
Efficient Reconstruction of RC4 Keys from
Internal States

Eli Biham Yaniv Carmeli

Computer Science Department
Technion – Israel Institute of Technology

Haifa 3200, Israel.
{biham,yanivca}@cs.technion.ac.il
http://www.cs.technion.ac.il/∼biham/
http://www.cs.technion.ac.il/∼yanivca/

Abstract. In this paper we present an efficient algorithm for the re-
trieval of the RC4 secret key, given an internal state. This algorithm is
several orders of magnitude faster than previously published algorithms.
In the case of a 40-bit key, it takes only about 0.02 seconds to retrieve
the key, with success probability of 86.4%. Even if the algorithm can-
not retrieve the entire key, it can retrieve partial information about the
key. The key can also be retrieved if some of the bytes of the initial
permutation are incorrect or missing.

Keywords: Cryptanalysis, Initial Permutation, Key Scheduling,
RC4, Stream Cipher.

1 Introduction

The stream cipher RC4 was designed by Ron Rivest, and was first introduced
in 1987 as a proprietary software of RSA DSI. The details remained secret until
1994, when they were anonymously published on an internet newsgroup [1]. RSA
DSI did not confirm that the published algorithm is in fact the RC4 algorithm,
but experimental tests showed that it produces the same outputs as the RC4
software.

More than twenty years after its release, RC4 is still the most widely used
software stream cipher in the world. Among other uses, it is used to protect
internet traffic as part of the SSL (Secure Socket Layer) and TLS (Transport
Layer Security [3]) protocols, and to protect wireless networks as part of the
WEP (Wired Equivalent Privacy) and WPA (Wi-Fi Protected Access) protocols.

The state of RC4 consists of a permutation S of the numbers 0, . . . , N − 1,
and two indices i, j ∈ {0, . . . , N − 1}, where N = 256. RC4 is comprised of
two algorithms: the Key Scheduling Algorithm (KSA), which uses the secret key
to create a pseudo-random initial state, and the Pseudo Random Generation
Algorithm (PRGA), which generates the pseudo-random stream.



1.1 Previous Attacks

Most attacks on RC4 can be categorized as distinguishing attacks or key-retrieval
attacks. Distinguishing attacks try to distinguish between an output stream of
RC4 and a random stream, and are usually based on weaknesses of the PRGA.
Key recovery attacks recover the secret key, and are usually based on weaknesses
of the KSA.

In 1994, immediately after the RC4 algorithm was leaked, Finney [4] showed
a class of states that RC4 can never enter. This class consists of states satisfying
j = i+1 and S[i+1] = 1. RC4 preserves the class of Finney states by transferring
Finney states to Finney states, and non-Finney states to non-Finney states. Since
the initial state (the output of the KSA) is not a Finney state (in the initial state
i = j = 0) then RC4 can never enter these states. Biham et. al. [2] show how to
use Finney states with fault analysis in order to attack RC4.

Knudsen et al. [11] use a backtracking algorithm to mount a known plaintext
attack on RC4. They guess the values of the internal state, and simulate the
generation process. Whenever the output doesn’t agree with the real output,
they backtrack and guess another value.

Golić [7] describes a linear statistical weakness of RC4 caused by a positive
correlation between the second binary derivative of the least significant bit and 1,
and uses it to mount a distinguishing attack.

Fluhrer and McGrew [6] show a correlation between consecutive output bytes,
and introduce the notion of k-fortuitous states (classes of states defined by the
values of i, j, and only k permutation values, which can predict the outputs of
the next k iterations of the PRGA), and build a distinguisher based on that
correlation.

Mantin and Shamir generalize the notion of fortuitous states and define b-
predictive k-states (states with k known permutation values which predict only
b output words, for b ≤ k) and k-profitable states, which are classes of states in
which the index j behaves in the same way for k steps of the PRGA. The predic-
tive states cause certain output sequences to appear more often than expected
in a random sequence, thus they are helpful in mounting a distinguishing attack
on RC4.

Mantin and Shamir [14] also show that the second word of the output is
slightly more probable to be 0 than any other value. Using this bias they are
able to build a prefix distinguisher for RC4, based on only about N short streams.

In 2005 Mantin [13] observed that some fortuitous states return to their initial
state after the index i leaves them. These states have a chance to remain the
same even after a full cycle of N steps, and the same output of the state may
be observed again. Mantin uses these states to predict, with high probability,
future output bytes of the stream.

In practical applications, stream ciphers are used with a session key which is
derived from a shared secret key and an Initial Value (IV, which is transmitted
unencrypted). The derivation of the session key can be done in various ways such
as concatenating, XORing, or hashing (in WEP, for instance, the secret key is
concatenated after the IV).

2



Many works try to exploit weaknesses of a specific method for deriving the
session key. Fluhrer, Mantin, and Shamir [5] have shown a chosen IV attack on
the case where the IV precedes the secret key. Using the first output bytes of
60l chosen IVs (l is the length of the secret key), they recover the secret key
with high probability. They also describe an attack on the case where the IV
follows the secret key, which reveals significant information about the internal
state just after l steps of the KSA, thus reducing the cost of exhaustive search
significantly.

In March 2007, Klein [10] (followed by Tews et. al. [17]) showed a statistical
correlation between any output byte and the value of S[j] at the time of the
output generation. They use this correlation to retrieve the entire secret key
using the first bytes of the output streams of about 40,000 known IVs (for the
cases the IV is concatenated either before or after the secret key).

Vaudenay and Vuagnoux [18] improve the attacks of [5, 10] on the case of
WEP (where the IV is concatenated before the secret key). They present the
VX attack, which uses the sum of the the key bytes to reduce the dependency
between the other bytes of the key, such that the attack may work even if the
data is insufficient to retrieve one of the bytes.

