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Abstract. We provide new security proofs for PMAC, TMAC, and
XCBC message authentication modes. The previous security bounds for
these modes were σ2/2n, where n is the block size in bits and σ is the
total number of queried message blocks. Our new bounds are `q2/2n for
PMAC and `q2/2n + `4q2/22n for TMAC and XCBC, where q is the
number of queries and ` is the maximum message length in n-bit blocks.
This improves the previous results under most practical cases, e.g., when
no message is exceptionally long compared to other messages.

1 Introduction

Message authentication code (MAC) is a symmetric-keyed function used for en-
suring the authenticity of messages. Many studies have been done on MACs built
using blockciphers (i.e., MAC modes of operation) including the CBC-MAC and
its variants. The theoretical security of stateless (i.e., no counter or nonce is
used) MAC mode F [EK ] using blockcipher EK can be measured using the max-
imum advantage of an adversary trying to distinguish F [EK ] from the random
oracle, which provides an independent and uniform output for any distinct input,
using a chosen-plaintext attack (CPA). Typically, the key task in proving the
maximum advantage is to prove the maximum information-theoretic (IT) advan-
tage for the target MAC, where the adversary has infinite computational power
and the MAC is built using the uniform random permutation (URP), which is
the ideal functionality of a blockcipher. Improving the maximum IT-advantage
is important, because it will contribute to better understanding of the target
function and to expanding the scope of application.

Bellare, Pietrzak, and Rogaway [5] analyzed the IT-advantage for the CBC-
MAC and the encrypted CBC-MAC called EMAC [2]. Neglecting constants,
the previous EMAC bound using the n-bit URP was `2q2/2n [7] for any (q, `)-
CPA, which uses q chosen messages with lengths less than n` bits. Bellare et
al. investigated whether this could be improved, particularly with respect to `.
They proved the improved bound d(`)q2/2n + `4q2/22n, where d(`) is a function
that grows very slowly with ` (see Sect. 4). A similar result was obtained for
CBC-MAC for prefix-free messages. Recently, Pietrzak [18] proved EMAC bound
q2/2n for a range of (q, `) (in fact, the result was q2/2n+`8q2/22n for any q ≥ `2).

Given these findings, it is quite natural to ask if similar improvements can
be obtained for modes other than EMAC, especially more sophisticated ones.



EMAC uses two blockcipher keys, and only messages with a length multiple of n
are supported. In this paper, we describe several MAC modes and provide new
security bounds for them. Our first target is PMAC, which was proposed by
Black and Rogaway [7] and Rogaway [19]. It is a one-key MAC; i.e., the MAC
function uses one blockcipher key, and messages of any lengths are supported,
and is fully parallelizable. The original security bound was σ2/2n [7, 19], where
σ is the total number of queried message blocks, which immediately implies
`2q2/2n for any (q, `)-CPA, as σ ≤ `q holds. Here, we demonstrate a new bound
`q2/2n by taking an approach different from that of the previous proof.

We also provide new bounds for two successors of EMAC called TMAC [13]
and XCBC [7]. Like EMAC, they are based on CBC-MAC. However, they do
not use two blockcipher keys, and can efficiently handle messages of arbitrary
length. Our bounds are obtained by combining our PMAC proof technique and
the CBC-MAC collision analysis provided by Bellare et al.[5]. For TMAC and
XCBC, the previous bounds are σ2/2n shown by Iwata and Kurosawa [10], and
our bound is `q2/2n + `4q2/22n. We also investigated OMAC [11] (i.e., CMAC
[1]), which is an optimized version of TMAC and XCBC. Although some part of
TMAC proof can also be applied to OMAC, we could not obtain a new bound
at this moment. The analysis of OMAC is briefly described in Sect. 5.

We have to emphasize that our results are not always better than the previous
ones. Since all of our targets have σ2/2n bounds, ours are worse if message length
distribution is heavily biased to the left, e.g., one `-block message and (q − 1)
one-block messages. For other cases, ours are better. A detailed comparison is
given in Sect. 5.

2 Preliminaries

Notation. {0, 1} and {0, 1}n are denoted by Σ and Σn. The set of i-bit se-
quences for all i = 1, . . . , n is denoted by Σ≤n def=

⋃
i=1,...n Σi. (Σn)≤m is the set

of binary sequences with lengths that are a multiple of n and at most nm. Σ∗

is the set of all finite-length bit sequences. The bit length of x is denoted by |x|.
The n-bit uniform random permutation (URP), denoted by Pn, is a ran-

dom permutation with a uniform distribution over all permutations on Σn. The
random oracle (RO), which has n-bit output and is denoted by On, is a ran-
dom function that accepts any x ∈ Σ∗ and outputs independent and uniformly
random n-bit values for any distinct inputs. For any two colliding inputs, RO
outputs the same value.
Field with 2n points. We consider the elements of field GF(2n) as n-bit
coefficient vectors of the polynomials in the field. We represent n-bit coeffi-
cient vectors by integers 0, 1, . . . , 2n − 1, e.g., 2 corresponds to coefficient vector
(00 . . . 010), which corresponds to x in the polynomial representation, and 3 de-
notes (00 . . . 011), which corresponds to x+1. For any x, y ∈ Σn, xy denotes the
field multiplication of two elements represented by x and y. For simplicity, we
assume n = 128 throughout the paper.



Security notions. We used the standard security notion for symmetric cryp-
tography [3, 4, 9].

Definition 1. Let F and G be two random (here, random means it is proba-
bilistic) functions. The oracle has implemented H, which is identical to one of
F or G. An adversary, A, guesses if H is F or G using a θ-chosen-plaintext
attack (θ-CPA), where θ is a list of parameters, such as the number of queries.
The maximum advantage in distinguishing F from G is defined as

AdvcpaF,G(θ) def= max
A:θ-CPA

∣∣ Pr[AF = 1]− Pr[AG = 1]
∣∣,

where AF = 1 denotes that A’s guess is 1, which indicates one of F or G. The
probabilities are determined by the randomness of F or G and A.

The Goal of Our Analysis. In this paper, we consider only the information-
theoretic security, where the adversary has infinite computational power (thus θ
contains no computational restrictions), and the target is realized by the ideal
n-bit blockcipher, i.e., Pn. In many cases, including ours, once the information-
theoretic security is proved, the computational counterpart, where the adversary
is computationally restricted and a real blockcipher is used, is quite easy.

Our target modes are stateless and variable-input-length (VIL) functions
with n-bit output (VIL means that the domain is Σ∗). Therefore, for mode
F [EK ], where EK is a blockcipher, we evaluate AdvvilqrfF [Pn] (θ)

def= AdvcpaF [Pn],On
(θ).

vilqrf denotes a VIL quasi-random function [15] that cannot be information-
theoretically distinguished from RO without a negligibly small success probabil-
ity. If AdvvilqrfF [Pn] (θ) is small, the maximum success probability of a MAC forgery
for all θ-CPAs against F [Pn] is also small (e.g., see Proposition 2.7 of [3]). In this
paper, θ contains one of two additional parameters in addition to the number of
queries, q: the total number of n-bit blocks for all q queries, σ, and the maximum
length of a query (in n-bit blocks), `. We focus on the θ = (q, `) case.

