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Abstract. Two general attacks that can be applied to all versions and
variants of the Pomaranch stream cipher are presented. The attacks
are demonstrated on all versions and succeed with complexity less than
exhaustive keysearch. The first attack is a distinguisher which needs
keystream from only one or a few IVs to succeed. The attack is not only
successful on Pomaranch Version 3 but has also less computational com-
plexity than all previously known distinguishers for the first two versions
of the cipher. The second attack is an attack which requires keystream
from an amount of IVs exponential in the state size. It can be used as
a distinguisher but it can also be used to predict future keystream bits
corresponding to an IV if the first few bits are known. The attack will
succeed on all versions of Pomaranch with complexities much lower than
previously known attacks.
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tack, eSTREAM, Pomaranch.

1 Introduction

Pomaranch is one of many cipher constructions in the eSTREAM stream cipher
project. The Pomaranch family consists of several versions and variants. The
first two versions have been cryptanalyzed in [2, 10, 6]. For each new version, the
cipher has been changed such that the attacks on the previous versions would
not be successful.

In this paper we present two general attacks that can be applied to all ver-
sions and variants of the Pomaranch family of stream cipher. The first attack
is a statistical distinguisher, which can be applied to all Pomaranch-like ciphers
having one or several types of jump registers and both linear and nonlinear filter
function. We improve the computational complexity of all known distinguishers
on Version 1 and Version 2. Our attack is also applied to Pomaranch Version 3
and it is shown that the attack will succeed on the 80-bit variant with compu-
tational complexity 271.10, significantly less than exhaustive key search. For the
128-bit variant, the attack will have computational complexity 2126, almost that
of exhaustive key search. The complexity of the attack given in the theorems
can be seen as design criteria for subsequent versions of Pomaranch.



The second attack is an IV attack. It first stores many samples from the
keystream corresponding to one IV in a table. Given short keystream samples
from several other IVs, we can find collisions with the samples in the stored table.
When a collision is found, future keystream bits can be predicted. The key will
not be recovered but the attack is still more powerful than a distinguisher. Also
this attack can be applied to all versions and variants of Pomaranch, e.g., by
using a table of size 271.3 bytes, 298 different IVs and a computational complexity
of 2104, the 128 bit version of Pomaranch Version 3 can be attacked.

The outline of the paper is as follows. Section 2 will describe the Pomaranch
stream ciphers and Section 3 will briefly describe the previous attack on Po-
maranch. In Section 4 the first attack is given and in Section 5 we give the
second attack. Section 6 concludes the paper.

2 Description of Pomaranch

In this section, we will give a brief overview of the design of Pomaranch. There
are 3 versions of Pomaranch. First the overall design idea is presented and then
we give the specific parameters for the different versions. The attacks described
in this paper are independent of the initialization procedure and thus, only the
keystream generation will be described here. For more details we refer to the
respective design documents, see [7–9].

Pomaranch is a synchronous stream cipher designed primarily for being effi-
cient in hardware. It follows the classical design of a filter generator where the
contents of an internal state is filtered through a Boolean function to produce
the keystream. The design of Pomaranch is illustrated in Figure 1.
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Fig. 1. General overview of Pomaranch.

Pomaranch is based on a cascade of n Jump Registers (JR). A jump register
can be seen as an irregularly clocked Linear Finite State Machine (LFSM). The
clocking of a register can be done in one of two ways, either it jumps c0 steps
or it jumps c1 steps. The clocking is decided by a binary jump control sequence,



denoted by ji(t) for register i at time t.

ji(t) =
{

0, JRi is clocked c0 times
1, JRi is clocked c1 times

The jump registers are implemented using two different kinds of delay shift
cells, S-cells and F-cells. The S-cell is a normal D-element and the F-cell is a
D-element where the output is fed back and XORed with the input. Half of the
cells are implemented as S-cells and half are implemented as F-cells. When the
register is clocked it will jump c0 steps. When the jump control ji(t) is one, all
cells in JRi are switched to the opposite mode, i.e., all S-cells become F-cells
and vice versa. This switch of cells results in a jump through the state space
corresponding to c1. The jump index of a register is the number of c0 clockings
that is equivalent to one c1 clocking.

