
New Message Difference for MD4

Yu Sasaki, Lei Wang, Kazuo Ohta and Noboru Kunihiro

The University of Electro-Communications
Chofugaoka 1-5-1, Chofu-shi, Tokyo, 182-8585, Japan
{yu339,wanglei,ota,kunihiro}@ice.uec.ac.jp

Abstract. This paper proposes several approaches to improve the col-
lision attack on MD4 proposed by Wang et al. First, we propose a new
local collision that is the best for the MD4 collision attack. Selection of a
good message difference is the most important step in achieving effective
collision attacks. This is the first paper to introduce an improvement
to the message difference approach of Wang et al., where we propose a
new local collision. Second, we propose a new algorithm for constructing
differential paths. While similar algorithms have been proposed, they do
not support the new local collision technique. Finally, we complete a col-
lision attack, and show that the complexity is smaller than the previous
best work.

keywords: Hash Function, Collision Attack, MD4, Local Collision, Message
Difference, Differential Path

1 Introduction

Hash functions play an important role in modern cryptology. Hash functions
must hold the property of collision resistance. This means that it must be com-
putationally hard to find a pair of messages M and M ′ such that H(M) = H(M ′)
and M 6= M ′.

MD4 is a hash function that was proposed by Rivest in 1990 [5]. MD4 has the
Merkle-Damg̊ard structure, and is designed for fast calculation. MD4 has been
used to design other hash functions such as MD5 or SHA-1, which are widely
used today. Therefore, cryptanalysis on MD4 is important since it affects the
cryptanalysis of other hash functions based on MD4.

Several papers have found and reported the weaknesses of MD4. In 1996,
the first collision attack was proposed by Dobbertin [1]. This attack finds a
collision with probability of 2−22. In 1998, Dobbertin pointed out that the first
two rounds of MD4 did not have an property of one way. In 2004, at the CRYPTO
rump session, Wang presented that collisions of MD4 could be generated very
rapidly [7]. In 2005, Wang et al. reported the details of this attack which finds
a collision with probability of 2−2 to 2−6, and its complexity is less than 28

MD4 operations. This attack is highly efficient and many papers have suggested
further improvements to this attack. In 2005, Naito et al. presented an improved
attack [4]. They pointed out the mistakes of the sufficient conditions detailed
in [8], and made improvements to the message modification techniques. This



attack finds a collision with complexity less than 3 MD4 operations, and it is the
fastest approach up to this time. In 2006, Schläffer and Oswald [6] analyzed how
message differences given by [8] worked, and proposed an automated differential
path search algorithm. As a result, they found a differential path that needed
fewer sufficient conditions than Wang et al.’s.

An important characteristic of previous attacks is that they all used the same
local collision, i.e. the message differences and differential path as proposed by
Wang et al. In [8], the authors claim that their message differences, which are
derived from their local collision, are optimized for collision attack. However,
our research shows that local collision of [8] is not optimized.

For collision attacks, selecting good message differences is very important.
Message differences are derived from a local collision, so selecting a good local
collision is an important aspect of this work. If better local collisions or message
differences are found, attack complexity can be drastically reduced. Moreover,
an effective way to find a good local collision or message difference for MD4 may
be applicable to other hash functions. This fact motivated our research on MD4.

This paper makes two contributions.

1. We propose a new local collision and new message differences that appear
to be the best for collision attack on MD4. We use less than one half of the
non-negligible sufficient conditions for new differences needed by Wang et
al.’s approach.

2. We show that the differential path construction algorithm proposed by [6]
does not work for the new local collision technique. Therefore, we analyze
the problems of [6], and develop a new algorithm.

The improved collision attack is realized by combining the above two contri-
butions and the message modification technique described by [3, 4]. Since local
collision and message differences are improved, we can find a collision with com-
plexity less than 2 MD4 operations, which is the fastest of all existing attacks.
We show the new local collision in the right side of Table 1 and Figure 2.2, new
message differences and differential path in Table 7, new sufficient conditions
in Table 8, and all message modification procedures in Table 9 to Table 20; an
example of a collision generated by our attack is shown in Table 4.

The organization of this paper is as follows. In section 2, we explain the
specification of MD4 and related works. In section 3, we explain why the local
collision of [8] is not best, and propose a new local collision for MD4. In section
4, we explain why the algorithm of [6] does not support the new local collision,
and propose a new algorithm that constructs differential paths for the first round
of MD4. Section 5 completes the improved attack, and compares its efficiency to
previous works. Finally, we conclude this paper in section 6.

2 Preliminaries

2.1 Specification of MD4 [5]

MD4 input is an arbitrary length message M , and MD4 output is 128-bit data
H(M). MD4 has a Merkle-Damg̊ard structure. First, the input message is padded

2



to be a multiple of 512 bits. Since padding does not affect collision attack,
we omit its explanation. The padded message M∗ is divided into 512-bit mes-
sages M∗ = (M0, . . . ,Mn−1). The initial value (IV) for the hash value is set to
be H0 = (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476). The output of the
compression function H1 is calculated using M0 and H0. In this paper, we call
the calculation performed in a single run of the compression function 1 block.
Next, H2 is calculated using M1 and H1. Similarly, the compression function is
calculated until the last message Mn−1 is used. Let Hn be the hash value of M .

Compression Function of MD4
All calculations in the compression function are 32-bit. We omit the notation of
“mod 232”. The input to the compression function is a 512-bit message Mj and a
128-bit value Hj . First, Mj is divided into (m0, . . . m15), where each mi is a 32-
bit message. The compression function consists of 48 steps. Steps 1-16 are called
the first round (1R). Steps 17-32 and 33-48 are the second and third rounds (2R
and 3R), respectively. In step i, chaining variables ai, bi, ci, di(1 ≤ i ≤ 48) are
updated by the following expression (a0, b0, c0, d0 are the IV).
ai = di−1,
bi = (ai−1 + f(bi−1, ci−1, di−1) + mk + t) ≪ si,
ci = bi−1,
di = ci−1,
where f is a Boolean function defined in each round, mk is one of (m0, . . . m15),
and index k is defined in each step. If m0, . . . m15 are fixed, all other mi(16 ≤
i ≤ 47) are also fixed. In this paper we call this “Message Expansion”. t is a
constant number defined in each round, ≪ si denotes left rotation by si bits,
and si is defined in each step. Details of f and t are as follows.

1R : t = 0x00000000, f(X, Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z),
2R : t = 0x5a827999, f(X, Y, Z) = (X ∧ Y ) ∨ (Y ∧ Z) ∨ (X ∧ Z),
3R : t = 0x6ed9eba1, f(X,Y, Z) = X ⊕ Y ⊕ Z.