3 PMAC

3.1 Description and Previous Security Proof

PMAC has two versions; we focus on the later version [12, 19]. We call it simply
“PMAC”. The main idea of PMAC is as follows.

Lemma 1. (Proposition 5 of [19]) Assume that the representation of GF(2n)
(n = 128) is based on the lexicographically first primitive polynomial (see [19] for
details). Let I = {1, .., 2n/2} and J = {0, 1, 2} be the set of integers used as indices
for distinct elements (“bases”) of GF(2n). Then, for any (α, β), (α′, β′) ∈ I× J,
2α3β 6= 2α′3β′ holds if (α, β) 6= (α′, β′) holds3.
3 Actually, Proposition 5 of [19] proved this for a wider range of indices. The original

PMAC uses J = {2, 3, 4} instead of {0, 1, 2}, so our PMAC definition is slightly
different from the original. However, the security proofs are essentially the same.



Fig. 1. PMAC[Pn] (left) and the modified PMAC (MPMAC) (right).

Multiplication of a constant and a variable is generally much simpler than
multiplication of variables. For example, multiplication with 2 (i.e., a doubling
operation) requires a bit shift followed by a conditional xor. Therefore, compu-
tation of 2α3β from 2α−13β or 2α3β−1 is significantly faster than one blockcipher
invocation. The idea of PMAC [19], called the “powering-up construction”, is to
use 2α3β as a masking value for every blockcipher input, incrementing α or β.

For blockcipher EK , PMAC is defined as follows. We say “partition x ∈ Σ∗

into (x[1], . . . , x[m])” to set m = ‖x‖n
def= max{d|x|/ne, 1} and x = (x[1], . . . , x[m])

with x[i] ∈ Σn for i = 1, . . . ,m− 1 and x[m] ∈ Σ≤n. First, compute L = EK(0),
where 0 corresponds to the all-zero n-bit sequence, in the preprocessing. Then, for
input x ∈ Σ∗, partition it into (x[1], . . . , x[m]). The tag for x is Y = EK(Psum⊕
pad(x[m]) ⊕ 2m3I(x)), where Psum =

⊕m−1
α=1 EK(x[α] ⊕ 2αL) if m > 1, and if

m = 1, Psum = 0. Here, I(x) = 1 if |x| is a multiple of n and I(x) = 2 otherwise,
and pad(x[m]) = x[m] if |x[m]| = n and pad(x[m]) = x[m]‖10∗ otherwise, where
x[m]‖10∗ is a concatenation of x[m] and the (n− |x[m]|)-bit sequence (100 . . . 0).

Rogaway [19] proved the security of PMAC, which is as follows.

Theorem 1. (Corollary 17 of [19]) Let PMAC[Pn] be the PMAC using Pn (see
the left of Fig. 1). We then have AdvvilqrfPMAC[Pn](q, σ) ≤ 5.5σ2/2n and

AdvvilqrfPMAC[Pn](q, `) ≤ 5.5`2q2/2n, where q, σ, and ` are as defined in Sect. 2.

Corollary 17 of [19] only proved the first claim. The second follows from the first
and σ ≤ `q.

3.2 New Security Bound for PMAC

Our security bound of PMAC is the following. The proof will be provided later.

Theorem 2. Let PMAC[Pn] be the PMAC using Pn. We then have

AdvvilqrfPMAC[Pn](q, `) ≤
5`q2

2n − 2`
.

From this theorem, we have AdvvilqrfPMAC[Pn](q, `) ≤ 10`q2/2n if ` ≤ 2n−2.



Notation for Proof. Since we use Maurer’s methodology4 (e.g., see [15]) to
make our proofs intuitive and simple, we briefly describe his notation. For com-
pleteness, part of his results that we used for our proof is cited in Appendix A.
Consider event ai defined for i input/output pairs, and possibly some internal
variables, of random function F . Let ai be the negation of ai. We assume ai

is monotone; i.e., ai never occurs if ai−1 occurs. For instance, ai is monotone
if it indicates that all i outputs are distinct. An infinite sequence of monotone
events, A = a0a1 . . . , is called a monotone event sequence (MES) [15]. Here,
a0 denotes some tautological event. Note that A ∧ B = (a0 ∧ b0)(a1 ∧ b1) . . .
is an MES if A = a0a1 . . . and B = b0b1 . . . are both MESs. For any se-
quence of variables, X1, X2, . . . , let Xi denote (X1, . . . , Xi). We use dist(Xi)
(or, equivalently, dist(X(i)), where X(i) is set {Xj}j=1,...,i) to denote an event
where X1, X2, . . . , Xi are distinct.

Let MESs A and B be defined for two random functions, F and G, respec-
tively. Let Xi and Yi be the i-th input and output. Let PF be the probability
space defined by F . For example, PF

Yi|XiY i−1(yi, xi) means Pr[Yi = yi|Xi =
xi, Y i−1 = yi−1], where Yj = F (Xj) for j ≥ 1.

Definition 2. Let θ contain q. For MES A defined for F , νθ(F, aq) denotes
the maximum probability of aq for any θ-CPA that interacts with F . Similarly,
µθ(F, aq) denotes the maximum probability of aq for any non-adaptive θ-CPA.
For θ = (q, `), they are abbreviated to ν`(F, aq) and µ`(F, aq). If θ = q, the
subscript is omitted, e.g., we write ν(F, aq).

Here, µθ(F, aq) can be rewritten as maxxq PF
aq|Xq (xq), where the maximum is

taken for all (non-adaptively chosen) xq satisfying θ (e.g., if θ = (q, `), |xi| ≤ n`
for all i ≤ q), hereafter abbreviated to maxXq PF

aq|Xq .

Analysis of PHASH. Proving Theorem 2 requires an analysis of the message-
hashing part of PMAC[Pn], which we call PHASH. For x = (x[1], . . . , x[m]) ∈
(Σn)m, it is defined as:

PHASH(x) def=
⊕

i=1,...,m

Pn(x[i] ⊕ 2iL), where L = Pn(0) .

Lemma 2. For any x = (x[1], . . . , x[m]) ∈ (Σn)m and x′ = (x′[1], . . . , x
′
[m′]) ∈

(Σn)m′
, x 6= x′, and for any f : Σn → Σn, we have

Pr[PHASH(x)⊕ PHASH(x′) = f(L)] ≤ m + m′

2n
+

1
2n − (m + m′)

, and (1)

Pr[PHASH(x) = f(L)] ≤ m

2n
+

1
2n −m

, where L = Pn(0) . (2)

4 It is known that some information-theoretic results obtained by Maurer’s methodol-
ogy can not be converted into computational ones (for instance, see [16, 17]). How-
ever, we do not encounter such difficulties in this paper.