Notations and Assumptions. As seen in Figure 1 we denote Jump Reg-
ister i by JRi and its period by Ti. The key is denoted by K and the sub-
key used for JRi is denoted ki. The length of the registers is denoted by L.
The filter function is denoted by H (more specifically we will use the notation
H(1),H

(2)
80 ,H

(2)
128,H

(3)
80 ,H

(3)
128 for the different filter functions used, where the su-

perscript denotes the version of Pomaranch of interest, and the subscript denotes
the key length used in the version). Similarly we will denote the number of regis-
ters used by n(1), n

(2)
80 , n

(2)
128, n

(3)
80 , n

(3)
128. The bit taken from the register i as input

to the filter function at time t is denoted by xi(t). The keystream bit produced
at time t is denoted z(t) and sometimes only z. Both addition modulo 2 and
integer addition is denoted by + since there should be no risk of confusion. Only
absolute values of biases of approximations will be given.

2.1 Pomaranch Version 1

The first version of Pomaranch was introduced in [7]. In this version, 128 bit
keys were used together with an IV in the range of 64 to 112 bits. The cipher
is built upon n(1) = 9 identical jump registers. Each register uses 14 memory
cells together with a characteristic polynomial with the jump index 5945, i.e.,
(c0, c1) = (1, 5945). From register i 9 bits are taken as input to a key dependent
function, denoted KeyMap in Figure 1. The output of this function is XORed
to the jump sequence from register i− 1, ji(t) to produce the jump sequence for
the next register, ji+1(t). The keystream bit z is given as the XOR of the bit in
cell 13 from all the registers, i.e.,

z = H(1)
(
x1, . . . , x9

)
= x1 + x2 + . . . + x9.

2.2 Pomaranch Version 2

The second version of Pomaranch [8], comes in two variants, an 80-bit with
n

(2)
80 = 6, and a 128-bit key variant using n

(2)
128 = 9 registers. The registers

are still 14 memory cells long but to prevent the attacks on the first version,



different tap positions are used as input to the KeyMap function in Figure 1.
The characteristic polynomial is also changed and the new jump index is 13994.
A new initialization procedure was introduced to prevent the attacks in [2, 5].
The keystream is still taken as the XOR of the bits in cell 13 of all registers and
is given by

z =

{
H

(2)
80

(
x1, . . . , x6

)
= x1 + x2 + . . . + x6

H
(2)
128

(
x1, . . . , x9

)
= x1 + x2 + . . . + x9

.

2.3 Pomaranch Version 3

As in the second version, there are two variants of Pomaranch Version 3 [9],
an 80-bit and a 128-bit key variant. The number of registers used are still the
same as in Pomaranch Version 2, i.e., n

(3)
80 = 6 respectively n

(3)
128 = 9. In the case

of Pomaranch Version 3, two different jump registers are used, the first using
jump index 84074 which is referred to as type I and the second using jump index
27044, referred to as type II. The type I registers are used for odd numbered
sections in Figure 1, and type II for the even numbered sections. Both registers
are built on 18 memory cells, and have primitive characteristic polynomials, i.e.,
when only clocked with zeros or ones they have a period of 218 − 1. From each
register one bit is taken from cell 17 and is fed into H. The filter functions used
are

z =

{
H

(3)
80

(
x1, . . . , x6

)
= G

(
x1, . . . , x5

)
+ x6

H
(3)
128

(
x1, . . . , x9

)
= x1 + x2 + . . . + x9

,

where

G(x1, . . . , x5) = x1 + x2 + x5 + x1x3 + x2x4 + x1x3x4 + x2x3x4 + x3x4x5

is a 1-resilient Boolean function. The keystream length per IV/key pair is limited
to 264 bits in Version 3.