Paul and Maitra [15] use biases in the first entries of the initial permutation
to recover the secret key from the initial permutation. They use the first entries
of the permutation to create equations which hold with certain probability. They
guess some of the bytes of the secret key, and use the equations to retrieve the rest
of the bytes. The success of their algorithm relies on the existence of sufficiently
many correct equations.

1.2 Outline of Our Contribution

In this paper we present methods that allow us to obtain significantly better
results than the algorithm of [15]. A major observation considers the difference
between pairs of equations instead of analyzing each equation separately. We
show that the probability that the difference of a pair of equations is correct
is much higher in most cases than the probabilities of each of the individual
equations. Therefore, our algorithm can rely on many more equations and apply
more thorough statistical techniques than the algorithm of [15]. We also show two
filtering methods that allow us to identify that some of the individual equations
(used in [15]) are probably incorrect by a simple comparison, and therefore, to
discard these equations and all the differences derived from them. Similarly, we
show filtering techniques that discard difference equations, and even correct some
of these equations. We also show how to create alternative equations, which can
replace the original equations in some of the cases and allow us to receive better
statistical information when either the original equations are discarded or they
lead to incorrect values. We combine these observations (and other observations
that we discuss in this paper) into a statistical algorithm that recovers the key
with a much higher success rate than the one of [15]. Our Algorithm also works
if some of the bytes of the initial permutation are missing or contain errors. Such
scenarios are likely results of side channel attacks, as in [9]. In these cases, our

3



algorithm can even be used to reconstruct the full correct initial permutation by
finding the correct key and then using it to compute the correct values. Details of
an efficient implementation of the data structures and internals of the algorithm
are also discussed.

The algorithm we propose retrieves one linear combination of the key bytes
at a time. In each step, the algorithm applies statistical considerations to choose
the subset of key bytes participating in the linear combination and the value
which have the highest probability to be correct. If this choice turns out to be
incorrect, other probable choices may be considered. We propose ways to discover
incorrect choices even before the entire key is recovered (i.e., before it can be
tested by running the KSA), and thus we are able to save valuable computation
time that does not lead to the correct key.

Our algorithm is much faster than the algorithm of [15], and has much better
success rates for the same computation time. For example, for 40-bit keys and
86% success rate, our algorithm is about 10000 times faster than the algorithm
of [15]. Additionally, even if the algorithm fails to retrieve the full key, it can
retrieve partial information about the key. For example, for 128-bit keys it can
give a suggestion for the sum of all the key bytes which has a probability of
23.09% to be correct, or give four suggestions such that with a probability of
41.44% the correct value of the sum of all the key bytes is one of the four.

1.3 Organization of the Paper

This paper is organized as follows: Section 2 describes the RC4 algorithms, gives
several observation about the keys of RC4, and defines notations which will
be used throughout this paper. Section 3 presents the bias of the first bytes
of the initial permutation, and describes the attack of [15], which uses these
biases to retrieve the secret key. Section 4 gathers several observations which
are the building blocks of our key retrieval algorithm, and have enabled us to
improve the result of [15]. Section 5 takes these building blocks and uses them
together to describe the detailed algorithm. In Section 6 we give some comments
and observations about an efficient implementation to our algorithm. Finally,
Section 7 summarizes the paper, presents the performance of our algorithm and
discusses its advantages over the algorithm of [15].

2 The RC4 Stream Cipher

The internal state of RC4 consists of a permutation S of the numbers 0, . . . , N−1,
and two indices i, j ∈ {0, . . . , N − 1}. The permutation S and the index j form
the secret part of the state, while the index i is public and its value at any stage
of the stream generation is widely known. In RC4 N = 256, and thus the secret
internal state has log2

(
28 · 256!

) ≈ 1692 bits of information. Together with the
public value of i there are about 1700 bits of information in the internal state.
Variants with other values of N have also been analyzed in the cryptographic
literature.

4



KSA(K) PRGA(S)
Initialization: Initialization:

For i = 0 to N − 1 i← 0
S[i] = i j ← 0

j ← 0 Generation loop:
Scrambling: i← i + 1

For i = 0 to N − 1 j ← j + S[i]
j ← j + S[i] + K[imod l] Swap(S[i], S[j])
Swap(S[i], S[j]) Output S[S[i] + S[j]]

Fig. 1. The RC4 Algorithms

RC4 consists of two algorithms: The Key Scheduling Algorithm (KSA), and
the Pseudo Random Generation Algorithm (PRGA), both algorithms are pre-
sented in Figure 1. All additions in RC4 are performed modulo N . Therefore, in
this paper, additions are performed modulo 256, unless explicitly stated other-
wise.

The KSA takes an l-byte secret key, K, and generates a pseudo-random
initial permutation S. The key size l is bounded by N bytes, but is usually in the
range of 5–16 bytes (40–128 bits). The bytes of the secret key are denoted by
K[0], . . . ,K[l− 1]. If l < N the key is repeated to form a N -byte key. The KSA
initializes S to be the identity permutation, and then performs N swaps between
the elements of S, which are determined by the secret key and the content of
S. Note that because i is incremented by one at each step, each element of S
is swapped at least once (possibly with itself). On average each element of S is
swapped twice.

The PRGA generates the pseudo-random stream, and updates the internal
state of the cipher. In each iteration of the PRGA, the values of the indices are
updated, two elements of S are swapped, and a byte of output is generated. Dur-
ing the generation of N consecutive output bytes, each element of S is swapped
at least once (possibly with itself), and twice on average.

2.1 Properties of RC4 Keys

There are 28·256 = 22048 possible keys (every key shorter than 256 bytes has
an equivalent 256-byte key) but only about 21684 possible initial states of RC4.
Therefore, every initial permutation has on average about 2364 256-byte keys
which create it. Each initial permutation Ŝ has at least one, easy to find, 256-byte
key: Since every byte of the key is used only once during the KSA, the key bytes
are chosen one by one, where K[i] is chosen to set j to be the current location
of Ŝ[i] (which satifies, by this construction j > i). Thus, the Swap(S[i],S[j])
operation on iteration i swaps the value Ŝ[i] = S[j] with S[i]. The value Ŝ[i]

5



does not participate in later swaps, and thus remains there until the end of the
KSA.

