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Abstract. Almost all the existing stream ciphers are using two inputs:
a secret key and an initial value (IV). However recent attacks indicate
that designing a secure IV-dependent stream cipher and especially the
key and IV setup component of such a cipher remains a difficult task. In
this paper we first formally establish the security of a well known generic
construction for deriving an IV-dependent stream cipher, namely the
composition of a key and IV setup pseudo-random function (PRF) with
a keystream generation pseudo-random number generator (PRNG). We
then present a tree-based construction allowing to derive a IV-dependent
stream cipher from a PRNG for a moderate cost that can be viewed as a
subcase of the former generic construction. Finally we show that the re-
cently proposed stream cipher quad [3] uses this tree-based construction
and that consequently the security proof for quad’s keystream genera-
tion part given in [3] can be extended to incorporate the key and IV
setup.
Keywords: stream cipher, PRNG, IV setup, provable security

1 Introduction

Stream ciphers and block ciphers are the two most popular families of symmet-
ric encryption algorithms. Unlike block ciphers, stream ciphers do not produce
a key-dependent permutation over a large blocks space, but a key-dependent
sequence of numbers over a small alphabet, typically the binary alphabet {0, 1}.
To encrypt a plaintext sequence, each plaintext symbol is combined with the cor-
responding symbol of the keystream sequence using a group operation, usually
the exclusive or operation over {0, 1}.

Nearly all stream ciphers specified recently use two inputs to generate a
keystream sequence: a secret key and an additional parameter named the initial
value (IV), that is generally not secret. The purpose of the initial value is to allow
0 The work described in this paper has been supported by the European Commission
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to derive several “independent” keystream sequences from one single key, and
thus to provide a convenient method for encrypting several plaintext sequences
under the same secret key, by “resynchronizing” the stream cipher each time with
a new IV value. This represents an obvious practical advantage over formerly
proposed stream ciphers which single input was the secret key. But on the other
hand, the use of an IV input has considerable impacts on the cryptanalysis and
on the formalization of the security requirements on stream ciphers.

As for cryptanalytic implications, the quite numerous attacks of IV-dependent
stream ciphers published in the past years clearly indicate that IVs result in ad-
ditional attack opportunities, and that the key and IV setup procedure still
represents one of the less well understood aspects of stream ciphers design. As
a matter of fact an adversary can compare the keystream sequences associated
with several known, related or chosen IV values, and potentially derive infor-
mation upon the corresponding internal state values that could not be derived
from one single keystream sequence. This is illustrated by Fluhrer, Mantin, and
Shamir’s attack on the key and IV loading method of the RC4-based cipher
used in certain WiFi systems [10], by Ekdahl and Johansson’s cryptanalysis of
the GSM cipher A5/1 [9], by Joux and Muller’s differential known or chosen
IV attacks on various ciphers [16, 17], by Daemen, Govaerts, and Vandewalle’s
and by Armknecht, Lano, and Preneel’s resynchronization attacks [8, 1] or more
recently by attacks against some of the eSTREAM candidates.

As for the implications of IVs on the formalization of security requirements
on stream ciphers, they can be outlined as follows:

In the case of a stream cipher without IV, the requirements are con-
veniently captured by the theory of pseudo-random numbers generators which
has been stemming from the seminal work of Shamir [18], Yao [19], Blum and
Micali [6] in the early 80’s. A stream cipher is considered secure if the associated
key to keystream function is a pseudo-random number generator (PRNG), i.e.
an input-expanding function allowing to expand a short seed (the key) into a
strictly longer output (the keystream) in such a way that if the secret input seed
is uniformly distributed, then the probability distribution of the corresponding
output is computationally indistinguishable with non negligible probability from
the uniform distribution.

In the case of an IV-dependent stream cipher, no as unanimously ac-
cepted formalization of the security requirements has emerged so far. However,
most cryptologists would probably agree that a sufficient security condition is
that the associated function generator which maps the secret key onto the IV
to keystream function be a pseudo-random function generator (PRF), i.e. a ran-
dom function generator indistinguishable with non negligible probability from a
perfect random function generator. To quote an example, this is the condition
Halevi, Coppersmith, and Jutla are using to express the security requirements
on the IV-dependent stream cipher Scream [15]. We will briefly discuss the va-
lidity of this PRF-based formalization in Section 3 hereafter, and conclude that
it indeed captures the most natural generalization to IV-dependent stream ci-
phers of the well accepted (PRNG based) formalization of IV less stream ciphers.



