preimage (with complexity 2128), than to receive this
message and verify it (which takes about 2374 time in the standard verification
procedure).

7 Summary

In this paper, we described new techniques for cryptanalysis of Snefru:

1. A preimage attack based on the second preimage attack with a virtual mes-
sage.

2. Differential cryptanalysis using generic algorithms.

Table 5 summarizes the complexities of the attacks on Snefru with 2, 3, and 4
passes (and 128-bit hash values). The second column gives the complexities of
the second preimage attacks of [2, 1]. The third column gives the complexities
of the preimage attack on the compression function described in this paper.
The last column gives the complexity of the collision attacks of [2, 1], which
require same size of memory. The memoryless collision attacks described in this
paper eliminated the need to that size of memory, without changing the time
complexity.

We also discussed the importance of the padding scheme to protect against
applying a preimage attack on the compression function for finding preimages
of the full hash function.
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