Proof. We only prove Eq. (1) as Eq. (2) can be similarly proved. Fix x and x′. Let
Ui = x[i]⊕2iL for i = 1, . . . , m, and Ui = x′[i−m]⊕2i−mL for i = m+1, . . . , m+m′.

Then, PHASH(x)⊕ PHASH(x′) equals Sum
def= Pn(U1) ⊕ . . .⊕ Pn(Um+m′). Let

U = {U1, . . . , Um+m′} \Ucoll, where Ucoll is the set of all trivial collisions, e.g.,
U1 and U1+m when x[1] = x′[1]. Note that U can not be the empty set as x 6=
x′. For simplicity, we assume no trivial collision (thus U = {U1, . . . , Um+m′}),
however the following analysis works even if some trivial collisions exist. For
index subset {i1, . . . , ik} ⊆ {1, . . . , q}, Usub = {Uij}j=1,...,k is an equivalent set
if Ui1 = Ui2 = · · · = Uik

and Ui1 6= Uh for all h 6∈ {i1, . . . , ik}. Here, the sum
of all equivalent sets is a decomposition of U. Whether Usub is an equivalent
set or not depends on the value of L. If k is odd (even), we say Usub is an odd
(even) equivalent set. Let oddk be the event such that there are k odd equivalent
sets having non-zero values (the value of an equivalent set is the value of its
members). We have

Pr[Sum = f(L)|oddk]
≤ max

c satisfies oddk

Pr[Pn(u1(c))⊕ . . .⊕ Pn(um+m′(c)) = f(c)|oddk, L = c], (3)

where ui(c) is x[i] ⊕ 2ic for i = 1, . . . , m and x′[i−m] ⊕ 2i−mc for i = m +
1, . . . , m+m′. In Eq. (3), note that Pn(ui(c)) is canceled out if ui(c) is in an even
equivalent set. Therefore, given L = c and oddk for some k > 0, Pn(u1(c))⊕ . . .⊕
Pn(um+m′(c)) is either the sum of k URP outputs for k non-zero distinct inputs
or the sum of c and k URP outputs for k non-zero distinct inputs (note that
oddk does not exclude an odd equivalent set with value 0). Then, the property
of Pn shows that, for any non-zero distinct k inputs, z1, . . . , zk,

Pr[Pn(z1)⊕ Pn(z2)⊕ . . .⊕ Pn(zk) = f(c)|Pn(0) = c]

=
∑

c1,...,ck,dist({c1,...,ck,c}),c1⊕...⊕ck=f(c)

Pr[Pn(z1) = c1, . . . , Pn(zk) = ck|Pn(0) = c]

=
|{(c1, . . . , ck) : dist({c1, . . . , ck, c}), c1 ⊕ . . .⊕ ck = f(c)}|

(2n − 1) · · · · · (2n − k)
≤ 1

2n − k
(4)

holds, where the inequality holds since ck is uniquely determined (or does not
exist) if c1, . . . , ck−1 are fixed. From Eqs. (3) and (4), we obtain

Pr[Sum = f(L)|oddk] ≤ 1
2n − k

for any 0 < k ≤ m + m′ and for any f. (5)

Next, we analyze Pr[odd0]. We have

Pr[odd0] = Pr[odd0, U1 6∈ {U2, . . . , Um+m′}]
+ Pr[odd0, U1 = Uj for some j = 2, . . . , m + m′ ]

≤ Pr[U1 = 0] +
∑

j=2,...,m+m′
Pr[U1 = Uj ] ≤ (m + m′)

1
2n

, (6)



where the first inequality holds since if U1 is unique (i.e., U1 is in an odd equiv-
alent set) and odd0 holds, U1 must be 0. The second holds since both U1 and
U1 ⊕ Uj for any j 6= 1 are permutations of L from Lemma 1. From Eqs. (5) and
(6), we obtain

Pr[Sum = f(L)] =
∑

k=0,...,m+m′
Pr[Sum = f(L)|oddk] · Pr[oddk]

≤ Pr[odd0] +
m+m′−1∑

k=1

Pr[oddk]
2n − k

+
1−∑m+m′−1

k=0 Pr[oddk]
2n − (m + m′)

≤ Pr[odd0] +
1

2n − (m + m′)
≤ m + m′

2n
+

1
2n − (m + m′)

.

This concludes the proof of Lemma 2.

Proof of Theorem 2. First, we introduce the tweakable[14] n-bit URP, P̃n. It
has tweak space T = I× J′, where I = {1, . . . , 2n/2} and J′ = {1, 2}. It consists
of |T | independent n-bit URPs; P̃n(t, x) is the output of an n-bit URP indexed
by t ∈ T and having input x ∈ Σn. Using P̃n and Pn, independent of P̃n, we
define the modified PMAC (MPMAC) as follows. First, compute L = Pn(0).
For input x ∈ Σ∗ = (x[1], . . . , x[m]), compute Psum using PHASH (i.e., Psum =
PHASH(x̂), where x̂ = (x[1], . . . , x[m−1]), if m > 1, and Psum = 0 otherwise).
The tag is Y = P̃n((m, I(x)), Psum ⊕ pad(x[m])). Here, (m, I(x)) is the tweak.
Note that a tweak is a function of x.
Proof Idea. Since the advantage is the absolute difference between two prob-
abilities, we can use a triangle inequality, AdvcpaPMAC[Pn],On

(θ) is not larger than
AdvcpaPMAC[Pn],H(θ) + AdvcpaH,On

(θ) for any VIL function H, and for any θ. Here, H

is an intermediate function. Theorem 1 was derived using “PMAC with an ideal
tweakable blockcipher”, which invokes an independent URP for each message
block in the message-hashing part as well as in the finalization, as the interme-
diate function. Here, our proof uses MPMAC as the intermediate function.

We start by proving the advantage between PMAC[Pn] and MPMAC, which
requires defining some random variables. Let Xi ∈ Σ∗ be the i-th query of the
adversary. If m = ‖Xi‖n, we write Xi = (Xi[1], . . . , Xi[m]). Note that Xi is a ran-
dom variable, and its distribution is determined by the adversary and the target
MAC. Fixed queries (and other random variables) are written in lower case,
e.g., xi = (xi[1], . . . , xi[m]). For PMAC[Pn], let M(q) (C(q)) be the set of inputs
(outputs) to Pn generated in the PHASH for all q queries. We do not include
the result of preprocessing, i.e., L = Pn(0), in M(q) and C(q). We also define
Yi ∈ Σn as the i-th tag, and Y(q) def= {Yi}i=1,...,q. If m = ‖Xi‖n > 1, we define Vi

as the XOR of the i-th PHASH output and pad(Xi[m]). If m = 1, Vi = pad(Xi).
Moreover, Si

def= Vi⊕ 2m3I(Xi[m])L, and S(q) def= {Si}i=1,...,q. Thus, in PMAC[Pn],
Yi = Pn(Si). These variables are similarly defined for MPMAC except Yi; in
MPMAC, Yi is P̃n((m, I(Xi[m])), Vi) when the i-th query has m blocks. Also, Si

is defined as a dummy variable in MPMAC. See Fig. 1 for reference.