The number of initial permutations which can be created by short keys,
however, is much smaller. For example, the number of 16-byte keys is only 2128,
and the total number of keys bounded by 210 bytes is about 28·210 = 21680,
which is smaller than the total number of permutations.

2.2 Notations

We use the notation K[a, b] to denote the sum of the key bytes K[a] and K[b],
i.e.,

K[a, b] � K[amod l] + K[b mod l]mod N.

Similarly, K[a, b, c], K[a, b, c, d], etc., are the sums of the corresponding key bytes
for any number of comma-separated arguments. We use the notation K[a . . . b]
to denote the sum of the key bytes in the range a, a + 1, . . . , b, i.e.,

K[a . . . b] �
b∑

r=a

K[r mod l]mod N.

We also use combinations of the above, for instance:

K[a, b . . . c] � K[amod l] +
c∑

r=b

K[r mod l],

K[a . . . b, c . . . d] �
b∑

r=a

K[r mod l] +
d∑

r=c

K[r mod l].

We use the notations Sr and jr to denote the values of the permutation S
and the index j after r iterations of the loop of the KSA have been executed.
The initial value of j is j0 = 0 and its value at the end of the KSA is jN . S0

is the identity permutation, and SN is the result of the KSA (i.e., the initial
permutation that we study in this paper). For clarity, from now on the notation
S (without an index) denotes the initial permutation SN .

3 Previous Techniques

In 1995 Roos [16] noticed that some of the bytes of the initial permutation have
a bias towards a linear combination of the secret key bytes. Theorem 1 describes
this bias (the theorem is taken from [16], but is adapted to our notations).

Theorem 1. The most likely value for S[i] at the end of the KSA is:

S[i] = K[0 . . . i] +
i(i + 1)

2
mod N. (1)

6



Only experimental results for the probabilities of the biases in Theorem 1
are provided in [16]. Recently, Paul and Maitra [15] supplied an analytic formula
for this probability, which has corroborated the results given by [16]. Theorem 2
presents their result.

Theorem 2 (Corollary 2 of [15]). Assume that during the KSA the index j
takes its values uniformly at random from {0, 1, . . . , N − 1}. Then,

P

(
S[i] = K[0 . . . i] +

i(i + 1)
2

)
≥

(
N − i

N

)
·
(

N − 1
N

) i(i+1)
2 +N

+
1
N .

For any fixed value of i, the bias described by (1) is the result of a combination
of three events that occur with high probability:

1. Sr[r] = r for r ∈ {0, . . . , i} (i.e., the value of S[r] was not swapped before
the r-th iteration).

2. Si[ji+1] = ji+1.
3. jr �= i for r ∈ {i + 1, . . . , N − 1}.

If the first event occurs then the value ji+1 is affected only by the key bytes and
constant values:

ji+1 =
i∑

r=0

(K[r] + Sr[r]) =
i∑

r=0

(K[r] + r) = K[0 . . . i] +
i (i + 1)

2
.

If the second event occurs, then after i + 1 iteration of the KSA Si+1[i] = ji+1.
The third event ensures that the index j does not point to S[i] again, and
therefore S[i] is not swapped again in later iterations of the KSA. If all three
events occur then (1) holds since

SN [i] =
↑
3

Si+1[i] =
↑
2

ji+1 =
i∑

r=0

(K[r] + Sr[r]) =
↑
1

K[0 . . . i] +
i (i + 1)

2
.

The probabilities derived from Theorem 2 for the biases of the first 48 entries
of S (S[0] . . . S[47]) are given in Table 1 (also taken from [15]). It can be seen
that this probability is about 0.371 for i = 0, and it decreases as the value of
i increases. For i = 47 this probability is only 0.008, and for further entries it
becomes too low to be used by the algorithm (the a-priori probability that an
entry equals any random value is 1/256 ≈ 0.0039). The cause for such a decrease
in the bias is that the first of the aforementioned events is less likely to occur
for high values of i, as there are more constraints on entries in S.

Given an initial permutation S (the result of the KSA), each of its entries
can be used to derive a linear equation of the key bytes, which holds with the
probability given by Theorem 2. Let Ci be defined as

Ci = S[i]− i · (i + 1)
2

.

7



i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Prob. .371 .368 .364 .358 .351 .343 .334 .324 .313 .301 .288 .275 .262 .248 .234 .220
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Prob. .206 .192 .179 .165 .153 .140 .129 .117 .107 .097 .087 .079 .071 .063 .056 .050
i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Prob. .045 .039 .035 .031 .027 .024 .021 .019 .016 .015 .013 .011 .010 .009 .008 .008

Table 1. The Probabilities Given by Theorem 2

Using (1) the i’th equation (derived from the entry S[i]) becomes:

K[0 . . . i] = Ci. (2)

The RecoverKey algorithm of [15] uses these equations in order to retrieve the
secret key of RC4. Let n and m be parameters of the algorithm, and recall that
l is the length of the secret key in bytes. For each combination of m independent
equations out of the first n equations of (2), the algorithm exhaustively guesses
the value of l −m key bytes, and solves the m equations to retrieve the rest of
the key bytes. The success of the RecoverKey algorithm relies on the existence
of m correct and linearly independent equations among the first n equations.
The success probabilities and the running time of the RecoverKey algorithm for
different key sizes and parameters, as given by [15], are presented in Table 2.1

4 Our Observations

Several important observations allow us to suggest an improved algorithm for
retrieving the key from the initial permutation.