3 Previous Attacks on the Pomaranch Stream Ciphers

The first attack on Pomaranch, given in [2], was an attack on the initialization
procedure. Soon after, an attack on the keystream generation was presented
in [10]. This attack considered the best linear approximation of bits distance
L+1 apart. Register JR1 was exhaustively searched since this register is always
fed with the all zero jump control sequence and the linear approximation is
not valid for this register. When the state of JR1 was known, JR2 and 16
bits of the key was guessed. This was iterated until the full key was recovered.
A distinguisher was not explicitly mentioned in [10] but it is very easy to see
that if the attack is stopped after JR1 is recovered, it would be equivalent
to a distinguishing attack. This distinguisher needed 272.8 keystream bits and
computational complexity 286.8.

Pomaranch Version 2 was designed to resist the attacks in [2, 10]. However,
it was still possible to find biased linear approximations by looking at keystream



bits further apart. This was done in [6] and the new approximation made it
possible to mount distinguishing and key recovery attacks on both the 80-bit
and the 128-bit variants. The distinguisher for the 80-bit variant needed 244.59

keystream bits and a computational complexity of 258.59. For the 128-bit variant
the complexities were 273.53 and 287.53 respectively.

4 Distinguishing Attacks on Pomaranch-like Ciphers

In this section we will present general distinguishers for Pomaranch-like ciphers,
in particular we will study the constructions that have been proposed in Po-
maranch Version 1-3. We will give general results for these cipher families that
can be used as design criteria for future Pomaranch ciphers.

4.1 Period of Registers

The first jump register, denoted JR1 in Figure 1, is during keystream generation
mode fed by the jump sequence only containing zeros. Hence JR1 is a LFSM.
The period of the register is denoted by T1, hence x1(t) = x1(t + T1) with
T1 = 2L − 1.

From JR1 a jump control sequence is calculated which controls the jumping
of JR2. Assume that after T1 clocks of JR1, register JR2 has jumped C steps.
Then after T 2

1 clocks JR2 has jumped CT1 steps, a multiple of T1 and is thus
back to its initial state. If primitive characteristic polynomials are used for the
registers, it can be shown that the period for register JRi is

Ti = T i
1,

and hence
xi(t) = xi(t + T i

1).

Consequently, at time t and t + T p
1 , the filter function H has p inputs with

exactly the same value, namely the contribution from registers JR1, . . . , JRp.
This observation will be used in our attack.

4.2 Filter Function

The filter function used in Pomaranch can be a nonlinear Boolean function or
just the linear XOR of the output bits of each jump register. Our attack can be
applied to both variants. The keystream bit at time t, denoted by z(t), can be
described as

z(t) = H
(
x1(t), . . . , xn(t)

)
.

Using the results from Section 4.1 and taking our samples as z(t)+ z(t+T p
1 ) we

can write the expression for the samples as

z(t) + z(t + T p
1 ) = H

(
x1(t), . . . , xn(t)

)
+ H

(
x1(t + T p

1 ), . . . , xn(t + T p
1 )

)
. (1)



4.2.1 Linear Filter Function When the filter function H is linear, i.e.,
H(x1, . . . , xn) =

∑n
i=1 xi, and our samples are taken as z(t)+z(t+T p

1 ) we know
from Section 4.1 that p inputs to the filter function are the same at time t and
at time t + T p

1 , hence we can rewrite (1) as

z(t) + z(t + T p
1 ) =

n∑

i=p+1

xi(t) + xi(t + T p
1 ).

4.2.2 Nonlinear Filter Function When the filter function H is nonlinear,
xi(t) and xi(t+T p

1 ) will not cancel out in the keystream with probability one, as
in Section 4.2.1. But, the input to H at time t and t+T p

1 has p inputs x1, . . . , xp

with the exact same value. This might lead to a biased distribution,

Pr
(
H

(
x1(t), . . . , xn(t)

)
+ H

(
x1(t + T p

1 ), . . . , xn(t + T p
1 )

)
= 0

)
=

Pr (z(t) + z(t + T p
i ) = 0) =

1
2
(1± ε),

where ε denotes the bias and |ε| ≤ 1.