Lemma 3. Let event aq
def= [M(q) ∩ S(q) = ∅] ∧ [dist(S(q))] ∧ [0 6∈ M(q) ∪ S(q)].

Moreover, bq
def= [dist(Y(q))], dq

def= [C(q) ∩Y(q) = ∅], and eq
def= [L 6∈ Y(q)], where

L = Pn(0). We then have

AdvcpaPMAC[Pn],MPMAC(q, `) ≤ ν`(MPMAC, aq ∧ bq ∧ dq ∧ eq)

≤ ν`(MPMAC, aq ∧ bq) + ν`(MPMAC, dq ∧ eq)

≤ 1
2n − 2`

(
(4`− 2.5)q2 + 1.5q

)
. (7)

Proof. (of Lemma 3) The first and second inequalities are derived from Maurer’s
methodology. See Appendix B for the proof. In the following, we prove the third.
Analysis for ν`(MPMAC, aq ∧ bq). We use the following lemma. The proof is
in Appendix C.

Lemma 4.

ν`(MPMAC, aq ∧ bq) = µ`(MPMAC, aq ∧ bq) = max
Xq

PMPMAC
aq|Xq + max

Xq
PMPMAC

bq|aqXq ,

where the maximums are taken for all Xq = xq with |xi| ≤ n` for all i.

Note that maxXq PMPMAC
aq|Xq denotes maxxq PMPMAC

aq|Xq (xq). Let Mi denote the in-
put set to Pn that occur in the i-th PHASH call, except the all-zero input used
to obtain L. Note that M(q) = M1 ∪ · · · ∪Mq. For i = 1, . . . , q, we have

χ1
def= dist(S(q)), χ2,i

def= [Si 6∈ M(q)], χ3,i
def= [Si 6= 0], and χ4,i

def= [0 6∈ Mi].

Note that aq ≡ χ1 ∧ χ2 ∧ χ3 ∧ χ4 where χi
def= χi,1 ∧ · · · ∧ χi,q for i = 2, 3, 4.

Using the union bound and its variant, we have

max
Xq

PMPMAC
aq|Xq ≤ max

Xq
PMPMAC

χ1|Xq

+
∑

i=1,...,q

(
max
Xq

PMPMAC
χ2,i|χ4,i,Xq +max

Xq
PMPMAC

χ3,i|χ4,i,Xq +max
Xq

PMPMAC
χ4,i|Xq

)
. (8)

Now we analyze each term in Eq. (8). For this analysis, for some i 6= j, we fix the
i-th and j-th queries to xi = (xi[1], . . . , xi[m]) and xj = (xj[1], . . . , xj[m′]) with
xi 6= xj . We start with the first term. Collision Si = Sj is equivalent to

Vi ⊕ Vj ⊕ 2m3I(xi)L⊕ 2m′
3I(xj)L = 0. (9)

To prove the maximum probability of Eq. (9), we need to use a case analysis.
Case 1: m = m′ = 1. In this case, Vi⊕Vj = pad(xi)⊕pad(xj). If I(xi) 6= I(xj),

the L.H.S. of Eq. (9) is a permutation of L from Lemma 1. Thus, the probability
of Eq. (9) is 1/2n. If I(xi) = I(xj), the probability is zero as pad(xi) 6= pad(xj).

Case 2: m > 1,m′ = 1. In this case, the probability of Eq. (9) is obviously at
most (m − 1)/2n + 1/(2n − (m − 1)) ≤ (` − 1)/2n + 1/(2n − (` − 1)) from the
second claim of Lemma 2.



Case 3: m = m′ > 1. If the first m− 1 blocks of xi and xj are the same, the
probability is at most 1/2n, which is the same as in Case 1. Otherwise, Eq. (9)
occurs with a probability of at most (2`− 2)/2n + 1/(2n − (2`− 2)) from the
first claim of Lemma 2.

Case 4: m > 1,m′ > 1,m 6= m′. The bound of Case 3 also holds true.
Thus, we have

max
Xq

PMPMAC
χ1|Xq ≤

∑

i<j

max
Xq

PMPMAC
[Si=Sj ]|Xq ≤

(
q

2

) (
2`− 2

2n
+

1
2n − (2`− 2)

)
. (10)

For the second term, observe that χ2,i is the logical sum of events such that
Si = 2hL⊕xi′[h] for some i′ including i, and 1 ≤ h ≤ `−1. As xi has m blocks, this
is equivalent to Vi = xi′[h]⊕2m3I(xi)L⊕2hL. From Lemma 1, we have 2m3I(xi) 6=
2h. Thus, it is enough to evaluate the maximum of Pr[Vi = u1L ⊕ u2|χ4,i] for
all u1 ∈ Σn \ {0}, u2 ∈ Σn. We fix u1 6= 0 and u2, and let f(z) = u1z ⊕ u2

and u3
def= (u2 ⊕ pad(xi[m]))/u1, where / denotes field division. We assume that

m > 1 and L = u3 satisfies χ4,i with xi. Note that Pr[Vi = f(L)|χ4,i] equals:
∑

c

Pr[Vi = f(L)|L = c] Pr[L = c|χ4,i] + Pr[Vi = 0|L = u3] Pr[L = u3|χ4,i],

≤ max
c

Pr[Vi = f(c)|L = c] + Pr[L = u3|χ4,i], (11)

= max
c

Pr[Sum(c) = f(c)⊕ pad(xi[m])|L = c] + Pr[L = u3|χ4,i], (12)

where the sum and maximums are taken for all c 6= u3 that satisfies χ4,i, and
Sum(c) = Pn(xi[1]⊕2c)⊕ . . .⊕Pn(xi[m−1]⊕2m−1c). If every element in {(xi[1]⊕
2c), . . . , (xi[m−1]⊕ 2m−1c)} is in an even equivalent set, Sum(c) is 0 while f(c)⊕
pad(xi[m]) 6= 0 from c 6= u3. If there exists any element which is in an odd
equivalent set, Sum(c) is the sum of k URP outputs for distinct inputs, for some
1 ≤ k ≤ m − 1. These inputs are not 0 as c satisfies χ4,i. Therefore, the first
term of the R.H.S. of Eq. (12) is at most 1/(2n− (`− 1)) from Eq. (4). Also, the
second term of the R.H.S. of Eq. (12) is at most 1/(2n − (`− 1)). From these
observations, maxu1 6=0,u2 Pr[Vi = u1L ⊕ u2|χ4,i] is at most 2/(2n − (`− 1)) if
m > 1 and L = u3 satisfies χ4,i. For other cases (i.e., when m = 1 or m > 1 and
L = u3 does not satisfy χ4,i), this bound also holds true. Therefore,

max
Xq

PMPMAC
χ2,i|χ4,i,Xq ≤ (`− 1)q · max

u1 6=0,u2
Pr[Vi = u1L⊕ u2|χ4,i] =

2(`− 1)q
2n − (`− 1)