1 We observe that the formula for the complexity given in [15] is mistaken, and the
actual values should be considerably higher than the ones cited in Table 2. We expect
that the correct values are between 25 and 28 times higher. The source for the mistake
is two-fold: the KSA is considered as taking one unit of time, and the complexity
analysis is based on an inefficient implementation of their algorithm. Given a set
of l equations, their implementation solves the set of equations separately for every
guess of the remaining l −m variables, while a more efficient implementation would
solve them only once, and only then guess the values of the remaining bytes. Our
complexities are even lower than the complexities given in [15], and are much lower
than the correct complexities.
We also observe that the complexities given by [15] for the case of 16-byte keys do
not match the formula they publish (marked by ∗ in Table 2). The values according
to their formula should be 282, 279, 273 and 269 rather than 260, 263, 264 and 264,
respectively. Their mistake is possibly due to an overflow in 64-bit variables.

8



l n m Time PSuccess l n m Time PSuccess

5 16 5 218 0.250 10 48 9 243 0.107
5 24 5 221 0.385 12 24 8 258 0.241
8 16 6 234 0.273 12 24 9 250 0.116
8 20 7 229 0.158 16 24 9 260 ∗ 0.185
8 40 8 233 0.092 16 32 10 263 ∗ 0.160

10 16 7 243 0.166 16 32 11 264 ∗ 0.086
10 24 8 240 0.162 16 40 12 264 ∗ 0.050
∗ Incorrect entries — see footnote 1.

Table 2. Success Probabilities and Running Time of the RecoverKey Algorithm
of [15]

4.1 Subtracting Equations

Let i2 > i1. As we expect that K[0 . . . i1] = Ci1 and K[0 . . . i2] = Ci2 , we also
expect that

K[0 . . . i2]−K[0 . . . i1] = K[i1 + 1 . . . i2] = Ci2 − Ci1 (3)

holds with the product of the probabilities of the two separate equations. How-
ever, we observe that this probability is in fact much higher. If the following
three events occur then (3) holds (compare with the three events described in
Section 3):

1. Sr[r] = r for r ∈ {i1 + 1, . . . , i2} (i.e., the value of S[r] was not swapped
before the r-th iteration).

2. Si1 [ji1+1] = ji1+1 and Si2 [ji2+1] = ji2+1.
3. jr �= i1 for r ∈ {i1 + 1, . . . , N − 1}, and jr �= i2 for r ∈ {i2 + 1, . . . , N − 1}.

If the first event occurs then the index j is affected in iterations i1+1 through
i2 only by the key bytes and constant values:

ji2+1 − ji1+1 =
i2∑

r=i1+1

(K[r] + Sr[r]) = K[i1 + 1 . . . i2] +
i2∑

r=i1+1

r

If the second event occurs, then after i1+1 iteration of the KSA Si1+1[i1] = ji1+1,
and after i2 + 1 iteration Si2+1[i2] = ji2+1. The third event ensures that the
index j does not point to S[i1] or S[i2] again, and therefore S[i1] and S[i2] are
not swapped again in later iterations. If all three events occur then (3) holds

9



since

SN [i2]− SN [i1] =
↑
3

Si2+1[i2]− Si1+1[i1] =
↑
2

ji2+1 − ji1+1 =

=
i2∑

r=i1+1

(K[r] + Sr[r]) =
↑
1

K[i1 + 1 . . . i2] +
i2∑

r=i1+1

r =

= K[i1 + 1 . . . i2] +
i2 (i2 + 1)

2
− i1 (i1 + 1)

2
,

and therefore
K[i1 + 1 . . . i2] = Ci2 − Ci1 .

Theorem 3 states the exact bias of such differences.

Theorem 3. Assume that during the KSA the index j takes its values uniformly
at random from {0, 1, . . . , N − 1}, and let 0 ≤ i1 < i2 < N . Then,
P (Ci2 − Ci1 = K[i1 + 1 . . . i2]) ≥[(

1− i2
N

)2 · (1− i2−i1+2
N

)i1 · (1− 2
N

)N−i2−1 ·∏i1−i2−1
r=0

(
1− r+2

N

)]
+ 1

N .

The proof of Theorem 3 is based on the discussion which precedes it, and
is similar to the proof of Theorem 2 given in [15]. The proof is based on the
analysis of the probabilities that the values of j throughout the KSA are such
that the three events described earlier hold.

As a result of Theorem 3 our algorithm has many more equations to rely
on. We are able to use the difference equations which have high enough prob-
ability, and furthermore, we can now use data which was unusable by the al-
gorithm of [15]. For instance, according to Theorem 2, the probability that
K[0 . . . 50] = C50 is 0.0059, and the probability that K[0 . . . 52] = C52 is 0.0052.
Both equations are practically useless by themselves, but according to Theorem 3
the probability that K[51 . . . 52] = C52 − C50 is 0.0624, which is more than ten
times the probabilities of the individual equations.

Moreover, the biases given by Theorem 2 and used by the RecoverKey algo-
rithm of [15] are dependent. If Sr[r] �= r for some r, then the first event described
in Section 3 is not expected to hold for any i > r, and we do not expect equations
of the form (2) to hold for such values of i. However, equations of the form (3) for
i2 > i1 > r may still hold under these conditions, allowing us to handle initial
permutations which the RecoverKey algorithm cannot.

4.2 Using Counting Methods

Since every byte of the secret key is used more than once, we can obtain several
equations for the same sum of key bytes. For example, all the following equations:

C1 = K[0 . . . 1]
Cl+1 − Cl−1 = K[l . . . l + 1] = K[0 . . . 1]

C2l+1 − C2l−1 = K[2l . . . 2l + 1] = K[0 . . . 1]

10



suggest values for K[0] + K[1]. If we have sufficiently many suggestions for the
same sum of key bytes, the correct value of the sum is expected to appear more
frequently than other values. We can assign a weight to each suggestion, use
counters to sum the weights for each possible candidate, and select the can-
didate which has the highest weight. We may assign the same weight to all
the suggestions (majority vote) or a different weight for each suggestion (e.g.,
according to its probability to hold, as given by Theorems 2 and 3). We demon-
strate the use of counters using the previous example. Assume that C1 = 178,
Cl+1 − Cl−1 = 210 and C2l+1 − C2l−1 = 178 are the only suggestions for the
value of K[0 . . . 1], and assume that all three suggestions have equal weights of
one. Under these conditions the value of the counter of 178 will be two, the
value of the counter of 210 will be one, and all other counters will have a value
of zero. We guess that K[0 . . . 1] = 178, since it has the highest total weight of
suggestions.