One might argue that since constructing a secure PRF can be expected to be
more demanding than constructing a secure PRNG and nearly as difficult as
constructing a block cipher, introducing IVs in stream ciphers looses all perfor-
mance advantages of stream ciphers over block ciphers and requires the same
kind of techniques than designing a block cipher. This is however not necessarily
the case, as will be shown in the sequel.

The purpose of this paper is twofold. Firstly, to clarify the security require-
ments upon an IV-dependent stream cipher (Section 3) and to identify sufficient
conditions on its key and IV setup and key generation parts in order for the
whole stream cipher to be secure (Section 4). Secondly, to propose a practical
construction allowing to meet these conditions (Section 5), and therefore to de-
rive an IV-dependent stream cipher with a provable security argument. Finally
we show that as an application of this construction the security arguments of
quad can be extended in order to include the key and IV setup (Section 6). An
overview of our main results is given in Section 2.

2 Outline of our results

For all the stream ciphers we consider in this paper, the keystream derivation is
split, as in nearly all existing IV-dependent stream ciphers, into the two following
separate phases, according to the generic construction illustrated in Figure 1:

– (1) Key and IV setup: an m-bit initial state value is derived from the key
and IV value.

– (2) Keystream generation: the keystream is derived from the m-bit initial
state obtained in the key and IV-setup phase. For that purpose, the m-bit
initial state is taken as the seed input of a number generator 1.

We formally establish, in Section 4, the validity of the following “folklore”
belief implicitly invoked in the security argumentation of several existing IV-
dependent stream ciphers [5, 2]: if the family {FK} of IV to initial state func-
tions parametrized by the key K is a PRF and if the number generator g is a
PRNG, then the family {GK = g ◦FK} of IV to keystream sequence functions is
a PRF. This provides useful sufficient conditions in order for the IV-dependent
stream cipher resulting from the generic construction of Figure 1 to be secure.
Our security proof relies upon a simple “composition theorem”. A specific con-
struction directly suggested by the former security results might consist of using
a trusted block cipher for the IV-setup, as done for instance in the stream cipher
candidates LEX [5] and SOSEMANUK [2], both selected as focus ciphers for
1 Though our constructions are potentially applicable to any number generator with

a sufficiently long input size, they are mainly intended for number generators based
upon the iterated invocation of a finite state machine (FSM). The keystream se-
quence generation procedure of nearly all existing stream ciphers has this specific
structure, i.e. uses the state transition function of a FSM to update an m-bit inter-
nal state and derive at each iteration a t-bit keystream portion by means of a fixed
output function.
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Fig. 1. IV-dependent stream cipher: (generic construction)

third evaluation phase of the stream cipher initiative eSTREAM of the Euro-
pean network ECRYPT. One may however argue that this construction results
in a lack of design unity when (unlike in LEX) the keystream generation does
not reuse the trusted block cipher used for the key and IV setup.

We propose, in Section 5 hereafter, another specific construction also sup-
ported by former security results, which has the additional advantage that it
better preserves the design unity of stream ciphers. This construction consists
of applying the so called tree-based construction proposed by Goldreich, Gold-
wasser, and Micali in [13] for deriving the PRF needed for the key and IV setup
from any n-bit to 2n-bit PRNG. This PRNG can be essentially the same as the
one used in the keystream generation phase. The later option allows to even
better preserve the unity of the design, and to achieve substantial savings in the
hardware and software implementation complexity of the stream cipher, since
the key and IV setup and the keystream generation are then using the same
computational ingredients.

Last of all, we focus in Section 6 on a particular stream cipher where the
tree-based construction of Section 5 is applied in the key and IV setup, namely
the recently proposed stream cipher quad [3]. We show that the partial proof of
security of [3] (which gives some evidence that the keystream generation part of
quad is secure) can be extended to incorporate the key and IV setup. This allows
to reduce the security of the whole stream cipher to the difficulty of solving a
random multivariate quadratic system.

3 Security Model

3.1 Basic Security Notions

We first recall definitions of advantages for distinguishing a number generator
from a perfect random generator and a function generator from a perfect ran-
dom function generator, and the notions of Pseudo-Random Number Generator



(PRNG) and Pseudo-Random Function (PRF). All the security definitions used
throughout this paper relate to the concrete (non asymptotic) security model.
In the sequel, when we state that a value u is randomly chosen in a set U , we
implicitly mean that u is drawn according to the uniform law over U .