After 48 steps are calculated, Hj+1 is calculated as follows.
aa0 ← a48 + a0, bb0 ← b48 + b0,
cc0 ← c48 + c0, dd0 ← d48 + d0,
Hj+1 ← (aa0|bb0|cc0|dd0).

2.2 Related Work 1: Collision Attack by Wang et al. and its
Improvement by Previous Works

The first collision attack on MD4 was proposed by Wang et al. in 2005. Many
researchers have improved this attack since its publication. Our paper also im-
proves this attack. In this section, we explain the attack procedure and which
part of the attack has been improved so far.

This attack is a differential attack, and generates a collision with complexity
less than 28 MD4 operations. Let m and m′ be a pair of messages that yield a
collision. Difference ∆ is defined to be the value yielded by subtracting value for

3



m from value for m′. For example, ∆m = m′ −m. The attack procedure is as
follows.

1. Find the “Message Difference (∆M)” that yields a collision with high prob-
ability.

2. Determine how the impact of ∆M propagates. The propagation of this dif-
ference is called the “Differential Path (DP).”

3. Generate “Sufficient Conditions (SC)” for realizing the differential path on
the value of chaining variables for calculating the hash value of m.

4. Determine the procedures of “Message Modification (MM)” that satisfy suf-
ficient conditions.

5. Locate a message that satisfies all sufficient conditions by randomly gener-
ating messages and applying Message Modification. Let such a message be
M∗.

6. Calculate M ′
∗ = M∗ + ∆M . Finally, M∗ and M ′

∗ become a collision pair.

∆M of Wang et al.’s attack is as follows.

∆M = M ′ −M = (∆m0,∆m1, . . . , ∆m15),
∆m1 = 231, ∆m2 = 231 − 228,∆m12 = −216,∆mi = 0, 0 ≤ i ≤ 15, i 6= 1, 2, 12.

[8] introduces two kinds of message modification: Single-Step Modification and
Multi-Step Modification. Later, these names were changed to Basic Message
Modification (BMM) and Advanced Message Modification (AMM). They are
related as follows.

- Basic message modification is the technique that can satisfy all sufficient
conditions in the first round with probability of 1.

- Advanced message modification can satisfy several sufficient conditions in
the second round. (If the sufficient conditions exist in an early step of the
second round, they may be satisfied by advanced message modification. On
the other hand, if they exist in a later step of the second round, it’s almost
impossible to satisfy them.)

- No technique is known to satisfy any sufficient conditions in the third round.

For details about the differential path, sufficient condition and message modifi-
cation, please refer to [8].

Strategy of Selecting ∆M
The strategy of selecting ∆M is explained by Schläffer and Oswald [6]. They
showed that ∆M was determined by the Local Collision (LC) in the third round,
although the reason was not explained. They then showed how Wang et al.’s local
collision worked. We show the local collision of Wang et al. in the left side of
Table 1, and its diagram in Figure 2.2.

Improvement of Collision Attack
So far, several papers [4, 6] have improved the collision attack proposed by Wang
et al. Naito et al. [4] pointed out the sufficient condition mistakes in [8], and made

4



Table 1. Comparison of Wang et al.’s Local Collision and Ours

Wang et al.’s Local Collision New Local Collision
Step ∆ak ∆bk ∆ck ∆dk ∆mk−1 Step ∆ak ∆bk ∆ck ∆dk ∆mk−1

i 231 231−si i 231 231−si

i + 1 231 231 231−si+1 , 231 i + 1 231 231

i + 2 231 231 i + 2 231 231

i + 3 231 231 i + 3 231 231

i + 4 231 i + 4 231

i + 5 231

Fig. 1. Diagram of Wang et al.’s Local Collision and Ours

improvements to message modification. They used the same ∆M , differential
path and sufficient condition as given by [8], but proposed advanced message
modification that could satisfy all sufficient conditions in the second round and
quickly satisfy sufficient conditions in the third round1. Their attack finds a
collision of MD4 with complexity less than 3 MD4 operations. Schläffer and
Oswald [6] proposed an algorithm that could construct differential paths when
∆M was given. They used the same ∆M as given by [8], and showed a differential
path that needed fewer sufficient conditions than Wang et al.’s.

For Wang et al.’s attack, selection of ∆M gives the most significant impact
to the attack complexity. However, no paper has attempted to improve the ∆M
of Wang et al. In this paper, we propose new ∆M in section 3.

1 This technique is restarting collision search from an intermediate step, which is
different from message modification for the third round.

5



2.3 Related Work 2: Differential Path Search by Schläffer and
Oswald [6]

At FSE06, Schläffer and Oswald [6] proposed an algorithm on how to construct
differential paths for MD4 collision attack, when message differences are given.
They used Wang et al.’s message differences. We show this algorithm can not
be applied to the new ∆M (see section 4.2 and 4.3). In this section, we explain
their algorithm as follows.

1. Calculate “Target Differences.” In step i, target differences mean differences
that are used to cancel ∆m in steps i + 4k(k = 0,±1,±2 · · · ).

2. Determine the actual output differences of f function. f function can not
produce differences that are not elements of target differences. Resulted dif-
ferential path usually has some contradictions in sufficient conditions.

3. Resolve contradictions in the sufficient conditions to construct a differential
path.

For more details, please refer to [6].

3 New Local Collision

As mentioned in section 2.2, no paper has proposed a better ∆M than that of
Wang et al. In this section, we propose a superior local collision and ∆M that
are the best for collision attack on MD4.

3.1 Importance of Selecting ∆M

[6] determined ∆M was set by local collision in the third round, however, they
didn’t mention a reason for this. This motivated us to start with an explanation.

Thanks to the various message modification techniques which are available
to us, following the differential path during the first two rounds (32 steps) of
MD4 has very low cost. The computational cost of the attack comes from the
probability of following the path during the third round. As a consequence, in
order to get a more efficient collision attack on MD4, minimizing the number
of sufficient conditions in the third round is the most important. Therefore, we
start by looking for a very efficient local collision in the third round.

3.2 Problem of Wang et al.’s Local Collision and Constructing New
Local Collision

In order to minimize the number of sufficient conditions in the third round,
the method of Wang et al. applies local collision there. Their local collision is
shown in left side of Table 1. They insert single message difference to step i in
the third round, and insert other message differences to minimize the impact of
the propagation of the inserted difference. As a result, the inserted difference is

6



cancelled in following 6 steps. In Wang et al.’s local collision, two differences are
made in the MSB of bi and bi+1 for ensuring that differences don’t propagate in
step i+2, i+3 and i+4 (obviates the need to insert other message differences).
Here, due to the addition and left rotation, the following fact is achieved. (We
show the proof of this in Appendix A.)