(13)

holds for any 1 ≤ i ≤ q, where the inequality holds since M(q) contains at most
(`− 1)q distinct elements. For the third and fourth terms of Eq. (8), we have

max
Xq

PMPMAC
χ3,i|χ4,i,Xq ≤ 2

2n − (`− 1)
, and max

Xq
PMPMAC

χ4,i|Xq ≤ (`− 1)
2n

, (14)

where the first inequality follows from the same analysis as for the second term,
and the second inequality holds since χ4,i occurs if L takes one of (at most) `−1



values defined by xi. Combining Eqs. (10),(13), and (14), we get

max
Xq

PMPMAC
aq|Xq ≤

(
q

2

) (
2`− 2

2n
+

1
2n − (2`− 2)

)
+

2(`− 1)q2 + 2q

2n − (`− 1)
+

(`− 1)q
2n

≤ 1
2n − (2`− 2)

((3`− 2.5)q2 + 1.5q). (15)

Note that aq implies Vi 6= Vj if i-th and j-th tweaks are the same, for all
1 ≤ i < j ≤ q. Therefore, if aq is given, the collision probability between Yi and
Yj is at most 1/2n for all fixed q queries. Thus we have

max
Xq

PMPMAC
bq|aqXq ≤

∑

i<j

max
Xq

PMPMAC
[Yi=Yj ]|aqXq ≤

(
q

2

)
1
2n

. (16)

Analysis for ν`(MPMAC, dq ∧ eq). We consider a tweakable function, G, hav-
ing n-bit input and output and tweak space T = I×J, where I = {1, .., 2n/2} and
J = {0, 1, 2}. For any input x ∈ Σn and tweak t = (t[1], t[2]) ∈ T , it is defined as
G(t, x) def= Pn(x) if t[2] = 0, otherwise G(t, x) def= P̃n((t[1], t[2]), x), where Pn and
P̃n are independent. If we allow an adversary against G to make (`− 1)q queries
for Pn and q queries for P̃n (the order of query is arbitrary), he can simulate
any (q, `)-CPA against MPMAC. Here, we assume that L = Pn(0) is publicly
available, so that `q queries are enough to simulate an attack. Moreover, if a G-
based simulation generates distinct `q outputs of G, this implies the occurrence
of dq in MPMAC5. From these observations, ν`(MPMAC, dq) is at most

ν ˜̀q(G,dist(Y(`q))) = µ ˜̀q(G,dist(Y(`q))) ≤ (`− 1)q2

2n
+

(
q

2

)
1
2n

,

where Y(`q) is the set of `q outputs, and ˜̀q means that the adversary can make
(` − 1)q queries for Pn and q queries for P̃n, and the equality follows from an
analysis similar to the one used for the proof of Lemma 4. The last inequality is
trivial. Similarly, we can prove ν`(MPMAC, eq) ≤ q/2n using G. Thus we have

ν`(MPMAC, dq ∧ eq) ≤ (`− 1)q2

2n
+

(
q

2

)
1
2n

+
q

2n
(17)

using Lemma 9. Combining Eqs. (15),(16), and (17) and Lemma 4, Lemma 3 is
proved.

Proving Theorem 2. Deriving an upper bound of AdvvilqrfMPMAC(q, `) is easy since
MPMAC can be seen as an instance of the Carter-Wegman MAC [20](CW-
MAC). Since the following lemma is almost the same as previous CW-MAC
lemmas (e.g., Lemma 4 of [5]), we omit the proof here.
5 We assume that the adversary never makes colliding queries and a pair of queries

such as ((t[1], t[2]), x) and ((t′[1], t
′
[2]), x

′) with t[2] = t′[2] = 0, x = x′, and t[1] 6= t′[1].
These queries are obviously useless for simulation.



Lemma 5. AdvvilqrfMPMAC(q, `) ≤ (
q
2

)
dp(`− 1) +

(
q
2

)
/2n, where dp(m) denotes

maxx,x′∈(Σn)≤m,x 6=x′,u∈Σn Pr[PHASH(x)⊕ PHASH(x′) = u].

Finally, combining Lemmas 2, 3, and 5, we obtain

AdvvilqrfPMAC[Pn](q, `) ≤ AdvcpaPMAC[Pn],MPMAC(q, `) + AdvvilqrfMPMAC(q, `), and (18)

≤ (4`− 2.5)q2 + 1.5q

2n − 2`
+

(
q

2

)(
2`− 2

2n
+

1
2n − (2`− 2)

+
1
2n

)

≤ (5`− 2.5)q2 + (1.5− `)q
2n − 2`

≤ 5`q2

2n − 2`
, (19)

where the last inequality holds since q, ` ≥ 1. This concludes the proof of Theo-
rem 2.

4 TMAC and XCBC

4.1 New Security Bounds for TMAC and XCBC

Since CBC-MAC provides no security if two messages with the same prefix are
processed, a number of modifications have been proposed to make CBC-MAC
secure for any message. EMAC, an early attempt, uses two blockcipher keys;
TMAC [13] and XCBC [7] were later proposed as better solutions: they use
one blockcipher key and some additional keys, and thus avoid two blockcipher
key schedulings. TMAC and XCBC are defined as follows. Let CBC be the
CBC-MAC function using Pn; that is, for input x = (x[1], . . . , x[m]) ∈ (Σn)m,
CBC(x) = Cm, where Ci = Pn(x[i] ⊕ Ci−1) and C0 = 0. Let TMAC[Pn] denote
the TMAC using Pn. For input x ∈ Σ∗, TMAC[Pn] works as follows. First, we
partition x into x = (x[1], . . . , x[m]), where m = ‖x‖n. If m > 1, the tag for x

is Y = Pn(CBC(x̂) ⊕ pad(x[m]) ⊕ 2I(x)−1L), where x̂ = (x[1], . . . , x[m−1]) and
L is independent and uniform over Σn. If m = 1, Y is Pn(pad(x) ⊕ 2I(x)−1L).
Note that the Pn used in CBC and the one used in the finalization are iden-
tical. Therefore, in practice, TMAC has one blockcipher key and an additional
n-bit key L. XCBC is similar to TMAC, but uses two n-bit keys, L1 and L2,
as masking values instead of L and 2L. The previous bound of TMAC[Pn] is
(3`2 + 1)q2/2n [13] against (q, `)-CPA, and 3σ2/2n against (q, σ)-CPA [10]. Al-
most the same results are obtained for XCBC [10, 13]. However, using our proof
approach in Sect. 3 and Bellare et al.’s analysis of the CBC function [5], we
obtain the following.