4.3 Linear Approximations of Jump Registers

In our attack, we need to find a linear approximation for the output bits of the
jump registers that is biased, i.e., that holds with probability different from one
half. We assume that all states of the register are equally probable, except for
the all zero state which has probability 0. Further, it is assumed that all jump
control sequences have the same probability. Finding the best linear approxima-
tion can be done by exhaustive search. Under certain circumstances much faster
approaches can be used, see [6]. We search for a set A of size w such that

Pr(
∑

i∈A
x(t + i) = 0) =

1
2
(1± ε), |ε| ≤ 1,

i.e., the weight of the approximation is w and the terms are given by the set
A. For our attack to work it is important that the bias of this approximation is
sufficiently high.

It is assumed that jump register JR1 will always have the all zero jump con-
trol sequence. Hence, the linear approximation will never apply for this register.

4.3.1 Different Registers In the case when not all registers use the same
kind of jump registers, we are not interested in the most biased linear approxi-
mation of single registers. Instead we have to search for a linear approximation
that has a good bias for all types of registers at the same time. This is much
harder to find than a single approximation for one register. This is the case in
Pomaranch Version 3.



4.4 Attacking Different Versions of Pomaranch

A Pomaranch stream cipher can be designed using one or several types of jump
registers. It can also use a linear or a nonlinear Boolean filter function. In this
section we take a closer look at the different design possibilities that has been
used and give an expression for the number of samples needed in a distinguisher
for each possibility.

The general expressions for the amount of keystream needed in an attack can
be seen as a new design criteria for Pomaranch-like stream ciphers.

4.4.1 One Type of Registers with Linear Filter Function In this family
of Pomaranch stream ciphers we assume that all jump register sections use the
same type of register and that the filter function H is linear, i.e., H(x1, . . . , xn) =∑n

i=1 xi. Pomaranch Version 1 and Pomaranch Version 2 are both included in
this family.

Assume that we have found a linear approximation, as described in Section
4.3, of weight w of the register used. We consider samples at t and t + T p

1 such
that p positions into H are the same according to Section 4.1. Our samples will
be taken as

∑

i∈A
z(t + i) +

∑

i∈A
z(t + i + T p

1 ) =
n∑

j=1

∑

i∈A

(
xj(t + i) + xj(t + i + T p

1 )
)

(2)

=
n∑

j=p+1

∑

i∈A

(
xj(t + i) + xj(t + i + T p

1 )
)
.

Since the bias of
∑

i∈A xi(t + i) is ε and we have 2(n− p) such relations the
total bias of the samples is given by

εtot = ε2(n−p).

Using the approximation that 1/ε2
tot samples are needed to reliably distin-

guish the cipher from a truly random source, we get an estimate of the keystream
length needed. (In practice, this number should be multiplied by a small con-
stant.)

Theorem 1. The computational complexity and the number N of keystream
bits needed to reliably distinguish the Pomaranch family of stream ciphers using
a linear filter function and n jump registers of the same type is bounded by

N = T p
1 +

1
ε4(n−p)

, p > 0,

where ε is the bias of the best linear approximation of the jump register.



4.4.2 Different Registers with Linear Filter Function In this family of
generators different types of jump registers are used and the filter function is
assumed to be H(x1, . . . , xn) =

∑n
i=1 xi.

This case is very similar to the case when all registers are of the same type.
The difference is that, in this case, we are not looking for the best linear approx-
imation of the registers separately. Instead, we have to find a linear approxima-
tion that have a bias for all the registers JRp+1, . . . , JRn. This can be difficult
if there are several types of registers. Approximations with a large bias for one
type might have a very small bias for other types. Anyway, assume that we have
found such a linear approximation. Our samples will still be taken as in (2). If
we denote the bias for the approximation of register i by εi, then the total bias
will be given as

εtot =
n∏

i=p+1

ε2
i .