Fact: To make ∆bi = ±231 from ∆mk = ±231−si , we need the following
sufficient condition:

{
bi,31 = 0 (if ∆mk = +231−si)
bi,31 = 1 (if ∆mk = −231−si)

Wang et al.’s local collision makes two differences. Therefore, it needs two
sufficient conditions to realize the local collision.

In a collision attack on MD4, at least one message difference in the third
round is necessary since collision messages must be different. Considering the
Fact, it is obvious that if a local collision yielding one difference in the MSB of
bi can be constructed, that local collision is the best.

3.3 Construction of New Local Collision

We construct a new local collision by making only one difference in the MSB of
bi. The new local collision is summarized in right side of Table 1 and Figure 2.2.
In step i, we make ∆bi = ±231 by inserting ±231−si on mi−1. From the Fact,
we need one sufficient condition to make ∆bi = ±231. In step i + 1, ±231 of bi

propagates through function f = (bi ⊕ ci ⊕ di). Therefore, we insert ±231 on
mi in order to cancel ±231 from f . A similar situation occurs in step i + 2 and
i + 3, so we insert ±231 on m, to cancel the difference that propagates from f .
In step 4, we cancel ∆ai+3 = ±231 by ∆mi+3 = ±231, and finally all differences
are cancelled. (Since all ∆m are in MSB, any sign for ∆m is acceptable.)

3.4 New Message Difference

As described in section 3.3, the new local collision makes only one difference,
therefore, the new local collision needs only one sufficient condition in the third
round, and this is the best local collision for MD4. In order to complete the
entire collision attack, the impact of the message expansion on the previous
rounds needs to be considered. The local collision constructed in section 3.3
does not fix step i that is the initial step of the local collision. Therefore, we
analyze the impact of message expansion, and select the best i that minimizes
the impact on the previous rounds.

We show details of this analysis in Appendix B. As a result, we found that
i = 33 is the best, and obtained following message differences.

∆m0 = 228, ∆m2 = 231,∆m4 = 231,∆m8 = 231,∆m12 = 231,

∆mi = 0 for i = 1, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15.

7



The differential path for the third round is also determined by local collision.
It is shown in Table 7 in Appendix C.

Remaining work is to construct a differential path for the first and second
round. In the first round, all sufficient conditions are satisfied by basic message
modification, whereas, some of sufficient conditions in the second round may not
be satisfied by advanced message modification. Therefore, we should minimize
the number of sufficient conditions in the second round even if the differential
path for the first round becomes more complicated. Since constructing the dif-
ferential path for the second round is simple, we show only the result in Table 7
in Appendix C.

4 Differential Path Search Algorithm

In this section, we describe the DP construction algorithm, denoted as DPC.

4.1 Definition of Good DPC

Input of DPC is ∆M . A good DPC should not just work for one specified ∆M .
It should be able to work for all ∆M . Moreover, it should be finished in reason-
able time. If a DPC is able to work for all ∆M in reasonable time, we will call
it “Good DPC.”

Crucial technique to Realize Good DPC
For DPC, how to control difference propagation through f function is important.
Therefore, in design of good DPC, it is crucial to control difference propagation
through f function to search DP in a large space efficiently.

4.2 Overview of Problems of Previous Work [6] and Our
Improvement

Schläffer and Oswald proposed an algorithm to construct differential paths, based
on Wang et al.’s message differences. Unfortunately the algorithm can not work
for our new message differences. Therefore, we will propose a new DPC, which
is able to work for our new ∆M . We will give an overview of comparison of these
two algorithms.

Problem of Schläffer and Oswald’s Algorithm
By Schläffer and Oswald’s algorithm, the differences produced by f function in
step i can only be used in step i+4k, and no others. Although their rule reduced
the search space considerably, they found, fortunately, a better differential path
than Wang et al’s algorithm. However, reduced search space is too small, and
consequently, their algorithm can not work for our new message differences.

Advantage of Our Algorithm
In our algorithm, we found a way to control difference propagation through f
function efficiently in larger search space.

8



Important improvement: for step i, Schläffer and Oswald’s algorithm only
produces difference of f to cancel ∆M in step i + 4k. By our algorithm, besides
this kind of difference, f can also produce difference to guarantee that ∆M in
other steps can be cancelled.

The search space of our algorithm is larger, which makes our algorithm work
for the new ∆M proposed in section 3.

4.3 Details of Our New Proposed Algorithm for the First Round

The goal of our algorithm is to construct a differential path for the first round
with given chaining variable differences after step 16 and given message differ-
ences. Our algorithm consists of three major parts: Forward search, Backward
search and Joint algorithm.

i. Forward search
Forward search is done from step 1 to step 4. As mentioned in section 4.1, the
crucial technique for making good DPC is controlling difference propagation
through f function in a large search space. In forward search, we exhaustively
search the possibility of difference through f . After forward search is finished,
there are possible differences for chaining variables after step 4. Possible differ-
ences for a4, b4, c4, d4 are called “Potential Differences.”

ii. Backward search
First of all, we will redefine the concept “Target Difference” for backward search.
Backward Search is done from step 16 to step 8.

Target Differences: for step i, target differences ∆ti are calculated by differ-
ences of chaining variable bi and message differences ∆mi−1 as follows:

∆ti = −∆mi−1 + (∆bi ≫ si)(8 ≤ i ≤ 16)
Chaining variable differences after step 16 are already fixed, in other words,

differences of bi(12 ≤ i ≤ 16) are fixed, it is easy to calculate target differences
from step 16 to step 12. In step i, a target difference can be achieved by differences
of ai−1 or f function. We need to determine each target difference which should
be produced by ai−1 or f function. During backward search, we assume that
differences of ai−1 and input differences of f function can always be produced
in previous steps, so any target difference can be produced by ai−1. This is
main idea of Schläffer and Oswald’s algorithm. We enlarge the search space by
considering how to guarantee target differences produced by f function.

If we determine that a target difference will be achieved by f , input chaining
variables bi−1, ci−1, or di−1 should have a difference at the same position. If
bi−1, ci−1, or di−1 has a difference, it should be cancelled in the following step.
If it can not be cancelled, it can not be used.

Considering that the chaining variable differences after step 16 are already
fixed, from step 16 to step 12, it is very easy to check whether a difference of
bi−1, ci−1 or di−1 can be cancelled in the following steps.