Single-query distinguisher for a number generator: let us consider a num-
ber generator g : {0, 1}n −→ {0, 1}L with input and output lengths L > n, used
to expand an n-bit secret random seed into an L-bit sequence. A distinguisher
in time t for g is a probabilistic testing algorithm A which when input with an
L-bit string outputs either 0 or 1 with time complexity at most t. We define the
advantage of A for distinguishing g from a perfect random generator as

Advprng
g (A) =

∣∣Prx∈{0,1}n(A(g(x)) = 1)− Pry∈{0,1}L(A(y) = 1)
∣∣,

where the probabilities are not only taken over the value of an unknown ran-
domly chosen x ∈ {0, 1}n (resp. of a randomly chosen y ∈ {0, 1}L), as explicitly
stated in the above formula, but also over the random choices of the probabilistic
algorithm A.

We define the advantage for distinguishing the function g in time t as

Advprng
g (t) = max

A
{Advprng

g (A)},

where the maximum is taken over all testing algorithms of time complexity at
most t.

A function g is said to be a PRNG if Advprng
g (t) is negligible (for example

less than 2−40) for values of t strictly lower than a fixed threshold (for example
280 or 2128). The definition of a PRNG is therefore dependent upon thresholds
reflecting the current perception of an acceptably secure number generator.

Multiple-query distinguisher for a number generator: let us still consider
a function g from n bits to L bits. A q-query distinguisher in time t for g is a
probabilistic testing algorithm A which when input with a q-tuple of L-bit words
outputs either 0 or 1 with time complexity at most t. We define the advantage
of A for distinguishing g from a perfect random generator as

Advprng
g (A) =

∣∣Pr(A(g(x1), . . . , g(xq)) = 1)− Pr(A(y1, . . . , yq) = 1)
∣∣,

where the probabilities are taken over the q-tuples of n-bit values xi (resp. of
L-bit values yi) and on the random choices of the probabilistic algorithm A.
We also define the advantage for distinguishing the function g in time t with q
queries as

Advprng
g (t, q) = max

A
{Advprng

g (A)},

where the maximum is taken over all testing algorithms A having time-complexity
at most t and using q inputs.



Distinguisher for a function generator: let us now consider a function
generator, i.e. a family F = {fK} of {0, 1}n −→ {0, 1}m functions indexed by a
key K randomly chosen from {0, 1}k. A distinguisher in time t with q queries for
F is a probabilistic testing algorithm Af able to query an n-bit to m-bit oracle
function f up to q times. Such an algorithm allows to distinguish a randomly
chosen function fK of F from a perfect random function f∗ randomly chosen in
the set F ∗

n,m of all {0, 1}n −→ {0, 1}m functions with a distinguishing advantage

Advprf
F (A) =

∣∣Pr(AfK = 1)− Pr(Af∗ = 1)
∣∣,

where the probabilities are taken over K ∈ {0, 1}k (resp f∗ ∈ F ∗
n,m) and over the

random choices of A. We define the advantage for distinguishing the family F
in time t with q queries as

Advprf
F (t, q) = max

A
{Advprf

F (A)},

where the maximum is taken over all testing algorithms A working in time at
most t and capable to query an n-bit to m-bit oracle function up to q times.

A family of functions F = {fK} is said to be a PRF if Advprf
F (t, q) is

negligible for values of t and q strictly lower than the respective threshold (for
example 280 or 2128 for t and 240 for q).

3.2 Security Requirements for an IV-dependent Stream Ciphers

Let us consider an IV-dependent stream cipher, i.e. a family G = {gK}K∈{0,1}k

of IV to keystream functions gK : {0, 1}n 7−→ {0, 1}L, where k is the size of the
key, n is the size of the IVs and L is the maximum number of keystream bits
that can be produced for a given IV.

Such an IV-dependent stream cipher can be viewed as a special number
generator, allowing to expand a k-bit secret seed onto an exponentially long
sequence of 2n L-bit keystream words {ZIV = gK(IV )}IV ∈{0,1}n , with the ad-
ditional property that while this sequence is too long to be entirely accessed
in a sequential manner, it can be directly accessed, i.e. that for any value of
IV ∈ {0, 1}n the computational cost for accessing the L-bit subsequence ZIV is
constant.

{ZIV } =

L

Z0

L

Z1

L

ZIV

L

Z2n−1

Fig. 2. Exponentially long sequence with direct access associated to an IV-dependent
stream cipher g

This observation can be used in order to try to generalize the well accepted
formalization of the security requirements on an IV-less stream cipher by means



of a PRNG in a natural manner. An IV-less stream cipher is considered secure if
and only if no testing algorithm, when given access either to a Λ-bit output of the
generator corresponding to a random secret input or to a random Λ-bit sequence,
can distinguish both situations in time less than a sufficiently large threshold
(say 280) with a non-negligible advantage. It can be reasonably argued that in
the case of an IV-dependent stream cipher, the most natural generalization of
the above security definition is to require that no testing algorithm, when given
a sufficiently large number q (say for instance min(280, 2n)) of direct accesses to
L-bit subsequences of a sequence {ZIV } associated with a random unknown key
K or to a uniformly drawn sequence of 2n L-bit subsequences, can distinguish
both situations in time less than a sufficiently large threshold (say 280) with a
non-negligible advantage.