Theorem 3. Let TMAC[Pn] be the TMAC using Pn. We then have

AdvvilqrfTMAC[Pn](q, `) ≤
4`q2

2n
+

64`4q2

22n
.

The proof of Theorem 3 is in the next section. The bound of Theorem 3 is also
applicable to XCBC. The proof for XCBC is the same as the proof of Theorem
3, thus we omit it here.



4.2 Proof of Theorem 3

Since the proof structure is the same as that of Theorem 2, we give only a sketch
of the proof. We define a modified TMAC, denoted by MTMAC, that uses
an independent tweakable URP for its finalization. In MTMAC, we partition
message x into (x[1], . . . , x[m]), where m = ‖x‖n, and when m > 1, the tag
is Y = P̃n(I(x),CBC(x̂) ⊕ pad(x[m])), where I(x) ∈ {1, 2} is a tweak. When
m = 1, Y = P̃n(I(x), pad(x)). For both TMAC[Pn] and MTMAC, let Xi ∈ Σ∗

be the i-th query and M(q) (C(q)) be the set of inputs (outputs) to Pn generated
in the CBC function for all q queries. We also define Yi as the i-th tag, and
Y(q) def= {Yi}i=1,...,q. When ‖Xi‖n = m > 1, we define Vi as the XOR of the
i-th CBC output and pad(Xi[m]) , and when m = 1, Vi = pad(Xi). Moreover,
Si

def= Vi ⊕ 2I(Xi)−1L, and S(q) def= {Si}i=1,...,q. In MTMAC, Si is a dummy
variable. Note that Yi = Pn(Si) in TMAC[Pn] and that Yi = P̃n(I(Xi), Vi) in
MTMAC, where m = ‖Xi‖n. We define aq

def= dist(S(q)) ∧ [M(q) ∩ S(q) = ∅] and
bq

def= dist(Y(q)), dq
def= [C(q) ∩Y(q) = ∅]. We then obtain

AdvcpaTMAC[Pn],MTMAC(q, `) ≤ ν`(MTMAC, aq ∧ bq) + ν`(MTMAC, dq) (20)

for any (q, `) using an argument similar to that used for Lemma 3. Note that aq

does not contain [0 6∈ M(q) ∪ S(q)], as we do not have to care about 0 being an
input to Pn. Since Lemma 4 does not depend on the structure of message-hashing
part, it also applies to MTMAC and we have

ν`(MTMAC, aq ∧ bq) = µ`(MTMAC, aq ∧ bq) ≤ max
Xq

PMTMAC
aq|Xq + max

Xq
PMTMAC

bq|aqXq .

(21)
To obtain bounds of last two terms of Eq. (21), we need the following lemma6.

It generalizes a lemma of Bellare et al.[5].

Lemma 6.

max
x∈(Σn)m,x′∈(Σn)m′ ,x6=x′,u∈Σn

Pr[CBC(x)⊕ CBC(x′) = u] ≤ 2d(m∗)
2n

+
64(m∗)4

22n
,

max
x∈(Σn)m,u∈Σn

Pr[CBC(x) = u] ≤ 2d(m + 1)
2n

+
64(m + 1)4

22n
,

where d(m) is the maximum number of positive integers that divide h, for all
h ≤ m, and m∗ = max{m,m′}+ 1.

Proof. (of Lemma 6) For any z ∈ Σn, CBC(x) ⊕ CBC(x′) = u is equivalent to
Pn(CBC(x) ⊕ z) = Pn(CBC(x′) ⊕ z ⊕ u), which is equivalent to CBC(x‖z) =

6 Pietrzak [18] proved that the collision probability of CBC among q messages could
be smaller than the union bound applied to Lemma 6 for some (q, `). Since our
analysis is based on the union bound, we do not know if the result of [18] can be
combined into our proof to obtain other proofs.



CBC(x′‖(z ⊕ u)). From Lemma 5 of [5], we see that the collision probability of
CBC(x‖z) and CBC(x′‖(z ⊕ u)) is at most 2d(m∗)/2n + 64(m∗)4/22n for any
z (note that x‖z 6= x′‖(z ⊕ u) holds for any z and u as we assumed x 6= x′).
Therefore, the first claim is proved. The second can be similarly proved.

We analyze maxXq PMTMAC
aq|Xq . If the i-th and j-th queries are fixed to xi and xj

with xi 6= xj , collision Si = Sj is equivalent to Vi ⊕ 2I(xi)L = Vj ⊕ 2I(xj)L.
If I(xi) 6= I(xj), the collision occurs with probability 1/2n since L is indepen-
dent of Vi and Vj and 2I(xi)L ⊕ 2I(xj)L is a permutation of L from Lemma 1.
If I(xi) = I(xj), Si = Sj implies Vi = Vj , which has a probability of at most
2d(`)/2n +64`4/22n from Lemma 6 and a case analysis similar to the one used to
derive Eq. (10). Therefore, the probability of dist(S(q)) is at most

(
q
2

)
(2d(`)/2n +

64`4/22n). Note that any collision event consisting of [M(q) ∩ S(q) = ∅] has prob-
ability 1/2n since L is independent of all members of M(q). From these observa-
tions, we have

max
Xq

PMTMAC
aq|Xq ≤ max

Xq
PMTMAC

dist(S(q))|Xq
+ max

Xq
PMTMAC

[M(q)∩S(q)=∅]|Xq

≤
(

q

2

)(
2d(`)
2n

+
64`4

22n

)
+

(`− 1)q2

2n
. (22)

The analyses of maxXq PMTMAC
bq|aqXq

and ν`(MTMAC, dq) are the same as those used
for the proof of Lemma 3. We obtain

max
Xq

PMTMAC
bq|aqXq ≤

(
q

2

)
1
2n

, and ν`(MTMAC, dq) ≤ (`− 1)q2

2n
+

(
q

2

)
1
2n

. (23)

As with MPMAC, MTMAC is an instance of CW-MAC. Thus, we have

AdvvilqrfMTMAC(q, `) ≤
(

q

2

)(
2d(`)
2n

+
64`4

22n
+

1
2n

)
. (24)

Combining the bound of AdvcpaTMAC[Pn],MTMAC(q, `), which can be derived from

Eqs. (20),(21),(22), and (23), and the bound of AdvvilqrfMTMAC(q, `) by Eq. (24),
AdvvilqrfTMAC[Pn](q, `) is at most ((2d(`) + 2`)q2)/2n + 64`4q2/22n. Since d(`) ≤ `,
this concludes the proof of Theorem 3.