9



After backward search from step 16 to step 12 is done, there are some candi-
dates for chaining variable differences in step 12. For every candidate, backward
search from step 12 to step 8 is done by applying the same method.

After backward search from step 16 to 8 is done, there are some candidates
for chaining variable differences in step 8, which are called “Aimed Differences.”

iii. Joint algorithm
From step 4 to step 8, aimed differences will select potential differences. In the
joint algorithm, only potential differences that match aimed differences can be
produced by f function. Selected potential differences need to be cancelled in the
following steps, To cancel these differences, carry can be used to expand input
differences of f function. More differences can also be introduced.

After all the selected differences are canceled, that is, after the joint algorithm
is finished, a differential path is constructed.

5 Attack Implementation

5.1 Message Modification

The results of Section 3 and 4 yield the new ∆M , differential path and sufficient
conditions. To complete the collision attack, what remains is to propose advanced
message modification procedures for satisfying sufficient conditions in the second
and third round. Therefore, we propose advanced message modification, and
evaluate the total attack complexity of proposed attack. Papers [3, 4] give some
good ideas of advanced message modification. Since proposing advanced message
modification is outside the scope of this paper, we show only the procedures of
advanced message modification in Table 9 to Table 20 in Appendix D. As a result
of applying advanced message modification, all sufficient conditions in the second
round are satisfied with very high probability. Furthermore, by applying the
technique called “Shortcut Modification” by [4] or “Tunnel” by [3], the sufficient
condition in the third round is also quickly satisfied.

5.2 Attack Procedure and Complexity Estimation

The attack procedure is shown in Table 2. (Note extra conditions are set for
advanced message modification. These are introduced in Appendix D.)

For line 1 to 5: Computation for mi needs almost 1 MD4 step. Therefore,
for line 4, we need 16 MD4 steps. Line 2 and 3 can be done very quickly compared
to line 4.

For line 6 to 13: For line 7, computation for bi is 1 MD4 step. Therefore,
for line 7, we need 13 MD4 steps. For line 10, there are 11 message modification
procedures. According to our evaluation, each procedure requires less than 3
MD4 steps (See Table 9 to 19 for details). Since each condition is satisfied
with probability 1/2, we expect half of the message modification procedures are
executed. Therefore, we need 3× 11÷ 2 = 16.5 MD4 steps.

10



Table 2. Attack Procedure

1. for (1 ≤ i ≤ 16) {
2. Randomly take the value of bi.
3. Change bi to satisfy all sufficient conds and extra conds for bi.
4. Compute mi−1 = (bi ≫ si)− ai−1 − f(bi−1, ci−1, di−1)− t.
5. }
6. for (17 ≤ i ≤ 29) {
7. Compute bi in standard way.
8. for (0 ≤ j ≤ 31) {
9. if (sufficient conds or extra conds on bi,j is not satisfied) {

10. Do message modification described in Appendix D.
11. }
12. }
13. }
14. Compute b30 to b33 in standard way.
15. if (“b33,31 = 0” is not satisfied) {
16. Do message modification for “b33,31 = 0”, and goto line 14.
17. }
18. Let the present message be M . Finally, M and M +∆M become a collision pair.

For line 14 to 18: Line 14 needs 4 steps of MD4 operations. Then, if
“b33,31 = 0” is not satisfied, we apply message modification. According to our
evaluation, modifying message for “b33,31 = 0” takes less than 1 MD4 step,
and the probability that this condition is satisfied after repeating line 14 to
16 is 1/2. Therefore, this condition is expected to be satisfied at most 2 trial.
Complexity of satisfying in the first trial is 4 MD4 steps and by the second trial
is 4 + 4 + 1 = 9 MD4 steps. Therefore, average complexity is (4 + 9) ÷ 2 = 6.5
MD4 steps. Complexity for line 18 is negligible.

Total complexity: Total complexity is addition of above three parts, that
is, 16+13+16.5+7.5=53 MD4 steps. Considering other trivial complexity, we
evaluate that the complexity of our attack is less than 2 MD4 operations(=96
steps).

5.3 Comparison with Previous Attacks

The efficiencies of the proposed attack and previous attacks are compared in
Table 3.

From Table 3, it can be said that improvement of local collision is very
important. With the new local collision, number of sufficient conditions in the
second and third round becomes less than half those of previous attacks, and
this enables us to further reduce the complexity of generating a collision.

11



Table 3. Comparison of Previous Attacks and Our Result

Method ∆M #SCs #SCs Total complexity
in 2R in 3R (Unit MD4 operations)

Wang et al. Wang’s ∆M 25 2 Less than 28

Naito et al. Wang’s ∆M 25 2 Less than 3

Schläffer and Oswald Wang’s ∆M 22 2 -

Proposed attack ∆M for new LC 9 1 Less than 2

6 Conclusion

This paper proposed a new local collision that is the best for collision attack
on MD4. This was achieved by the first improvement to the message difference
approach of Wang et al.

For successful collision attacks, ∆M must be carefully selected to reduce the
number of sufficient conditions that cannot be satisfied by message modification.
In this paper, we showed how efficient the proposed improvement to ∆M is. With
the new ∆M , number of sufficient conditions in the second and third round is
less than half those of previous studies; attack complexity is also improved.

Improving the attack on MD4 is not the final goal. As future works, we will
apply our analysis to other hash functions, and aim to find more efficient ∆M .

We realized that differential path construction algorithm proposed by [6] did
not work with the new ∆M . Therefore, we analyzed the problems of [6], and
proposed a new algorithm for constructing differential path for the first round.

Finally, we show a collision generated by using the new local collision in
Table 4. We note that ∆M of this example is different from all previous works.

Table 4. An Example of MD4 Collision Generated with New Local Collision

M m0=0xbcdd2674 m1=0x53fce1ed m2=0x25d202ce m3=0xe87d102e
m4=0xf45be728 m5=0xacc992cc m6=0x6acfb3ea m7=0x7dbb29d4
m8=0xed03bf75 m9=0xc6aedc45 m10=0xd442b710 m11=0xfca27d99
m12=0xa5f5eff1 m13=0xfb2ee79b m14=0x0f590d68 m15=0x4989f380

M ′ m′
0=0xccdd2674 m′

1=0x53fce1ed m′
2=0xa5d202ce m′

3=0xe87d102e
m′

4=0x745be728 m′
5=0xacc992cc m′

6=0x6acfb3ea m′
7=0x7dbb29d4

m′
8=0x6d03bf75 m′

9=0xc6aedc45 m′
10=0xd442b710 m′

11=0xfca27d99
m′

12=0x25f5eff1 m′
13=0xfb2ee79b m′

14=0x0f590d68 m′
15=0x4989f380

Hash 0x c257b7be 324f26ef 69d3d290 b01be001

Acknowledgements

We would like to thank Antoine Joux for improving our paper and anonymous
reviewers for helpful comments.