But it is easy to see that both the sequence {ZIV } and the uniformly drawn
sequence of 2n ·L bits can be viewed as n-bit to L-bit functions, and that direct
accesses to these sequences can be viewed as oracle queries to these functions.
Therefore the requirements formulated above are strictly equivalent to saying
that the function family G = {gK}K∈{0,1}k is a PRF.

In other words, we have given some evidence that an IV-dependent stream
cipher G = {gK} for K ∈ {0, 1}k with gK : {0, 1}n −→ {0, 1}L can be viewed as
a family of functions, and can be considered secure if and only if it is a PRF ,
i.e. sufficiently indistinguishable from a perfect random function.

Related key attacks, which relevance, when it comes to security requirements
on symmetric ciphers, is a controversial issue [4], are not covered by our security
model.

4 Security of the Generic Construction

4.1 A Simple Composition Theorem

In this Section, we define the composition G of a family of function F and a
function g, relate the indistinguishability of G to the one of F and g, and show
that this composition theorem results in a secure construction allowing to derive
a secure IV-dependent stream cipher from a PRF and a PRNG.

Definition 1. The composition G = g◦F of an n-bit to m-bit family of functions
F = {fK} and of an m-bit to L-bit function g is the n-bit to L-bit family of
functions

G = {g ◦ fK}.

Theorem 1. Let us consider a PRF F = {fK} where fK : {0, 1}n −→ {0, 1}m

and a PRNG g : {0, 1}m −→ {0, 1}L that produces L bits in time TL
g . The

advantage in time t with q queries of G = g ◦F = {g ◦fK} can be upper bounded
as follows

Advprf
G (t, q) ≤ Advprf

F (t + qTL
g ) + qAdvprng

g (t + qTL
g ).
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Fig. 3. Composing a PRF and a PRNG gives a PRF

In order to prove Theorem 1 we first establish a useful lemma which relates
the single-query and multiple-queries advantages of any PRNG.

Lemma 1. Let g : {0, 1}m −→ {0, 1}L be a PRNG which can be computed in
time TL

g . The q-query advantage for distinguishing g in time t is related to the
single-query advantage for distinguishing g by the inequality

Advprng
g (t, q) ≤ qAdvprng

g (t + qTL
g ).

A proof of the above lemma is given in Appendix 1; this proof is similar to
the one of a proposition relating the single-sample indistinguishability and the
multiple-sample indistinguishability of polynomial-time constructible ensembles
established by Goldreich and Krawczyk [14, 12]. Using this lemma, we can prove
Theorem 1. Our proof is given in Appendix 2. Theorem 1 is illustrated on the
left part of Figure 3.

Application to the security of IV-dependent stream ciphers. A direct
application of Theorem 1 is depicted on the right part of Figure 3. As said in
Section 3, an IV-dependent stream cipher can be considered secure if and only if
the IV to keystream function gK parametrized by the key is a PRF. Theorem 1
implies that this is indeed the case, i.e. that the stream cipher is secure if:
1) the n-bit to m-bit IV to initial state function parametrized by the key repre-
senting the IV setup of a stream cipher is a PRF;
2) the m-bit to L-bit initial state to keystream function is a PRNG;
3) the upper bounds on the advantage for distinguishing {gK} given by Theo-
rem 1 guarantee a sufficient resistance against attacks.

From now on, we consider the following stream cipher design problem. Let us
assume that a trusted number generator g allowing to expand an m-bit initial
state into an L-bit sequence is available. We are now faced with the issue of
constructing a key and IV setup PRF in order to compose this PRF with g to
get a secure IV-dependent stream cipher.



A straightforward construction for such a PRF, directly suggested by the
former security results, would consist of using a trusted block cipher with a
sufficient block-length to fit the initial state length m of g. As a matter of fact it
is usual to conjecture that the family of key dependent encryption permutations
associated with a secure block cipher represents both a pseudo-random family
of permutations (PRP) and a PRF. The value of m must be typically at least
160 bits in the frequent case where g has a finite state automaton structure, in
order to avoid generic time-memory trade-offs. This suggests that one could for
instance use the variant of Rijndael with a 256-bit block size, or a truncated
instance of this cipher if m is smaller than 256, or an appropriate “one to many
blocks” mode of operation of any block cipher [11] for initial state sizes larger
than 256 bits. This would allow to accommodate keys and IVs of size up to
one block. Such an approach can certainly be considered more conservative than
the key and IV setup procedure of many existing stream ciphers. On the other
hand, one may argue that it results in a strong performance penalty for the
encryption of short messages and an increased implementation complexity, and
in a lack of design unity if the trusted number generator g does not reuse the
same ingredients as the trusted block cipher.