5 Conclusion and Future Work

In this paper, we have provided new security bounds for PMAC, TMAC, and
XCBC. Our result demonstrates that the security degradation with respect to
the maximum length of a message is linear for PMAC and almost linear (unless
message is impractically long) for TMAC and XCBC, while previous analyses of
these modes proved quadratic security degradation.
A Comparison of Bounds. As we mentioned, our new bounds improve the old
ones under most (but not all) cases. Here, we give a detailed comparison between



new and old bounds. For simplicity, we ignore the constants. Thus, the new
PMAC bound is `q2/2n, the new TMAC (and XCBC) bound is `q2/2n+`4q2/22n,
and the old bounds are σ2/2n for all. For PMAC, the new bound is better if and
only if

√
`q < σ, i.e., the mean message block length (σ/q) is larger than

√
`.

Similarly, for TMAC and XCBC, the new bound is better if and only if the mean
message block length is larger than

√
`(1 + c), where c = `3/2n, which can be

small in practice. Thus, the criterion for choosing a bound is the distance between
the mean block length and the square root of the maximum block length.

As a concrete example, let n = 128, q = 240, and ` = 216. Then the new
PMAC bound is 2−32 (the new TMAC and XCBC bounds are almost 2−32),
while the old bound ranges from 2−48 to 2−16. The old bound is better if 99.9%
of the messages are one-block, as σ2/2n ≤ (1 · 0.999q + ` · 0.001q)2/2n < 2−35.
In this case, the mean block length is smaller than 26, which is smaller than√

` = 28. In contrast, if 1% of the messages are `-block, the new bound is better
since σ2/2n ≥ (` · 0.01q + 1 · 0.99q)2/2n > 2−30 and the mean block length is at
least 29. Generally, the new bounds are better when only a tiny fraction of the
message length distribution is concentrated on the right.
On The Security of OMAC. OMAC [11], i.e., CMAC [1], is similar to TMAC,
but uses a different finalization. In OMAC using Pn, denoted by OMAC[Pn], L is
Pn(0), and, instead of using 2I(x)−1L, it uses 2I(x)L as the masking value. Thus
OMAC has only one blockcipher key. The known security bound of OMAC[Pn] is
(5`2+1)q2/2n[11] against (q, `)-CPA, and 4σ2/2n against (q, σ)-CPA [10]. Unfor-
tunately, we have not yet succeeded in showing new bounds. In a manner similar
to that for TMAC, we define a modified7 OMAC (MOMAC), using Pn and P̃n,
and define sets of variables, (M(q), C(q), S(q), and Y(q)), for both OMAC[Pn]
and MOMAC. By defining events aq

def= dist(S(q))∧ [M(q)∩S(q) = ∅]∧ [0 6∈ S(q)],
bq

def= dist(Y(q)), dq
def= [C(q) ∩Y(q) = ∅], and eq

def= [L 6∈ Y(q)], we can prove that
AdvcpaOMAC[Pn],MOMAC(q, `) is at most ν`(MOMAC, aq ∧ bq ∧ dq ∧ eq). However, to
obtain a bound of ν`(MOMAC, aq ∧ bq), we need the maximum probability of
[CBC(x)⊕CBC(x′) = u1L⊕u2] for u1 = (2⊕22), which corresponds to the sum
of two distinct masking values, and for all u2, i.e., we need a generalization of
Lemma 6. We think that this is an interesting open problem.
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A Lemmas from Maurer’s Methodology

We describe some lemmas developed by Maurer (e.g., [15]) that we used. We
assume that F and G are two random functions with the same input/output size;
we define MESs A = a0a1 . . . and B = b0b1 . . . for F and G. The i-th input and
output are denoted by Xi and Yi for F (or G), respectively. Equality of (possibly
conditional) probability distributions means equality as functions, i.e., equality
holds for all possible arguments. For example, we write PF

Y i|Xiai
= PG

Y i|Xibi

to mean PF
Y i|Xiai

(yi, xi) = PG
Y i|Xibi

(yi, xi) for all (xi, yi), where PF
ai|Xi(xi) and

PG
bi|Xi(xi) are positive. Inequalities, such as PF

Y i|Xiai
≤ PG

Y i|Xibi
, are similarly

defined.

Lemma 7. (A corollary from Theorem 1 (i), Lemma 1 (iv), and Lemma 4 (ii) of
[15]) Let F be the function of F or G (i.e., F[F ] is a function that internally in-
vokes F , possibly several times, to process its inputs). Here, F can be probabilistic,
and, if so, F is independent of F or G. Suppose that PF

Yi|XiY i−1ai
= PG

Yi|XiY i−1bi

and PF
ai|XiY i−1ai−1

≤ PG
bi|XiY i−1bi−1

holds for i ≥ 1. We then have

AdvcpaF,G(q) ≤ ν(F, aq), and AdvcpaF[F ],F[G](q) ≤ ν(F[F ], a∗q).

Here, MES A∗ = a∗0a
∗
1 . . . is defined such that a∗i denotes A-event is satisfied

for time period i. For example, if F[F ] always invokes F k times for any input,
then a∗i ≡ aki.

Lemma 8. (Theorem 2 of [15]) If PF
ai|XiY i−1ai−1

= PF
ai|Xiai−1

holds for i ≥ 1,
the maximum probabilities of aq for all adaptive and non-adaptive attacks are
the same, i.e., ν(F, aq) = µ(F, aq).

Lemma 9. (Lemma 6 (iii) of [15]) If MESs A = a0a1 . . . and B = b0b1 . . . are
defined for F , we have ν(F, aq ∧ bq) ≤ ν(F, aq) + ν(F, bq).

These lemmas are easily extended even if the adversary’s parameter θ con-
tains ` (or σ) in addition to q.

B Proof of The First and Second Inequalities of Lemma 3

We define two tweakable functions having n-bit input/output and tweak space
T = {1, .., 2n/2} × {0, 1, 2}. For any input x ∈ Σn and tweak t = (t[1], t[2]) ∈ T ,

XE(t, x) def= Pn(x⊕ 2t[1]3t[2]L), where L = Pn(0), and

X̃E(t, x) def=

{
Pn(x⊕ 2t[1]3t[2]L), if t[2] = 0, where L = Pn(0);
P̃n((t[1], t[2]), x), otherwise.

In the definition of X̃E, Pn and P̃n are assumed to be independent. It is obvious
that PMAC[Pn] and MPMAC can be realized by using XE and X̃E in a black-box



manner. We consider a game in which an adversary tries to distinguish XE from
X̃E using q queries. Note that a query is in T ×Σn. Let (Ti, Xi) ∈ T ×Σn be the
i-th query, and Yi ∈ Σn be the i-th output. In addition, let Si be Xi⊕2Ti[1]3Ti[2]L,
where Ti = (Ti[1], Ti[2]). For X̃E, Si is defined as a dummy variable when Ti[2] 6= 0.
We define the following two events:

a∗i
def=[Sj 6= Sk for all (j, k) ∈ ξ(i)] ∧ [Sj 6= 0 for all j = 1, . . . , i].

b∗i
def=[Yj 6= Yk for all (j, k) ∈ ξ(i)] ∧ [Yj 6= L for all j = 1, . . . , i],

where ψ(i) def= {j : 1 ≤ j ≤ i, Tj[2] ∈ {1, 2}}, and

ξ(i) def= {(j, k) ∈ {1, . . . , i}2 : j 6= k, at least one of j or k is in ψ(i)}.