12



References

1. H. Dobbertin. Cryptanalysis of MD4, Fast Software Encryption (FSE) 1996, LNCS
1039, pp53-69, Springer-Verlag, 1996

2. H. Dobbertin. The First Two Rounds of MD4 are Not One-Way, Fast Software
Encryption (FSE) 1998, LNCS 1372, pp284-292, Springer-Verlag, 1998

3. V. Klima, Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptol-
ogy ePrint Archive, Report 2006/105.

4. Y. Naito, Y. Sasaki, N. Kunihiro and K. Ohta, Improved Collision Attack on MD4
with Probability Almost 1. Information Security and Cryptology (ICISC) 2005,
LNCS 3935, pp129-145, Springer-Verlag, 2006.

5. R. Rivest. The MD4 Message Digest Algorithm. CRYPTO 1990, LNCS 537, pp303-
311, Springer-Verlag, 1991, http://www.ietf.org/rfc/rfc1320.txt

6. M. Schläffer and E. Oswald. Searching for Differential Paths in MD4. Fast Software
Encryption (FSE) 2006, LNCS 4047, pp242-261, Springer-Verlag, 2006.

7. X. Wang, D. Feng, H. Chen, X. Lai and X. Yu. Collision for Hash Functions
MD4, MD5, HAVAL-128 and RIPEMD. In Rump Session of CRYPTO 2004 and
Cryptology ePrint Archive, Report 2004/199.

8. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu. Cryptanalysis of the Hash Functions
MD4 and RIPEMD. Eurocrypt 2005, LNCS 3494, pp1-18, Springer-Verlag, 2005.

A Proof of the Fact in Section 3.2

Proof. Remember that the calculation of bi in step i is as follows.
bi = (ai−1 + f(bi−1, ci−1, di−1) + mk + t) ≪ si

Here, we make ∆bi = 231 or −231 by adding the difference ∆mk = +231−si or
−231−si . Let the value of ai−1 + f(bi−1, ci−1, di−1) + mk + t be Σ. We focus on
the value of Σ in bit position 31− si (In short, Σ31−si). Σ31−si is 0 or 1. First,
we consider the case that Σ31−si is 0. In this case, if ∆mk is positive, Σ31−si

changes from 0 to 1, and other bits are kept unchanged. Therefore, it becomes
∆bi = +231 after the rotation. However, if ∆mk is negative, Σ31−si changes
from 0 to 1, and bit position 31 − si + 1 also changes because of carry. Here,
assume that carry is stopped in bit position 31− si + 1, therefore, the value in
bit position 31 − si + 1 changes from 1 to 0, and other bits are unchanged. In
this case, after the rotation, it becomes ∆bi = +231 − 20, and thus, we cannot
obtain the desired difference. The same analysis is applied in the case of Σ31−si

is 1. The result of the analysis is summarized below.

Table 5. Summary of Proof

∆mk = +231−si ∆mk = −231−si

Σ31−si = 0 Success Failure

Σ31−si = 1 Failure Success

Consider the fact that Σ31−si = bi,31, we get following conclusion; To make
success, bi,31 = 0 if ∆mk = +231−si , or bi,31 = 1 if ∆mk = −231−si . (Q.E.D)

13



B Selecting ∆M by Considering Message Expansion

As described in section 3.3, the new local collision makes one difference in the
third round. This does not fix step i that is the initial step of the local collision.
Therefore, we analyze the impact of message expansion, and select the best i
that minimizes the impact on the previous rounds.

However, thanks to the basic message modification, even if the differential
path becomes complicated and many sufficient conditions are required, all suffi-
cient conditions in the first round can be satisfied with probability 1. Therefore,
we only have to care about the impact on the second round.

The third round consists of step 33-48. Since the new local collision takes
5 steps to realize cancellation, we have 12 choices for the initial step of local
collision (IniLC), (33 ≤ IniLC ≤ 44). To determine a good IniLC, we consider
following characteristics of the second round.

- We need to cancel all differences by the final step of the second round since
local collision in the third round must start from no-difference state.

- Let the last step with some message difference in the second round be cp,
which stands for Cancellation Point. If all differences are cancelled at step
cp, remaining steps of the second round are guaranteed to be no-difference
without sufficient conditions.

Therefore, in order to reduce number of sufficient conditions in the second round,
cp should be as early a step as possible. Finally, we select IniLC to minimize cp.
We show the analysis of message expansion in Table 6. In Table 6, gray highlight
shows an example of the analysis for IniLC = 33. Messages that have differences
on the second round and third round are colored. From the table, we see that
cp for IniLC = 33 is 25. The same analysis is applied for all IniLC. cp for all
IniLC are listed in the bottom of Table 6.

Table 6. Analysis of Impact of Message Expansion

Message index for each step in 2R and 3R

2R step number 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

message index 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

3R step number 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

message index 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

The value of cp for all IniLC

IniLC 33 34 35 36 37 38 39 40 41 42 43 44

cp 25 27 27 28 28 28 28 28 29 31 31 32

From Table 6, finally, we find that IniLC = 33 is the best since its cp is the
smallest. The obtained ∆M and differential path for the third round is shown
in Table 7 in Appendix C2.
2 We also calculate the good ∆M for Wang et al.’s local collision by using this analysis.

Then, we found that the resulting ∆M is the same as proposed by Wang et al.’s.

14



C Differential Path and Sufficient Conditions

Table 7. Differential Path of MD4 for New Local Collision

Step Shift ∆bi

i si ∆mi−1 Numerical difference Difference in each bit

1 3 228 −231 ∆[−31]
−20 ∆[0,−1]

2 7 −27 ∆[7]
−28 ∆[−9]

3 11 231 −211 ∆[−11]

4 19 −219 ∆[19, 20,−21]

5 3 231 23 ∆[3]
222 ∆[−22,−23, 24]

6 7 −218 ∆[18, 19,−20]
231 ∆[31]

7 11 21 ∆[−1, · · · , 9]
−222 ∆[22, 23,−24]
231 ∆[31]

8 19

9 3 231 222 ∆[−22, 23]
225 ∆[25]

10 7 −212 ∆[−12]
−225 ∆[25, 26,−27]
229 ∆[−29,−30, 31]

11 11 212 ∆[12]

12 19 −212 ∆[−12]

13 3 231 225 ∆[25]
−228 ∆[28,−29]

14 7

15 11

16 19 −231 ∆[−31]

17 3 228 228 ∆[28]

18 5 231

19 9 231

20 13 231

21 3 231 ∆[31]

22 5

23 9

24 13

25 3 231

· · ·
33 3 228 231 ∆[31]

34 9 231

35 11 231

36 15 231

37 3 231

The symbol ‘∆[i]’ means the value of chaining variable in bit position i
changes from 0 to 1 by difference. The symbol ‘∆[−i]’ means it changes
from 1 to 0 instead.