Theorem 2. Assume that there is a linear relation that is biased in all registers.
The computational complexity and the number N of keystream bits needed to
reliably distinguish the Pomaranch family of stream ciphers using a linear filter
function and n jump registers of different types is bounded by

N = T p
1 +

1
n∏

i=p+1

ε4
i

, p > 0,

where εi is the bias of jump register JRi.

The 128-bit variant of Pomaranch Version 3 belongs to a special subclass of
this family, namely all registers in odd positions are of type I and registers in
even positions are of type II. In this case we only have to search for a linear
approximation that is biased for type I and type II registers at the same time.
The bias of

∑
i∈A xi(t + i) is denoted εtype I and εtype II , respectively, for the

different registers. In total we have 2dn−p
2 e type I relations and 2bn−p

2 c type II
relations when n is odd. Hence, the total bias of the samples is given by

εtot = ε
2dn−p

2 e
type I ε

2bn−p
2 c

type II .

If we apply Theorem 2 to the 128-bit variant of Pomaranch Version 3, the number
of samples in the distinguisher is given by

N = T p
1 +

1

ε
4dn−p

2 e
type I ε

4bn−p
2 c

type II

. (3)

4.4.3 Nonlinear Filter Function Now we consider the case when the Boolean
filter function is a nonlinear function. We only consider the case when the filter
function H can be written in the form

H(x1, . . . , xn) = G(x1, . . . , xn−1) + xn. (4)



The attack can easily be extended to filter functions with more (or less) linear
terms but to simplify the presentation, and the fact that the 80-bit variant of
Pomaranch Version 3 is in this form, we only consider this special case in this
paper.

Attacks on this family use a biased linear approximation of JRn, see Section
4.3, together with the fact that the input to G at time t and t+T p

1 have p inputs
in common and hence in some cases a biased distribution, see Section 4.2.2.

Let ε denote the bias of G
(
x1(t), . . . , xn−1(t)

)
+ G

(
x1(t + T p

1 ), . . . , xn−1(t +
T p

i )
)
, and ε the bias of our linear approximation for JRn,

∑
i∈A xi(t + i). The

samples are taken as

∑

i∈A
z(t + i) +

∑

i∈A
z(t + i + T p

1 ) =
∑

i∈A
xn(t + i) +

∑

i∈A
xn(t + i + T p

1 )

+
∑

i∈A
G

(
x1(t + i), . . . , xn−1(t + i)

)
+ G(x1(t + i + T p

1 ), . . . , xn−1(t + i + T p
1 )

)
,

and the bias of the samples is given by

εtot = ε2εw. (5)

This relation tells us that we need to keep the weight of the linear approximation
of JRn as low as possible, i.e., there is a trade off between the bias ε of the
approximation and the number of terms w in the relation.

Theorem 3. The computational complexity and the number N of keystream
bits needed to reliably distinguish the Pomaranch family of stream ciphers using
a filter function of the form (4) is bounded by

N = T p
1 +

1
(ε2εw)2

.

where ε is the bias of the approximation of weight w of register JRn and ε is the
bias of G

(
x1(t), . . . , xn−1(t)

)
+ G

(
x1(t + T p

1 ), . . . , xn−1(t + T p
i )

)
.

Note that in this presentation it does not matter if all registers are of the
same type or if they are of different types. Since only register JRn is completely
linear in the output function H, we only need to have an approximation of this
register.

4.5 Attack Complexities for the Existing Versions of the Pomaranch
Family

In this section, we look at the existing versions and variants of Pomaranch that
have been proposed so far. These are Pomaranch Version 1, the 80-bit and 128-bit
variants of Pomaranch Version 2 and the 80-and 128-bit variants of Pomaranch
Version 3. Applying the attack proposed in this paper, we show that we can find
distinguishers with better complexity than previously known for all 5 ciphers.



4.5.1 Pomaranch Version 1 In Pomaranch Version 1 all registers are the
same, so the attack will be according to Section 4.4.1. The best known linear
approximation for this register, as given in [10], is

ε = |2Pr(x(t) + x(t + 8) + x(t + 14) = 0)− 1| = 2−4.286.