5 A Tree Based Stream Cipher Construction

Is this Section we present a key and IV setup procedure derived from the Tree
Based Construction introduced by Goldreich, Goldwasser, and Micali in [13].
This construction allows to derive a PRF from a PRNG and to relate their
securities. Though initially introduced for theoretical purposes (namely show in
the asymptotic model that the existence of a PRNG implies the existence of a
PRF) it is also of practical interest since it allows, as shown here, to build a
stream cipher from two number generators: the Tree Based Construction is used
to transform the first number generator into an efficiently computable key and IV
setup; the second number generator is initialized with the value given by the key
and IV setup, and generates the keystream. These two number generators can
advantageously be the same. Thus it becomes possible to build an IV-dependent
stream cipher from one single number generator.

5.1 The Tree Based Construction

The Tree Based Construction allows to derive a PRF F g from a PRNG g. Let us
consider a PRNG g : {0, 1}m −→ {0, 1}L where L ≥ 2m and let us denote the L
bit image of y ∈ {0, 1}m by g(y) = z0z1 . . . zL−1. We derive from g two functions
g0 : y ∈ {0, 1}m 7−→ z0, . . . , zm−1 and g1 : y ∈ {0, 1}m 7−→ zm, . . . , z2m−1 from
m bits to m bits which on input y ∈ {0, 1}m respectively produce the first and
the second m-bit string generated by g when input with y.

The PRF F g is the family of functions {fy}y∈{0,1}m where

fy : {0, 1}n −→ {0, 1}m

(x1, x2, . . . , xn) 7−→ fy(x1, x2, . . . , xn) = gxn ◦ gxn−1 . . . ◦ gx1(y)



This construction is illustrated on Figure 4: the input bits determine a path
trough the binary tree leading to the output of the function.

y

g

g0(y) g1(y)

y (m bits)
g

0 1x1

g g

0 1x2

g g

0 1x3

g g
. . .

g g

0 1xn−1

g g

0 1xn

fg
y (x) (m bits)

Fig. 4. Tree Based Construction

Theorem 2. Let g : {0, 1}m −→ {0, 1}L be a PRNG which generates L ≥
2m outputs bits and produces its 2m first output bits in time T 2m

g and let
F g = {fy}y∈{0,1}m be the family of n-bit to m-bit functions derived from g
by the Tree Based Construction. The (t, q) advantage of PRF F g is related to
the single-query advantage of PRNG g by the following inequality:

Advprf
F g (t, q) ≤ nqAdvprng

g (t + q(n + 1)T 2m
g ).

A proof of Theorem 2 is given in Appendix 3. This proof is essentially the
same as the security proof of the Tree Based Construction due to Goldreich,
Goldwasser, and Micali[13], a detailed version of which is given by Goldreich in
[12], up to the fact that we consider the concrete security model instead of the
asymptotic (polynomial time indistinguishability) security model.

5.2 Resulting Stream Cipher Construction

To build an IV-dependent stream cipher from a m-bit to L-bit PRNG g repre-
senting an IV-less stream cipher, we apply the Tree Based Construction to a m
to L′-bit PRNG g′ (L′ ≥ 2m) typically equal to g itself, in order to derive the
key and IV setup function, which produces the initial state of g, following the
construction of Figure 4. For a key K and an IV IV , the value fg′

K (IV ) is the
initial state of g. Thanks to Theorem 1 and since the Tree Based Construction
provides a PRF, the resulting stream cipher is also a PRF. The security of the
final stream cipher only depends on the security of the PRNG.



In case K is smaller than m bits, we need to extend K to a value randomly
chosen in {0, 1}m. In order to achieve this we can use an additional PRNG
h : {0, 1}k −→ {0, 1}m. The proof for the Tree Based Construction can easily be
extended and we have:

Advprf
F g (t, q) ≤ nqAdvprng

g′ (t + q(n + 1)T 2m
g′ ) + qAdvprng

h (t + q(n + 1)Tm
h ).