A simple algorithm to retrieve the full key would be to look at all the sug-
gestions for each of the key bytes, and choose the most frequent value for each
one. Unfortunately, some of the bytes retrieved by this sort of algorithm are
expected to be incorrect. We can run the KSA with the retrieved key to test its
correctness, but if the test fails (the KSA does not produce the expected initial
permutation), we get no clue to where the mistake is.

However, we observe that we do not need to limit ourselves to a single key
byte, but rather consider all candidates for all possible sums of key bytes sug-
gested by the equations, and select the combination with the highest total weight.
Once we fix the chosen value for the first sum, we can continue to another, or-
dered by the weight, until we have the entire key. There is no need to consider
sequences which are linearly dependent in prior sums. For example, if we have
already fixed the values of K[0] + K[1] and K[0], there is no need to consider
suggestions for K[1]. Therefore, we need to set the values of exactly l sums in
order to retrieve the full key. Moreover, each value we select allows us to sub-
stantially reduce the number of sums we need to consider for the next step, as
it allows us to merge the counters of some of the sums (for example, if we know
that K[0]+K[1] = 50 then we can treat suggestions for K[0] = 20 together with
K[1] = 30).

A natural extension to this approach is trying also the value with the sec-
ond highest counter, in cases where the highest counter is found wrong. More
generally, once a value is found wrong, or a selection of a sequence is found un-
satisfactory, backtracking is performed. We denote the number of attempts to
be tried on the t-th guess by λt, for 0 ≤ t < l. This method can be thought of
as using a DFS algorithm to search an ordered tree of height l + 1, where the
degree of vertices on the t-th level is λt and every leaf represents a key.

11



4.3 The Sum of the Key Bytes

Denote the sum of all l key bytes by s, i.e.,

s = K[0 . . . l − 1] =
l−1∑
r=0

K[r].

The value of s is especially useful. The linear equations derived from the initial
permutation give sums of sequences of consecutive key bytes. If we know the
value of s, all the suggestions for sequences longer than l bytes can be reduced
to suggestions for sequences which are shorter than l bytes. For example, from
the following equations:

C1 = K[0 . . . 1]
Cl+1 = K[0 . . . l + 1] = s + K[0 . . . 1]

C2l+1 = K[0 . . . 2l + 1] = 2s + K[0 . . . 1]

we get three suggestions C1, Cl+1−s, and C2l+1−2s for the value of K[0]+K[1].
After such a reduction is performed, all the remaining suggestions reduce to

sums of fewer than l key bytes, of the form K[i1 . . . i2], where 0 ≤ i1 < l and
i1 ≤ i2 < i1+l−1. Thus, there are only l·(l−1) possible sequences of key bytes to
consider. Furthermore, the knowledge of s allows us to unify every two sequences
which sum up to K[0 . . . l − 1] = s (as described in Section 4.2), thus reducing
the number of sequences to consider to only l·(l−1)/2 (without loss of generality,
the last byte of the key, K[l− 1], does not appear in the sequences we consider,
so each sum we consider is of the form K[i1 . . . i2], for 0 ≤ i1 ≤ i2 < l − 1). In
turn, there are more suggestions for each of those unified sequences than there
were for each original sequence.

Fortunately, besides being the most important key byte sequence, s is also
the easiest sequence to retrieve, as it has the largest number of suggestions.
Any sum of l consecutive bytes, of the form K[i + 1 . . . i + l] = Ci+l − Ci, for
any i, yields a suggestion for s. In a similar way, we can consider sequences of
2l bytes for suggestions for 2s, and we can continue to consider sequences of
αl consecutive bytes, for any integer α. However, for common key lengths, the
probability of a correct sum with α > 2 is too low.

As discussed in Section 4.2, we may want to consider also the second high-
est counter and perform backtracking. Our experimental results for the success
probabilities of retrieving s are presented in Table 3. For each of the key lengths
in the table, we give the probability that the value of s is the value with the
highest counter, second highest, third highest, or fourth highest. The data in
the table was compiled by testing 1,000,000,000 random keys for each of the key
lengths, and considering all suggestions with a probability higher than 0.01.

4.4 Adjusting Weights and Correcting Equations

During the run of the algorithm, we can improve the accuracy of our guesses
based on previous guesses. Looking at all suggestions for sequences we have

12



Key Length Highest Second Third Fourth
Counter Highest Highest Highest

5 0.8022 0.0618 0.0324 0.0195
8 0.5428 0.1373 0.0572 0.0325
10 0.4179 0.1604 0.0550 0.0332
12 0.3335 0.1618 0.0486 0.0287
16 0.2309 0.1224 0.0371 0.0240

Table 3. Probabilities that s is Among the Four Highest Counters

already established, we can identify exactly which of them are correct and which
are not, and use this knowledge to gain information about intermediate values of
j and S during the execution of the KSA. We assume that if a suggestion Ci2−Ci1

for K[i1 + 1 . . . i2] is correct, then all three events described in Section 4.1 occur
with a relatively high probability. Namely, we assume that:

• Sr[r] = r for i1 + 1 ≤ r ≤ i2 (follows from event 1 from Section 4.1).
• S[i1] = ji1+1 and S[i2] = ji2+1 (together, follow from events 2 and 3 from

Section 4.1.

This information can be used to better assess the probabilities of other sugges-
tions. When considering a suggestion Ci4−Ci3 for a sum of key bytes K[i3 + 1 . . . i4]
which is still unknown, if we have an indication that one of the three events
described in Section 4.1 is more likely to have occurred than predicted by its
a-priori probability, the weight associated with the suggestion can be increased.
Example 1 demonstrates a case in which such information is helpful.