15



Table 8. Sufficient Conditions and Extra Conditions for New Local Collision

Chaining Conditions on bits
variables 31 - 24 23 - 16 15 - 8 7 - 0

b1 1 0̄ - - - - - - ā - - - - - - - - - - - - - a - a - - - ā - 0 1

b2 1 0̄ - 0̄ - ā - - - - - - 0 - - - - - - - a - 1 - 0 - - - - - 0 1

b3 1 1̄ - 1̄ ā - ā 0 0̄ - a a 1 - ā ā ā ā ā ā 1 ā 0 - 0 - - - 1̄ - 1 0

b4 1 - ā - 1̄ 0̄ 1̄ 1 a a 1 0 0 - 0̄ 1̄ 1̄ 1̄ 1̄ 1̄ 0 1̄ 1 a 1 a a a a - - -

b5 a - - - 0̄ 0̄ 0̄ 0 1 1 0 0 0 a 1̄ 0̄ 0̄ 0̄ 0̄ 0̄ 0 0̄ 0 1 1 1 1 1 1 - - -

b6 0 - 0̄ - 1̄ - 1̄ 1 1 1 1 1 0 0 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ - 1̄ 0 0 0 0 0 0 0 a a -

b7 0 - 1̄ - - - 1 1 0 0 - 0 1 0 - - - - - - - - 0 1 1 1 1 1 1 1 1 -

b8 1 - - - - - a 0 0 0 - 1 0 1 - - - - - 0 - - 0 0 0 0 0 0 1 0 0 -

b9 0 a a - a a 0 1 0 1 - - - - - - - - - a - - 1 1 1 1 0 1 1 1 1 -

b10 0 1 1 - 1 0 0 - 1 1 - - - ā - - - - - 1 - 0̄ 0̄ - - - - - - - - -

b11 0 0 0 - 1 1 0 - 1 1 - - - - - - - - - 0 - 1̄ 1̄ - - - - - - - - -

b12 0 1 1 a 0 0 1 - - - - - - 1̄ - - - - - 1 - 1̄ 0̄ - - - - - - - - -

b13 - - 1 0 - - 0 - - - - - - 1̄ - - - - - 0 - 0̄ 0̄ - - - - - - - - -

b14 - - 0 0 - - 0 - - - - - ā - - - - - - 0 - 1̄ 1̄ - - - - - - - - -

b15 a - 1 1 b̄ - 1 - - - - - - - - b̄ - - - - - - - - - - - - - - - -

b16 1 - - a 0̄ - - - - - - - c̄ - - - - - - - - - - - - - - - - - - -

b17 b - - 0 - - - - - - - - ā - - - - - - - - - - - - - - - - - - -

b18 b - - c - - - - - - - - - - - - - - - - - - - - - - - - - - - -

b19 - - - a - - - - - - - - - - - - - - - - - - - - - - - - - - - -

b20 a - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

b21 0 - - - - - - - - b̄ - - - - - - - - - - - - - - - - - - - - - -

b22 c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

b23 a - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

b24 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

· · ·
b33 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

· · ·

The notation ‘0’ stands for the conditions bi,j = 0, the notation ‘1’
stands for the conditions bi,j = 1, the notation ‘a’ stands for the con-
ditions bi,j = bi−1,j , ‘b’ stands for the condition bi,j 6= bi−1,j and ‘c’
stands for the condition bi,j = bi−2,j . Conditions without upper bar
are sufficient conditions for the new differential path. Conditions with
upper bar are extra conditions that are introduced in Appendix D.

16



D List of Message Modification Procedures

Table 9 to Table 20 show the procedure for advanced message modification for
each condition. These procedures are executed only if the target condition is not
satisfied. Several procedures need to satisfy “extra conditions (EC)” in advance.
ECs guarantee that each modification procedure is executed without breaking
other sufficient conditions. ECs in the first round are set together with sufficient
conditions in the first round by basic message modification.

We explain how these procedures work, by explaining Table 10 as an example.
Before we execute Table 10, we check whether the target sufficient condition
“b17,28 = 0” is satisfied or not. If it’s satisfied, do nothing. Otherwise, execute
procedures shown in Table 10. In the table, the first and second column show
the rounds and steps where we are looking on. The third column shows the
procedure to be executed. The last column shows how differences are used in
each calculation. In case of Table 10, we first modify m0. Then, by considering
the expression in step 1, we modify b1. We make sure that a carry doesn’t occur
in b1. Therefore, if b1,28 = 0 we choose “+,” otherwise, we choose “-.” After that,
to make sure that the result of step 2 keeps unchanged, we modify m1. In 3rd
step, from the property of f , if b2,28 is fixed to be 0, the result of step 3 keeps
unchanged. Therefore, we set the extra condition “b2,28 = 0.” Step 4 and 5 are
the almost same. After step 5 is calculated, all differences in the first round are
cancelled. Since m0 is modified, step 17 in the second round is also modified.
From the expression of b17, b17 has difference 228, and this difference flips the
value of b17,28. Therefore, the sufficient condition is satisfied.

In this section, “bi ← standard computation” means computing bi ← (ai−1 +
f(bi−1, ci−1, di−1)+mk + t) ≪ si. “mi ← inverse computation” means comput-
ing mi ← (bi ≫ si)− ai−1 − f(bi−1, ci−1, di−1)− t.