Theorem 3. Let g : {0, 1}m −→ {0, 1}L be a PRNG which generates L outputs
bits in time TL

g and g′ : {0, 1}m −→ {0, 1}2m be a PRNG. We can define a
stream cipher G = {GK} = g ◦ F g′ , where F g′ is derived from g′ using the Tree
Based Construction

GK(IV ) = g ◦ fg′

K (IV )

Moreover G is a PRF and we have:

Advprf
G (t, q) ≤ nqAdvprng

g′ (t + qTL
g + q(n + 1)T 2m

g′ ) + qAdvprng
g (t + qTL

g )

If g and g′ are equal, then we have

Advprf
G (t, q) ≤ q(n + 1)Advprng

g (t + q(n + 2)TL
g )

Proof. To prove this result we only have to use Theorem 1 and Theorem 2.

The above key and IV setup construction is of practical interest: suppose we
have a trusted PRNG, for example the Shrinking Generator [7], we can build
an IV-dependent stream cipher based on this PRNG without introducing any
additional feature for a moderate computational cost.

5.3 Efficiency Considerations

Let us assume for instance that we want to build from a PRNG g of initial
state length 160 bits a stream cipher with a 160-bit key, a 80-bit IV, and a
target security of 280, using the previously described construction. Then the time
required to compute the key and IV setup with the above construction is the time
required by g to produce 3200 bytes. Considering a very fast PRNG, running at
5 cycles per byte, the key and IV setup requires about 16000 cycles on a standard
PC. This is slower than using a block cipher like AES, which would require about
1000 cycles. Therefore for software applications where resynchronization has to
be done frequently, this construction is not at all efficient and using a block
cipher for the key and IV setup should be considered. However for applications
where the keystream generated for a single IV is very long compared to these
3200 bytes our construction can be competitive.

Now in the case of hardware applications, the above construction can be of
real interest, in order to minimize the hardware complexity since it uses a single
PRNG for the key and IV setup and the keystream generation. Then only a
few additional gates are required to implement the key and IV setup. If a block
cipher were used instead, then the total number of gates required to implement
the stream cipher would be much higher than the number of gates required for
a PRNG.



6 Application to the quad Stream Cipher

The stream cipher quad is a practical stream cipher with some provable security
which was introduced [3] by Berbain, Gilbert, and Patarin at Eurocrypt 2006.
The provable security argument relates, in the GF (2) case, the indistinguishabil-
ity of the keystream generated by quad to the conjectured hardness of solving
random quadratic systems. quad iterates a one way function, namely a quadratic
system, upon an internal state and extracts a certain number of bits of this step
at each iteration.

The keystream generation makes use of two systems Sin = (Q1, . . . , Qm)
and Sout = (Qm+1, . . . , Qkm) of multivariate quadratic equations both sharing
the same m unknowns over GF(q), typically GF (2) as described on Fig. 5. The
first system Sin is used to update the internal state and thus contains m equa-
tions, whereas the second system Sout produces the keystream and contains
(k − 1)m equations. As explained in [3], the quadratic systems Sin and Sout,
though randomly generated, are both publicly known.

x

Sin(x) Sout(x)

Fig. 5. Stream cipher quad

Given an internal state x = (x1, . . . , xm), the keystream generation amounts
to iterating the following steps:

– compute
(
Sin(x), Sout(x)

)
=

(
Q1(x), . . . , Qkm(x)

)
, from the internal state x;

– output the sequence Sout(x) =
(
Qm+1(x), . . . , Qkm(x)

)
of (k−1)m keystream

elements of GF(q);
– update the internal state x with the sequence Sin(x) =

(
Q1(x), . . . , Qm(x)

)
.

Before generating any keystream the internal state x needs to be initialized,
with the key K and the initialization vector IV , which are respectively repre-
sented by a sequence of GF (q) elements of length |K| and a binary sequence of
{0, 1} values of length |IV |. We will assume in the sequel that |K| is equal to
m. The initialization is done as follows: two publicly known chosen multivariate
quadratic systems S0 and S1 of m equations over m unknowns are used. The
initial state is filled with the key. Then for each of the |IV | bits IV1 to IV|IV | of
the IV value the internal state x is updated as follows: if IVi = 0, x is replaced



by the GF (q)m value S0(x); if IVi = 1, x is replaced by the GF (q)m value S1(x).
Finally the cipher is clocked m additional times as described before, but without
outputting the keystream.

We now extend the partial proof over GF(2) given in [3] to incorporate the
key and IV Setup. We denote by S = (Sin||Sout) the randomly chosen system of
km equations on m variables and S′ = (S0||S1) the randomly chosen system of
2m equations in m variables. We also denote by gS : {0, 1}m −→ {0, 1}L and
gS′

: {0, 1}m −→ {0, 1}2m the corresponding PRNGs.
The key and IV setup proposed in [3] can be divided into two parts: in the first

part the Tree Based Construction for gS′
is applied and the value y = fgS′

K (IV )
is computed. Then in the second part, y is used to initialize gS which is clocked
m times but the corresponding (k − 1)m2 bits of keystream are not used. The
value of the internal state after these m clocks is used to produce L bits of
keystream. The security of the first part is related to the security of gS′

thanks
to Theorem 2.