Using Theorem 1 for different values of p we get Table 1. We see that the best
attack is achieved when p = 5. The computational complexity and the amount
of keystream needed is then 270.46.

Table 1. Number of samples and computational complexity needed to distinguish
Pomaranch Version 1 from random.

p 1 2 3 4 5 6 7

N (1) 2137.15 2120.01 2102.86 285.72 270.46 283.99 297.99

4.5.2 Pomaranch Version 2 Similarly as in Pomaranch Version 1, in Po-
maranch Version 2 all registers are the same and the attack will be performed
according to Section 4.4.1. The best bias of a linear approximation for the reg-
isters used was found in [6] and is given by

ε = |2Pr(x(t) + x(t + 2) + x(t + 6) + x(t + 18) = 0)− 1| = 2−4.788.

Using Theorem 1 for different values of p gives Table 2. For the 80-bit variant
the computational complexity and the number of samples is 256.00 and for the
128-bit variant it is 276.62.

Table 2. Number of samples needed to distinguish Pomaranch Version 2 according to
Theorem 1.

p 1 2 3 4 5 6

N
(2)
80 295.76 276.61 257.46 256.00 270.00 284.00

N
(2)
128 2153.22 2134.06 2114.91 295.76 276.62 284.00

4.5.3 Pomaranch Version 3 There is a significant difference between the
80-bit and the 128-bit variants of Pomaranch Version 3, so this section will be
divided into two parts.



80-bit Variant. The 80-bit variant of Pomaranch Version 3 uses a non-linear
filter function, the attack will hence follow the procedure described in Section
4.4.3.

We started by estimating the bias of

G
(
x1(t), . . . , x5(t)

)
+ G

(
x1(t + T p

1 ), . . . , x5(t + T p
1 )

)
.

The results for different p are summarized in Table 3. The keystream per IV/key
pair of Pomaranch Version 3 is limited to 264. Because of this we limit p to
p ∈ {1, 2, 3}, otherwise T p

1 > 264. We looked for a linear relation of JR6 that,
together with a value of p ∈ {1, 2, 3}, minimizes the amount of keystream needed
as given by Theorem 3. The best approximation found was

Pr
(
x6(t)+x6(t+5)+x6(t+7)+x6(t+9)+x6(t+12)+x6(t+18) = 0

)
=

1
2
(1−2−8.774),

using p = 3. The total bias of our samples using this approximation is

εtot = (2−8.774)2 · (2−3)6 = 2−35.548,

according to (5). The samples used in the attack are taken according to
∑

i∈A
z(t + i) +

∑

i∈A
z(t + i + T 3

1 ),

where A = {0, 5, 7, 9, 12, 18}. According to Theorem 3, the amount of keystream
needed is 254+271.096 = 271.096. This is also the computational complexity of the
attack. In the specification of Pomaranch Version 3 the frame length (keystream
per IV/key pair) is limited to 264. This does not prevent our attack since all
samples will have this bias regardless of the key and IV used. We only need to
consider 264 keystream bits from d27.096e = 137 different key/IV pairs.

Table 3. The bias of G
(
x1(t), . . . , x5(t)

)
+ G

(
x1(t + T p

1 ), . . . , x5(t + T p
1 )

)
in the 80 bit

variant of Pomaranch Version 3 for different values of p.

p 1 2 3 4 5

ε 0 2−4 2−3 2−2 1

128-bit Variant. In Pomaranch Version 3 two different registers are used,
so we start by searching for a linear approximation that is good for both types
of registers. The best approximation we found was

x(t)+x(t+1)+x(t+2)+x(t+5)+x(t+7)+x(t+11)+x(t+12)+x(t+15)+x(t+21),

which has the same bias for both types of registers, namely

εeven = εodd = 2−10.934.



Using (3) for different values of p we get Table 4. Our best distinguishing attack
needs 2126.00 keystream bits. This figure is determined by T 7

1 = 2126.00 so it is not
possible to look at different key/IV pairs in this case since the distance between
the bits in each sample has to be 2126.00. Since the frame length is limited to 264

it will not be possible to get any biased samples at all with p = 7.