Example 1. Assume that the following three suggestions are correct:

1. K[0 . . . 9] = C9,
2. K[12 . . . 16] = C16 − C11,
3. K[7 . . . 14] = C14 − C6,

and assume that for each of them the three events described in Section 4.1 hold
during the execution of the KSA. From the first suggestion we conclude that
j10 = S[9], from the second suggestions we learn that j12 = S[11], and the third
suggestion teaches us that Sr[r] = r for 7 ≤ r ≤ 14 (and in particular for r=10
and r=11). It can be inferred from the last three observations and according
to the explanation in Section 4.1 that under these assumptions K[10 . . . 11] =
C11 −C9. Since the probabilities that the assumptions related to K[10 . . . 11] =
C11 − C9 hold are larger than the a-priory probability (due to the relation to
the other suggestions, which are known to be correct), the probability that this
suggestion for K[10 . . . 11] is correct is increased.

Similarly, we can gain further information from the knowledge that sugges-
tions are incorrect. Consider r’s for which there are many incorrect suggestions

13



i

xi’
x

j

S ...

(a)

xi’
xS ...

j i

(b)

Fig. 2. Two Probable Alternatives to the Positions of the Indices i and j Right
Before the Assignment S[i′]← x Occurred

that involve Cr, either with preceding Ci1 (Cr −Ci1 , i1 < r) or with succeeding
Ci2 (Ci2−Cr, i2 > r). In such cases we may assume that SN [r] is not the correct
value of jr+1, and thus all other suggestions involving Cr are also incorrect.

Consider r’s for which there are many incorrect suggestions that pass over r,
i.e., of the form Ci2 − Ci1 where i1 < r ≤ i2. In this case, we may assume that
during the KSA Sr[r] �= r, and thus all other suggestions that pass over r are
also incorrect. All suggestions that pass over r for which Sr[r] �= r is the only
event (of the three events described in Section 4.1) that does not hold, must
have the same error Δ = Ci2 − Ci1 − K[i1 + 1 . . . i2] (which is expected to be
Δ = Sr[r] − r). Thus, if we find that for some r several suggestions that pass
over r have the same error Δ, we can correct other suggestions by Δ.

4.5 Refining the Set of Equations

We observe that some of the equations can be discarded based on the values of
the initial permutation, and some others have alternatives. This observation is
also applicable to the equations used by the algorithm of [15], and could have
improved its running time and success probabilities.

If S[i′] < i′ for some i′, then the equation derived from S[i′] should be
discarded, since x = S[i′] is not expected to satisfy (1). In this case, even if
Event 1 and Event 3 (of the three events described in Section 3) hold, it is clear
that Event 2 does not, as the number x has already been swapped in a previous
iteration (when i = x), and is not likely to be in location S[i′] after i′ iterations
of the KSA.

If S[i′] > i′ for some i′, then an alternative equation may be derived from
x = S[i′], in addition to the equation derived by the algorithm of [15]. The
equations used by [15] assume that the assignment S[i′] ← x occurred with
i = i′, and j = S[j] = x (Figure 2(a)). However, in this case, another likely

14



possibility is that the assignment S[i′] ← x occurred with i = S[i] = x, and
j = i′ (Figure 2(b)). In the latter case, jx+1 = i′, and the following equation
holds with a high probability:

i′ = K[0 . . . x] +
x(x + 1)

2
.

It can be shown that this equation holds with a probability slightly higher than
the probability given by Theorem 2 for i = x. We now have two likely possibilities
for the value of jx+1, i′ and S[x], which yield two alternative equations. Let C̄x

be defined as:

C̄x = S−1[x]− x(x + 1)
2

.

Using this notation, the proposed alternative equation is

K[0 . . . x] = C̄x .

Every time Cx is used to create a suggestion (by subtracting equations), the value
C̄x (if exists) can replace it to create an alternative suggestion for the same sum
of key bytes. It can be shown that the probabilities that C̄x2 − Cx1 , Cx2 − C̄x1

and C̄x2− C̄x1 hold are slightly higher than the probability that Cx2−Cx1 holds
(for any x1 < x2). Note that we do not expect that many equations have such
alternatives, because under the assumption that j takes its values uniformly at
random, it is much more likely that ji+1 > i for small values of i. Given the
two alternatives it is possible to run the algorithm twice, while on each run
consider only suggestions derived from the set of equations with one of the two
alternatives. However, due to our use of counting methods, both equations can
be added to the same set of equations, such that suggestions derived from both
alternatives are counted together, in the same counting process.

4.6 Heuristic Pruning of the Search

In Section 4.2 we have described the backtracking approach to finding the key
as a DFS search on an ordered tree. Once a guessed value is found wrong (the
keys obtained from it fail to create the requested permutation) we go back and
try the other likely guesses. Naturally, by trying more guesses we increase our
chances to successfully retrieve the key, but we increase the computation time
as well. If we can identify an internal nodes as representing a wrong guess, we
can skip the search of the entire subtree rooted from it, and thus reduce the
computation time.

Section 4.2 also describes the merging of counters of different sequences ac-
cording to previous guesses, which allows us to consider fewer key sequences,
with more suggestions for each. If the guesses that we have already made are
correct, we expect that after such a merge the value of the highest counter is
significantly higher than other counters. If the former guesses are incorrect, we
don’t expect to observe such behavior, as the counters of different sequences will
be merged in a wrong way.

15



FIND KEY(S)

1. Build the equations: Compute the values of {Ci} and {C̄i}, for the indices i
where they exist (described in Sections 3 and 4.5).