Advprf

F gS′ (t, q) ≤ 2qAdvprng

gS′ (t + q(n + 2)T 2m
gS′ )

The security of the PRNG greal which starts by running m clocks like gS

without producing any keystream to reflect the runup of quad and then pro-
duces L bits of keystream as gS does, is related to the security of generator
g̃S : {0, 1}m −→ {0, 1}L+(k−1)m2

which iterates S to produce L + (k − 1)m2

bits, since greal produces the same keystream as g̃S up to the fact that the first
(k − 1)m2 bits of gS′

are discarded. Consequently a distinguisher on greal is
also a distinguisher for g̃S . Thus the advantage of greal is upper-bounded by the
advantage of g̃S .

Advprng
greal

(t) ≤ Advprng
g̃S (t + T

L+(k−1)m2

g̃S )

Finally the security of the stream cipher is related to the securities of g̃S and
of gS′

by the composition theorem of Section 4.

Advprf
quad(t, q) ≤ 2qAdvprng

gS′ (t+q(n+3)TL
gS′ )+qAdvprng

g̃S (t+qTL
g̃S +T

L+(k−1)m2

g̃S )

Those two generators are based on the iteration of a randomly chosen quadratic
system of km equations in m variables (with k = 2 for S′). We can use the main
result of [3], which relates the security of this kind of PRNG to the difficulty of
inverting a randomly chosen multivariate quadratic system to say that the secu-
rity of quad as a stream cipher is related to the difficulty of the MQ Problem,
i.e. an adversary able to distinguish quad from a PRF in time t with q queries
is then able to construct a MQ solver:

Advprf
quad(t, q) ≤ 3qAdvprng

gS (t + qT
L+(k−1)m2

g̃S )

≤ AdvMQinversion(t′[t + qT
L+(k−1)m2

g̃S ]),

where t′[t + qT
L+(k−1)m2

g̃S ] is the running time of the MQ inverter algorithm
given by the main reduction theorem of [3], which is recalled in Appendix.



7 Conclusion

In this paper we investigated security issues arising for IV-dependent stream
ciphers. We confirmed the ”folklore” belief that the composition of a key and IV
setup PRF and a key generation PRNG provides a secure stream cipher, which
furnishes a proof that initializing a PRNG with a block cipher is secure provided
that the block cipher’s block length is sufficiently large. Moreover we described a
practical construction that allows to derive an IV-dependent stream cipher from
a PRNG (or equivalently an IV-less stream cipher) for a moderate additional
cost. This construction is quite simple and does not require additional compo-
nents. Finally we showed an application of this provably secure construction to
the stream cipher quad, by incorporating the key and IV setup in the security
proof given by the authors of quad. The resulting extended proof relates the
security of the whole stream cipher (not only the keystream generation part) to
the conjectured intractability of the MQ problem.
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Appendix

Proof of Lemma 1

Lemma 1. Let us consider a PRNG g : {0, 1}m −→ {0, 1}L which can be
computed in time TL

g . Then we have

Advprng
g (t, q) ≤ qAdvprng

g (t + qTL
g ).

Proof. Suppose there is an algorithm A that distinguishes q L-bit keystream
sequence produced by g from q unknown randomly chosen initial internal state
xi ∈ {0, 1}m from q random L-bit sequences in time t with advantage ε. Then
we are going to build an algorithm B that distinguishes g(x) corresponding to
an unknown random input x, from a random value of size L in time t′ = t+ qTL

g

with advantage ε
q .

We introduce the hybrid probability distributions Di over {0, 1}L for any
0 ≤ i ≤ q respectively associated with the random variables

Zi = (g(x1), g(x2), . . . , g(xi), ri+1, . . . , rq)

where the rj and xi are random independent uniformly distributed values of
{0, 1}L and {0, 1}m respectively. Consequently Dq is the distribution of the q



L-bit keystream produced by g and D0 is the distribution of q L-bit uniformly
distributed values of {0, 1}L.

We denote by pi the probability that A accepts a random qL-bit sequence
distributed according to Di.

We have supposed that algorithm A distinguishes between D0 and Dq with
advantage ε, in other words that |p0 − pq| ≥ ε.