Table 4. Number of samples needed to distinguish the 128-bit variant of Pomaranch
Version 3 according to (3).

p 1 2 3 4 5 6 7 8

N
(3)
128 2349.89 2306.15 2262.42 2218.68 2174.94 2131.21 2126.00 2144.00

5 Square Root IV Attack

In this section we will give an attack that works for all families of Pomaranch
where the key is longer than half of the total register length. The size of the
state in Pomaranch is always larger than twice the key size, e.g., the 128-bit
variant of Pomaranch Version 3 has a state size of 290 bits. Thus, the generic
time-memory tradeoff attacks will not be applicable in general. Our attack is a
variant of the time-memory tradeoff attack and is generic for all stream ciphers.
Let us divide the internal state of the cipher into two parts,

State = (StateK , StateK+IV ),

where StateK is a part of the state that statically holds the key and StateK+IV

is a part of the state that is updated, depending on both the key and the IV .
If the key size |K| > |StateK+IV |/2, then the attack will always succeed with
complexity below exhaustive key search. In Pomaranch, StateK will consist of
the |K| key bits and StateK+IV will consist of the register cells.

In the attack scenario, we assume that the key is fixed and that the cipher
is initialized with many different IVs. Further, we assume that we have access
to one long keystream sequence produced from one of the IVs, denoted IV0. We
intercept the ciphertext corresponding to many other IVs and we know the first
l plaintext bits corresponding to every ciphertext. Our goal is to recover the rest
of the plaintext for one of the messages.

The key map used to produce the jump control bits is key dependent but
independent of the IV. Hence, a fixed key will define a state graph of size (2L −
1)n ≈ 2nL states, where L is the register length and n the number of registers.
We can apply the following attack.

Let a sample of l consecutive keystream bits at time t be denoted S(t) =(
z(t), z(t + 1), . . . , z(t + l − 1)

)
. If the sample stems from IVi we denote it by



SIVi
(t). We first store a large amount of samples from IV0 in a table. We would

like to find another IV, denoted IVc, that results in a sample such that

SIVc
(tc) = SIV0(t0).

If a collision is found, then with high probability the following keystream of
IV0 and IVc will also be identical. That means that if we just know the first l
keystream bits generated by IVc, we can predict future keystream bits from IVc.
The attack is visualized in Figure 2.

R

SIV0

Samples saved in table

1

SIVc

Fig. 2. State graph for a fixed key, a sample is visualized by a small ring.

Assume that 2βnL (0 ≤ β ≤ 1) samples of length l from a keystream se-
quence of 2βnL + l bits, originating from IV0 and key K, is saved in a table. The
table is then sorted with complexity O(βnL · 2βnL). This table covers a frac-
tion of 2−(1−β)nL of the entire cycle. The number of samples (IVs with l known
keystream bits) we need to test to find a collision is geometrically distributed
with expected value 2(1−β)nL. For each sample, a logarithmic search with com-
plexity O(βnL) in the table is performed to see if there is a collision. To be sure
that a collision in the table actually means that we have found a collision in the
state cycle, l must be l ≈ nL. The attack complexities are then given by

2βnL + nL, from one IV andKeystream :
nL, from 2(1−β)nL IVs

Time : βnL2βnL + βnL2(1−β)nL

Memory : nL2βnL

where 0 ≤ β ≤ 1. By decreasing β it is possible to achieve smaller memory
complexity at the expense of more IVs and higher time complexity. We can also
see that the best time complexity is achieved when β = 0.5 for large nL. The
proposed attack is summarized in Figure 3. In the figure, SIVi(t) represents a
sample from the keystream from IVi at time t, and T represents the table where
samples are stored.



for i = 1, . . . , 2
nL
2

T [i] = SIV0(t + i)
end for
sort T

for i = 1, . . . , 2
nL
2

if SIVi(t) ∈ T
return cipher

end for
return random

Fig. 3. Summary of square root attack.