Table 9. Modification Procedure for Extra Condition “b17,19 = c17,19”

Round Step Actual procedure Expression with difference in each step

1R 16 m15 ← m15 ± 229 b16 ← (a15 + f(b15, c15, d15) + m15 ± 229 + t) ≪ 19
b16 ← b16 ± 216

(Take sign to avoid b16 carry.)
2R 17 EC:“c16,16 6= d16,16” b17 ← (a16 + f(b16[±16], c16, d16) + m0 + t) ≪ 3

b17 ← standard computation

Table 10. Modification Procedure for “b17,28 = 0”

Round Step Actual procedure Expression with difference in each step

1R 1 m0 ← m0 ± 225 b1 ← (a0 + f(b0, c0, d0) + m0 ± 225 + t) ≪ 3
b1 ← b1 ± 228

(Take sign to avoid b1 carry.)
2 m1 ← inverse computation b2 ← (a1 + f(b1[±28], c1, d1) + m1 + t) ≪ 7
3 EC: “b2,28 = 0” b3 ← (a2 + f(b2, c2[±28], d2) + m2 + t) ≪ 11
4 EC: “b3,28 = 1” b4 ← (a3 + f(b3, c3, d3[±28]) + m3 + t) ≪ 19
5 m4 ← m4 ∓ 228 b5 ← (a4 ± 228 + f(b4, c4, d4) + m4 ∓ 228 + t) ≪ 3

2R 17 b17 ← standard computation b17 ← (a16 + f(b16, c16, d16) + m0 ± 225 + t) ≪ 3

17



Table 11. Modification Procedure for “b17,31 6= b16,31”

Round Step Actual procedure Expression with difference in each step

1R 1 m0 ← m0 + 227 b1 ← (a0 + f(b0, c0, d0) + m0 + 227 + t) ≪ 3
b1 ← b1 + 230

EC: “b1,30 = 0”
2 m1 ← inverse operation b2 ← (a1 + f(b1[+30], c1, d1) + m1 + t) ≪ 7
3 EC: “b2,30 = 0” b3 ← (a2 + f(b2, c2[+30], d2) + m2 + t) ≪ 11
4 EC: “b3,30 = 1” b4 ← (a3 + f(b3, c3, d3[+30]) + m3 + t) ≪ 19
5 m4 ← m4 − 230 b5 ← (a4 + 230 + f(b4, c4, d4) + m4 − 230 + t) ≪ 3

1-2R 16 m15 ← m15 + 28 b16 ← (a15 + f(b15, c15, d15) + m15 + 28 + t) ≪ 19
EC: “b16,27 = 0”

17 b17 ← standard operation b17 ← (a16 + f(b16[+27], c16, d16) + m0 + 227 + t) ≪ 3
EC: “c16,27 6= d16,27”

Table 12. Modification Procedure for “b18,28 = 0”

Round Step Actual procedure Expression with difference in each step

1R 2 m1 ← m1 ± 216 b2 ← (a1 + f(b1, c1, d1) + m1 ± 216 + t) ≪ 7
b2 ← b2 ± 223

(Take sign to avoid b2 carry.)
3 EC: “c2,23 = d2,23” b3 ← (a2 + f(b2[±23], c2, d2) + m2 + t) ≪ 11
4 EC: “b3,23 = 0” b4 ← (a3 + f(b3, c3[±23], d3) + m3 + t) ≪ 19
5 m4 ← m4 ∓ 223 b5 ← (a4 + f(b4, c4, d4[±23]) + m4 ∓ 223 + t) ≪ 3

EC: “b4,23 = 0”
6 m5 ← m5 ∓ 223 b6 ← (a5 ± 223 + f(b5, c5, d5) + m5 ∓ 223 + t) ≪ 7

2R 17 b18 ← standard computation b18 ← (a17 + f(b17, c17, d17) + m4 ∓ 223 + t) ≪ 5

Table 13. Modification Procedure for “b18,31 6= b17,31”

Round Step Actual procedure Expression with difference in each step

1R 5 m4 ← m4 ± 226 b5 ← (a4 + f(b4, c4, d4) + m4 ± 226 + t) ≪ 3
b5 ← b5 ± 229

(Take sign to avoid b5 carry.)
6 EC: “c5,29 = d5,29” b6 ← (a5 + f(b5[±29], c5, d5) + m5 + t) ≪ 7
7 EC: “b6,29 = 0” b7 ← (a6 + f(b6, c6[±29], d6) + m6 + t) ≪ 11
8 EC: “b7,29 = 1” b8 ← (a7 + f(b7, c7, d7[±29]) + m7 + t) ≪ 19
9 m8 ← m8 ∓ 229 b9 ← (a8 ± 229 + (f(b8, c8, d8) + m8 ∓ 229 + t) ≪ 3

2R 17 b18 ← standard computation b18 ← (a17 + f(b17, c17, d17) + m4 ± 226 + t) ≪ 5

Table 14. Modification Procedure for “b19,28 = b18,28”

Round Step Actual procedure Expression with difference in each step

1-2R 15 m14 ← m14 ± 28 b15 ← (a14 + f(b14, c14, d14) + m14 ± 28 + t) ≪ 11
b15 ← b15 ± 219

(Take sign to avoid b15 carry.)
16 EC:“c15,19 = d15,19” b16 ← (a15 + f(b15[±19], c15, d15) + m15 + t) ≪ 19
17 EC:“b16,19 = d16,19” b17 ← (a16 + f(b16, c16[±19], d16) + m0 + t) ≪ 3
18 EC:“b17,19 = c17,19” b18 ← (a17 + f(b17, c17, d17[±19]) + m4 + t) ≪ 5
19 b19 ← standard computation b19 ← (a18 ± 219 + f(b18, c18, d18) + m8 + t) ≪ 9

18



Table 15. Modification Procedure for “b20,31 = b19,31”

round step Actual procedure Expression with difference in each step

1R 11 m10 ← m10 ± 27 b11 ← (a10 + f(b10, c10, d10) + m10 ± 27 + t) ≪ 11
b11 ← b11 ± 218

take sign to avoid b11 carry
12 EC: “c11,18 = d11,18” b12 ← (a11 + f(b11[±18], c11, d11) + m11 + t) ≪ 19
13 m12 ← m12 ∓ 218 b13 ← (a12 + f(b12, c12[±18], d12) + m12 ∓ 218 + t) ≪ 3

EC: “b12,18 = 1”
14 EC: “b13,18 = 1” b14 ← (a13 + f(b13, c13, d13[±18]) + m13 + t) ≪ 7
15 m14 ← m14 ∓ 218 b15 ← (a14 ± 218 + f(b14, c14, d14) + m14 ∓ 218 + t) ≪ 11

2R 20 b20 ← standard operation b20 ← (a19 + f(b19, c19, d19) + m12 ∓ 218 + t) ≪ 13

Table 16. Modification Procedure for Extra Condition “b21,22 6= b20,22”

Round Step Actual procedure Expression with difference in each step

1R 12 m11 ← m11 ± 222 b12 ← (a11 + f(b11, c11, d11)+
b12 ← b12 ± 29 +m11 ± 222 + t) ≪ 19

EC: “b12,10 = 1”, “b12,9 = 0”
(if sign is +, b3[9], else b3[−10, 9].)