2. Sum the weights of suggestions for each of the N candidates for s (described
in Section 4.3).

3. For x = 1 to λ0 do:
(a) Find a candidate for s with the highest counter, w0, which has not been

checked yet, and set s = K[0 . . . l − 1] = w0.
(b) Mark the correct suggestions for s = w0, adjust weights and correct

remaining suggestions accordingly (described in Section 4.4).
(c) Initialize N counters for each sequence of key bytes K[i1 . . . i2] such that

0 ≤ i1 ≤ i2 < l− 1, and sum the weights of suggestions for each of them
(described in Sections 4.1, 4.2 and 4.3).

(d) Call REC SUBROUTINE(1) to retrieve the rest of the key. If the correct
key is found, return it.

4. Return FAIL.

Fig. 3. The FIND KEY Algorithm

Let μt for 0 ≤ t < l be a threshold for the t-th guess. When considering
candidates for the t-th guess, we only consider the ones with a counter value of
at least μt. The optimal values of the thresholds can be obtained empirically,
and depend on the key length (l), the weights given to the suggestions, and
the number of attempts for each guess (λt’s). Even if the use of these thresholds
may cause correct guesses to be aborted, the overall success probability may still
increase, since the saved computation time can be used to test more guesses.

5 The Algorithm

The cornerstones of our method have been laid in Section 4. In this section
we gather all our previous observations, and formulate them as an algorithm to
retrieve the secret key from the initial permutation S. The FIND KEY algorithm
(presented in Figure 3) starts the search by finding s, and calls the recursive
algorithm REC SUBROUTINE (Figure 4). Each recursive call guesses another
value for a sum of key bytes, as described in the previous section.

The optimal values of the parameters λ0, . . . , λl−1, μ1, . . . , μl−1 used by the
algorithm and the weights it assigns to the different suggestions can by empiri-
cally found, so that the success probability of the algorithm and/or the average
running time are within a desired range.

6 Efficient Implementation

Recall that on each iteration of the algorithm some of the sums of the key
bytes are already known (or guessed). The suggestions for the unknown sums

16



REC SUBROUTINE(t)

1. If t = l, extract the key from all the l guesses made so far, and verify it. If
the key is correct, return it. Otherwise, return FAIL.

2. For y = 1 to λt do:
(a) Find a combination of key sequence and a candidate for its sum, with the

highest counter among the sum of sequences that hasn’t already been
guessed yet. Denote them by K[i1 . . . i2] and wt, respectively, and denote
the value of that counter by h.

(b) If h < μt, return FAIL (described in Section 4.6).
(c) Set K[i1 . . . i2] = wt.
(d) Mark the correct suggestions for K[i1 . . . i2] = wt, adjust weights and

correct remaining suggestions accordingly (described in Section 4.4).
(e) Merge the counters which may be unified as a result of the guess from 2a

(described in Section 4.2).
(f) Call REC SUBROUTINE(t + 1). If the correct key is found, return it.

Otherwise, cancel the most recent guess (revert any changes made during
the current iteration, including the merging of the counters).

3. Return FAIL.

Fig. 4. The Recursive REC SUBROUTINE Algorithm

are counted using a set of N counters, one counter for each possible value of that
sum. In Section 4.2 we stated that according to the prior guesses, the suggestions
for several sums of key bytes may be counted together (i.e., after a new guess is
made, some of the counters may be merged with counters of other sums). This
section describes an efficient way to discover which counters should be merged,
and how to merge them.

The known bytes induce an equivalence relation between the unknown sums
of the key bytes. Two sums are in the same equivalence class if and only if the
value of each of them can be computed from the value of the other and the values
of known sums. We only need to keep a set of N counters for each equivalence
class, as all suggestions for sums which are in the same equivalence class should
be counted together. When we merge counters, we actually merge equivalence
classes.

We represent our knowledge about the values of the sums as linearly inde-
pendent equations of the key bytes. After r key sums are guessed, there are r
linear equations of the form

l−1∑
i=0

ai,jK[j] = bj ,

for 1 ≤ j ≤ r, where 0 ≤ ai,j < N . The equations are represented as a tri-
angular system of equations, in which the leading coefficient (the first non-zero
coefficient) of each equation is one. These r equations form a basis of a linear

17



subspace of all the sums we already know. In this representation the equivalence
class of any sum of key bytes K[i1 . . . i2] can be found efficiently: We represent
the sum as a linear equation of the key bytes, and apply the Gaussian elimination
process, such that the system of equations is kept triangular, and the leading
coefficient of each equation is one. Sums from the same equivalence class give
the same result, as they all extend the space spanned by the r equations to the
same larger space spanned by r+1 equations. The resulting unique equation can
be used as an identifier of the equivalence class. When the counters are merged
after a guess of a new value, the same process is applied — we apply Gaussian
elimination to the equation representing the current equivalence class in order
to discover the equivalence class it belongs to on the next level, and merge the
counters. Note that as a result of the Gaussian elimination process we also learn
the exact linear mapping between the counters of the current equivalence classes,
and the counters of the classes of the next step.

7 Discussion

In this paper we presented an efficient algorithm for the recovery of the secret
key from the initial state of RC4, using the first bytes of the permutation. The
presented algorithm can also work if only some of the bytes of the initial per-
mutation are known. In this case, suggestions are derived only from the known
bytes, and the algorithm is only able to retrieve values of sums of key bytes for
which suggestions exist. However, as a result of the reduced number of sugges-
tions the success rates are expected to be lower. The algorithm can also work if
some of the bytes contain errors, as the correct values of the sums of key bytes
are still expected to appear more frequently than others.

Since changes to the internal state during the stream generation (PRGA) are
reversible, our algorithm can also be applied given an internal state at any point
of the stream generation phase. Like in [15], our algorithm is also applicable
given an intermediate state during the KSA, i.e., Si (i < N), instead of SN .