5.1 Attack Complexities on Pomaranch

In this section we will look at the existing versions of Pomaranch and show
that the square root IV attack can be mounted with complexity significantly
less than exhaustive key search. We assume β = 0.5 so the time complexity and
the memory complexity in bits are equal. The 128-bit variants of Pomaranch
Version 1 and Version 2 can be attacked using a table of size 267.0 bytes together
with keystream from 263.0 different IVs. The 80-bit variant of Pomaranch Ver-
sion 2 can be attacked using only a table of 245.4 bytes and 242.0 different IVs.
Pomaranch Version 3 uses larger registers, and the complexity of the attack on
the 80-bit variant is a table of size 257.8 bytes and 254.0 IVs. The 128-bit variant
needs a table of 285.3 bytes and 281 IVs. However, if we respect the maximum
frame length of 264 bits, we need to choose β = 0.395. Then we need a table of
271.3 bytes and 298 IVs. The time complexity is in this case 2104.

The success probability of the attack has been simulated on a reduced version
of the 128 bit variant of Pomaranch Version 3, using two registers. Choosing
β = 0.5 implies that we know 218 keystream bits from IV0, we store all samples
of length nL = 36 in a table, and that we need samples from 218 different IVs in
order to find a collision. The simulation results are summarized in Table 5. We
also verified the attack using 3 registers. The attack given in this section suggests

Table 5. Simulation results using 2 register Pomaranch version 3 with linear filter
funtion, the table summarizes how many times the attack succeeds out of 100 attacks
for a specific table size and number of IVs.

Number of IVs

Success rate 217 218 219 220 221

Table size

217 28 45 64 87 98

218 38 67 91 98 100

219 71 86 98 100 100



a new design criteria for the Pomaranch family of stream ciphers, namely that
the total register length must be at least twice the keysize.

6 Conclusions

We have presented two general attacks on Pomaranch-like keystream generators.
The attack complexities are summarized in Table 6.

The first attack is a distinguishing attack that can be applied to all known
versions and variants of the stream cipher Pomaranch. For Pomaranch Version
1 and Pomaranch Version 2, the distinguisher will succeed with better compu-
tational complexity than any other known distinguisher for these versions. For
the 80-bit variant of Pomaranch Version 3, the attack will succeed using 271.1

bits and computational complexity 271.1. Since the frame length is restricted to
264 bits we can instead collect 264 bits from 137 key/IV pairs. For the 128-bit
variant our distinguisher needs about 2126 samples and will not succeed if the
frame length is restricted.

We have also presented a general IV attack that works for all ciphers where
the key size is larger than half of the state size, when the part of the state
only affected by the key is not considered. The attack was demonstrated on all
versions and variants of Pomaranch with complexity far below exhaustive search.
This attack has much lower complexity than the first and will work even if the
frame length is restricted. The attack will not recover the key but is different
from a distinguishing attack. It will recover the plaintext corresponding to one
IV if only the ciphertext together with the first few keystream bits are known.
On the other hand, this attack will require keystream from a large amount of
IVs. This attack will also be applicable to the stream cipher LEX [1] and to any
block cipher used in OFB mode of operation as shown in [3]. The attack scenario
here is somewhat similar to the attack scenarios in disk encryption, see e.g., [4],
where the adversary has write access to the disk encryptor and read access to
the storage medium.

Table 6. Summary of attack complexities, for the two proposed attacks, on all versions
and variants of Pomaranch.

Attack Complexities Distinguishing Attack Square Root IV attack

Keystream/Compl. Memory/IVs/Compl.

Pomaranch v1 128 bit 271 / 271 267 / 263 / 263

Pomaranch v2
80 bit 256 / 256 245 / 242 / 242

128 bit 277 / 277 267 / 263 / 263

Pomaranch v3
80 bit 271 / 271 258 / 254 / 254

128 bit ∗ 2126 / 2126 271 / 298 / 2104

* Without frame length restriction
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