13 m12 ← m12 ∓ 29 b13 ← (a12 + f(b12[9]/[−10, 9], c12, d12)
(Take sign to avoid b20 carry.) +m12 ∓ 29 + t) ≪ 3
EC: “c12,10 = 1”, “d12,10 = 0”,

“c12,9 = 1”, “d12,9 = 0”
14 EC: “b13,10 = 0”, “b13,9 = 1” b14 ← (a13 + f(b13, c13[9]/[−10, 9], d13)

+m13 + t) ≪ 7
15 EC: “b14,10 = 1”, “b14,9 = 1” b15 ← (a14 + f(b14, c14, d14[9]/[−10, 9])

+m14 + t) ≪ 11
16 m15 ← m15 ∓ 29 b16 ← (a15 ± 29 + f(b15, c54, d15)

+m15 ∓ 29 + t) ≪ 19
2R 20 b20 ← standard computation b20 ← (a19 + f(b19, c19, d19)

+m12 ∓ 29 + t) ≪ 13
21 b21 ← standard computation b21 ← (a20 + f(b20[∓22], c20, d20)

(b21,22 is never changed by this calculation). +m1 + t) ≪ 3

Table 17. Modification Procedure for “b21,31 = 0”

Round Step Actual procedure Expression with difference in each step

1R 2 m1 ← m1 ± 228 b2 ← (a1 + f(b1, c1, d1) + m1 ± 228 + t) ≪ 7
b2 ← b2 ± 23

(Take sign to avoid b2 carry.)
3 EC: “c2,3 = d2,3” b3 ← (a2 + f(b2[±3], c2, d2) + m2 + t) ≪ 11
4 m3 ← inverse computation b4 ← (a3 + f(b3, c3[±3], d3) + m3 + t) ≪ 19
5 EC: “b4,3 = 1” b5 ← (a4 + f(b4, c4, d4[±3]) + m4 + t) ≪ 3
6 m5 ← m5 ∓ 23 b6 ← (a5 ± 23 + f(b5, c5, d5) + m5 ∓ 23 + t) ≪ 7

2R 21 b21 ← standard computation b21 ← (a20 + f(b20, c20, d20) + m1 ± 228 + t) ≪ 3

Table 18. Modification Procedure for “b22,31 = b21,31”

Round Step Actual procedure Expression with difference in each step

1R 3 m2 ← m2 ± 215 b3 ← (a2 + f(b2, c2, d2) + m2 ± 215 + t) ≪ 11
b3 ← b3 ± 226

(Take sign to avoid b3 carry.)
4 EC: “c3,26 = d3,26” b4 ← (a3 + f(b3[±26], c3, d3) + m3 + t) ≪ 19
5 EC: “b4,26 = 0” b5 ← (a4 + f(b4, c4[±26], d4) + m4 + t) ≪ 3
6 m5 ← m5 ∓ 226 b6 ← (a5 + f(b5, c5, d5[±26]) + m5 + t) ≪ 7

EC: “b5,26 = 0”
7 m6 ← m6 ∓ 226 b7 ← (a6 ± 226 + f(b6, c6, d6) + m6 ∓ 226 + t) ≪ 11

2R 21 b22 ← standard computation b22 ← (a21 + f(b21, c21, d21) + m5 ∓ 226 + t) ≪ 5

19



Table 19. Modification Procedure for “b23,31 = b22,31”

Round Step Actual procedure Expression with difference in each step

1R 4 m3 ← m3 ± 230 b4 ← (a3 + f(b3, c3, d3) + m3 ± 230 + t) ≪ 19
b4 ← b4 ± 217

(Take sign to avoid b4 carry.)
5 EC: “c4,17 = d4,17” b5 ← (a4 + f(b4[±17], c4, d4) + m4 + t) ≪ 3
6 m5 ← m5 ∓ 217 b6 ← (a5 + f(b5, c5[±17], d5) + m5 ∓ 217 + t) ≪ 7

EC: “b5,17 = 1”
7 EC: “b6,17 = 1” b7 ← (a6 + f(b6, c6, d6[±17]) + m6 + t) ≪ 11
8 m7 ← m7 ∓ 217 b8 ← (a7 ± 217 + f(b7, c7, d7) + m7 ∓ 217 + t) ≪ 19

2R 22 b22 ← standard computation b22 ← (a21 + f(b21, c21, d21) + m5 ∓ 217 + t) ≪ 5
(This breaks SC on b22,31

with probability 2−9.)
23 b23 ← standard computation b23 ← (a22 + f(b22[∓22], c22, d22) + m9 + t) ≪ 9

EC: “c22,22 6= d22,22”

Table 20. Modification Procedure for Starting Collision Search from Middle of the
Second Round

In order to satisfy a condition “b33,31 = 0” in the third round, we
modify the value of chaining variable in step 29, which is a late
step of the second round, This difference will propagate until step
33, and can flip the value of b33,31. In this modification, we need to
set several extra conditions. We can set all extra conditions when
i = 0, 9, 11, 26, 28, 29, 30, 31. Therefore, we can make 28 values for
b29 that satisfy all sufficient conditions in previous steps. Since, we
don’t control how the difference is propagated from step 29 to 33, the
probability of satisfying “b33,31 = 0” is not 1. However, 256 times of
trials enable us to quickly find a message that also satisfies “b33,31 = 0.”

Round Step Actual procedure Expression with difference in each step

1R 4 m3 ← m3 − 2i−3 b4 ← (a3 + f(b3, c3, d3)+

b4 ← b4 − 2i+16 m3 − 2i−3 + t) ≪ 19
EC: “b4,i+16 = 0”

5 EC: “c4,i+16 = d4,i+16” b5 ← (a4 + f(b4[−(i + 16)], c4, d4)+
m4 + t) ≪ 3

6 EC: “b5,i+16 = 0” b6 ← (a5 + f(b5, c5[−(i + 16)], d5)+
m5 + t) ≪ 7

7 EC: “b6,i+16 = 1” b7 ← (a6 + f(b6, c6, d6[−(i + 16)])+
m6 + t) ≪ 11

8 m7 ← m7 + 2i+16 b8 ← (a7 − 2i+16 + (f(b7, c7, d7)+

m7 + 2i+16 + t) ≪ 19
2R 29 b29 ← standard computation b29 ← (a28 + f(b28, c28, d28)+

m3 − 2i−3 + t) ≪ 3
30 b30 ← standard computation
31 b31 ← standard computation Difference propagation is out of control.
32 b32 ← standard computation Probabilistically flip the value of b33,31.

3R 33 b33 ← standard computation

20