Note that ψ(i) and ξ(i) depend on {Tj[2]}j=1,...,i. Clearly, A∗ = a∗0a
∗
1 . . . and

B∗ = b∗0b
∗
1 . . . are MESs and they are equivalent in XE (but not in X̃E). Also,

note that A∗ and B∗ defined for XE (X̃E) are compatible with MESs defined
for PMAC[Pn] (MPMAC). For example, if one uses XE to simulate an attack
against PMAC[Pn] and observes a∗i in time period i, ai′ is occurring for the i′-th
query to PMAC[Pn], for some i′ ≤ i. We then have

PXE
Yi|XiT iY i−1a∗i

=
∑

PXE
Yi|LXiT iY i−1 · PXE

L|XiT iY i−1a∗i
, (25)

where the summation is taken for all L ∈ Γ (xi, ti, yi−1), which is the set of L = c
such that the rightmost term is non-zero. The equality of Eq. (25) holds since Si

is completely determined if Xi and L are fixed.
We focus on the rightmost two terms of Eq. (25) for some fixed Xi = xi,

T i = ti, Y i−1 = yi−1 satisfying b∗i−1, and L = c ∈ Γ (xi, ti, yi−1) (thus Si = si is
also fixed). It is clear that PXE

L|XiT iY i−1a∗i
(c, xi, ti, yi−1) is the uniform distribution

over Γ (xi, ti, yi−1). The conditional probability PXE
Yi|LXiT iY i−1(yi, c, x

i, ti, yi−1)
is 1 if yi = yj , and i 6∈ ψ(i) and ∃j 6∈ ψ(i) such that si = sj . If i ∈ ψ(i) or
i 6∈ ψ(i) but si 6= sj for j ≤ i− 1, Yi is uniform over Σn \ {y1, . . . , yi−1, c}.

Similarly, for X̃E, we have

P X̃E
Yi|XiT iY i−1a∗i b∗i

=
∑

P X̃E
Yi|LXiT iY i−1b∗i

· P X̃E
L|XiT iY i−1a∗i b∗i−1

, (26)

where the summation is taken for all L ∈ Γ (xi, ti, yi−1). Then, a simple case
analysis shows that

PXE
Yi|XiT iY i−1a∗i

= P X̃E
Yi|XiT iY i−1a∗i b∗i

. (27)

Moreover, we have

PXE
a∗i |XiT iY i−1a∗i−1

=
∑

PXE
a∗i |LXiT iY i−1a∗i−1

· PXE
L|XiT iY i−1a∗i−1

, and (28)

P X̃E
a∗i b∗i |XiT iY i−1a∗i−1b∗i−1

=
∑

P X̃E
a∗i b∗i |LXiT iY i−1a∗i−1b∗i−1

· P X̃E
L|XiT iY i−1a∗i−1b∗i−1

, (29)



where the summations are taken for all L ∈ Γ ′(xi−1, ti−1, yi−1), which is the set
of L = c such that the last term of Eq. (28) (or Eq. (29)) is non-zero. It is easy to
find that the last terms of Eqs. (28) and (29) are the same conditional distribu-
tions. However, we have P X̃E

a∗i b∗i |LXiT iY i−1a∗i−1b∗i−1
≤ PXE

a∗i |LXiT iY i−1a∗i−1
since both

sides are 0 if L 6∈ Γ (xi, ti, yi−1), and otherwise the R.H.S. is 1. Thus we have

P X̃E
a∗i b∗i |XiT iY i−1a∗i−1b∗i−1

≤ PXE
a∗i |XiT iY i−1a∗i−1

. (30)

From Eqs. (27) and (30) and the second claim of Lemma 7, the first inequality
of Lemma 3 is proved. The second follows from the first and Lemma 9.

C Proof of Lemma 4

Note that M(i) (C(i)) denotes the set of Pn inputs (outputs) generated in PHASH
up to the i-th query. Let Z(i) be the set of random variables (L,C(i)). If Z(i)

and Xi are fixed, M(i), V i, and Si are uniquely determined. We have

PMPMAC
aibi|XiY i−1ai−1bi−1

=
∑

Z(i)

PMPMAC
bi|Z(i)XiY i−1aibi−1

·PMPMAC
ai|Z(i)XiY i−1ai−1bi−1

· PMPMAC
Z(i)|XiY i−1ai−1bi−1

, (31)

where the summations are taken for all Z(i) = z(i) such that (z(i), xi) satisfies
ai−1. Note that ai implies that, if the j-th and j′-th tweaks (recall that the
i-th tweak is a function of Xi) are the same, Vj 6= Vj′ holds for all j, j′ ≤ i,
j 6= j′. From this, PMPMAC

bi|Z(i)XiY i−1aibi−1
(z(i), xi, yi−1) does not depend on yi−1,

and it is (2n − (i − 1))/(2n − π(xi)), where π(xi) is the number of indices
j ∈ {1, . . . , i − 1} such that the j-th and i-th tweaks are the same. Moreover,
PMPMAC

ai|Z(i)XiY i−1ai−1bi−1
(z(i), xi, yi−1) does not depend on yi−1 as it is 1 if (z(i), xi)

satisfies ai, and otherwise 0. Finally, it is easy to see that PMPMAC
Z(i)|XiY i−1ai−1bi−1

equals PMPMAC
Z(i)|Xiai−1

(here, bi−1 implies Vj 6= Vj′ whenever j-th and j′-th tweaks
are the same, however, this is already implied by ai−1). Thus, PMPMAC

aibi|XiY i−1ai−1bi−1

does not depend on yi−1, and, for any xi and ŷi−1 satisfying bi−1, we have

PMPMAC
aibi|Xiai−1bi−1

(xi)=
∑

PMPMAC
aibi|XiY i−1ai−1bi−1

(xi, yi−1)·PMPMAC
Y i−1|Xiai−1bi−1

(yi−1, xi),

=PMPMAC
aibi|XiY i−1ai−1bi−1

(xi, ŷi−1)
∑

PMPMAC
Y i−1|Xiai−1bi−1

(yi−1, xi),

=PMPMAC
aibi|XiY i−1ai−1bi−1

(xi, ŷi−1), (32)

where the summations are taken for all yi−1 satisfying bi−1. From this and
Lemma 8, we prove the first claim of Lemma 4. The second follows from the
first and the union bound.