We tested the running times and success probabilities of our algorithm for
different key lengths, as summarized in Table 4. The tests were performed on a
Pentium IV 3GHz CPU. The running times presented in the table are averaged
over 10000 random keys. We have assigned a weight of two to suggestions with
probability higher than 0.05, a weight of one to suggestions with probability
between 0.008 and 0.05 and a weight of zero to all other suggestions. The values
of the parameters λ0, . . . , λl−1, μ1, . . . , μl−1 were chosen in an attempt to achieve
the best possible success probability with a reasonable running time. As can be
seen in the table, our algorithm is much faster than the one of [15] for the same
success rate, and in particular in the case of 5-byte keys, it is about 10000 times
faster. Note that with the same computation time, our algorithm achieves about
four times the success rate compared to [15] in most presented cases.

Another important advantage of our algorithm over the algorithm of [15]
is that when the algorithm of [15] fails to retrieve the key, there is no way to
know which of the equations are correct, nor is it possible to retrieve partial

18



Time of
Key Length Time PSuccess Improved [15]∗[sec]

5 0.02 0.8640 366
8 0.60 0.4058 2900
10 1.46 0.0786 183
10 3.93 0.1290 2932
12 3.04 0.0124 100
12 7.43 0.0212 1000
16 278 0.0005 500

∗ Our rough estimation for the time it would take
an improved version of the algorithm of [15] achieve
the same PSuccess (see footnote 1). The time of the
algorithm of [15] is much slower.

Table 4. Empirical Results of The Proposed Attack

information about the key. However, in our algorithm, even if the algorithm fails
to retrieve the full key, its first guesses are still likely to be correct, as those
guesses are made based on counters with high values. This difference can be
exemplified by comparing the success rates of obtaining the sum of key bytes s
(Table 3) with the success rates of obtaining the entire key (Table 4).

Acknowledgments

The authors would like to thank Adi Shamir for his comments.

References

1. Anonymous, RC4 Source Code, CypherPunks mailing list, September 9, 1994.
Available at http://cypherpunks.venona.com/date/1994/09/msg00304.html.

2. E. Biham, L. Granboulan, and P.Q. Nguy˜̂en, Impossible Fault Analysis of RC4
and Differential Fault Analysis of RC4, proceedings of Fast Software Encryption
12, LNCS 3557, pp. 359–367, Springer-Verlag, 2005.

3. T. Dierks and C. Allen, The TLS Protocol, Version 1.0, Internet Engineering Task
Force, January 1999. Available at ftp://ftp.isi.edu/in-notes/rfc2246.txt.

4. H. Finney, An RC4 Cycle That Can’t Happen, Usenet newsgroup sci.crypt, Septem-
ber 1994.

5. S. Fluhrer, I. Mantin, and A. Shamir, Weaknesses in the Key Scheduling Algorithm
of RC4, proceedings of Selected Areas in Cryptography 8, LNCS 2259, pp. 1–24,
Springer-Verlag, 2001.

6. S.R. Fluhrer and D.A. McGrew, Statistical Analysis of the Alleged RC4 Keystream
Generator, proceedings of Fast Software Encryption 7, LNCS 1978, pp. 19–30,
Springer-Verlag, 2001.

19



7. J.Dj. Golić, Linear Statistical Weakness of Alleged RC4 Keystream Generator,
Advances in Cryptology, proceedings of EUROCRYPT’97, LNCS 1233, pp. 226–
238, Springer-Verlag, 1997.

8. A.L. Grosul and D.S. Wallach, A Related-Key Cryptanalysis of RC4, Technical
Report TR-00-358, Department of Computer Science, Rice University, June 2000.
Available at
http://cohesion.rice.edu/engineering/computerscience/tr/TR_Download.cfm?SDID=126.

9. J.A. Halderman, S.D. Schoen, N. Heninger, W. Clarkson, W. Paul, J.A. Ca-
landrino, A.J. Feldman, J. Appelbaum and E.W. Felten, Lest We Remem-
ber: Cold Boot Attacks on Encryption Keys, February 2008. Available at
http://citp.princeton.edu/pub/coldboot.pdf.

10. A. Klein, Attacks on the RC4 Stream Cipher, 2007. Available at
http://cage.ugent.be/∼klein/RC4/RC4-en.ps.

11. L.R. Knudsen, W. Meier, B. Preneel, V. Rijmen, and S. Verdoolaege, Analy-
sis Methods for (Alleged) RC4, Advances in Cryptology, proceedings of ASI-
ACRYPT’98, LNCS 1514, pp. 327–341, Springer-Verlag, 1998.

12. I. Mantin, Analysis of the Stream Cipher RC4, Master Thesis, The Weizmann
Institute of Science, Israel, 2001. Available at
http://www.wisdom.weizmann.ac.il/∼itsik/RC4/Papers/Mantin1.zip.

13. I. Mantin, Predicting and Distinguishing Attacks on RC4 Keystream Generator,
Advances in Cryptology, proceedings of EUROCRYPT’05, LNCS 3494, pp. 491–
506, Springer-Verlag, 2005.

14. I. Mantin and A. Shamir, A Practical Attack on Broadcast RC4, proceedings of
Fast Software Encryption 8, LNCS 2355, pp. 152–164, Springer-Verlag, 2002.

15. G. Paul and S. Maitra, RC4 State Information at Any Stage Reveals the Secret
Key, Proceedings of Selected Areas in Cryptography 2007, to appear. Available at
http://eprint.iacr.org/2007/208.pdf.

16. A. Roos, A Class of Weak Keys in the RC4 Stream Cipher, 1995. Two posts in
sci.crypt. Available at http://marcel.wanda.ch/Archive/WeakKeys.

17. E. Tews, R.P. Weinmann, and A. Pyshkin, Breaking 104 Bit WEP in Less than
60 Seconds, 2007, Available at http://eprint.iacr.org/2007/120.pdf.

18. S. Vaudenay and M. Vuagnoux, Passive-only Key Recovery Attacks on RC4, pro-
ceedings Selected Areas in Cryptography 2007, to appear. Available at
http://infoscience.epfl.ch/record/115086/files/VV07.pdf.

20