Algorithm B works as follows : on input y ∈ {0, 1}L it selects randomly an i
such that 1 ≤ i ≤ q and constructs the vector

Z(y) = (g(x1), g(x2), . . . , g(xi−1), y, ri+1, ri+2, . . . , rq)

with xi and ri randomly chosen values. If y is distributed accordingly to the
output distribution of g, i.e. y = g(x) for a uniformly distributed value of x,
then

Z(y) = (g(x1), g(x2), . . . , g(xi−1), g(x), ri+1, ri+2, . . . , rq)

is distributed according to Di. Now if y is distributed according to the uniform
distribution, then

Z(y) = (g(x1), g(x2), . . . , g(xi−1), y, ri+1, ri+2, . . . , rq).

Thus Z(y) is distributed according to Di−1. In order to distinguish the output
distribution of g from the uniform law, algorithm B calls algorithm A with inputs
Z(y) and returns the value returned by A. Thus∣∣Prx(B(g(x)) = 1)− Pry(B(y) = 1)

∣∣
=

∣∣1
q

q−1∑
i=0

pi − 1
q

q∑
i=1

pi
∣∣ =

1
q
|p0 − pq| ≥ ε

q
.

Thus B distinguishes the output distribution of g from the uniform distribution
with probability at least ε

q in time t + qTL
g . Consequently we have:

Advprng
g (A) = qAdvprng

g (B)

≤ qAdvprng
g (t + qTL

g )

which gives us the final result:

Advprng
g (t, q) ≤ qAdvprng

g (t + qTL
g ).

Proof of Theorem 1

Theorem 1. Let us consider F = {fK} where fK : {0, 1}n −→ {0, 1}m a PRF
and g : {0, 1}m −→ {0, 1}L a PRNG that produces L bits in time TL

g . The
advantage in time t with q queries of G = g ◦ F = {g ◦ fK} can be upper
bounded as follows

Advprf
G (t, q) ≤ Advprf

F (t + qTL
g ) + qAdvprng

g (t + qTL
g ).



Proof. We want to upper bound the advantage of an algorithm A that in time t
with q requests distinguishes a random instance gK = g ◦ fK of G = g ◦ F from
a perfect random function g∗ ∈ F ∗

n,L. We can write the advantage of A as

Advprf
G (A) =

∣∣Pr(AgK = 1)− Pr(Ag∗ = 1))
∣∣.

A is making at most q distinct queries to an oracle function instantiated by
gK , resp. g∗. In order to upper bound Advprf

G (A), we consider the intermediate
situation where the oracle function is neither gk nor g∗, but a random instance
g ◦ f∗ of the composition of a perfect random function f∗ ∈ F ∗

n,m and g. Due to
the triangular inequality, we have

Advprf
G (A) ≤

∣∣Pr(AgK = 1)− Pr(Ag◦f∗ = 1)
∣∣

+
∣∣Pr(Ag◦f∗ = 1)− Pr(Ag∗ = 1)

∣∣.
We denote the first and the second absolute values of the right expression by

δ1 and δ2.
Let us first upper bound δ2. It is easy to see that instantiating the oracle

function of A with g ◦ f∗ (resp. g∗) amounts to answering the up to q distinct
oracle queries of A with a q-tuple (g(y1), . . . , g(yq)) of L-bit values, where the
q-tuple (y1, . . . , yq) is a randomly drawn from {0, 1}mq, resp. with a q-tuple
(z1, . . . , zq) of answers randomly drawn from {0, 1}Lq. In both case, the q-tuple
of oracle answers is independent of the up to q distinct values of the oracle
queries. Using this fact we can derive an algorithm B that distinguishes q val-
ues (g(x1), . . . , g(xq)) from q random values of {0, 1}L. Algorithm B works as
follows: on input (y1, . . . , yq) it runs algorithm A. Consequently it has to answer
A’s n-bit oracle queries xi with L-bit responses. On each distinct query xi, B
simply answers yi. When A halts, B halts also and returns the output of A.
We can easily see that Pr(B(g(x1), . . . g(xq)) = 1) = Pr(Ag◦f∗ = 1) and that
Pr(B(y1, . . . yq) = 1) = Pr(Ag∗ = 1). Consequently we have

δ2 = Advprng
g (B) ≤ Advprng

g (t, q).

Lemma 1 now provides:

δ2 ≤ qAdvprng
g (t + qTL

g ).

In order to upper-bound Advprf
G (A) we still have to upper bound δ1. This can

be done by deriving from algorithm A an algorithm C that is able by invoking A
one single time to distinguish a random instance of the n-bit to m-bit PRF F
from a perfect random function f∗ ∈ F ∗

n,m with an advantage also equal to δ1.
Algorithm C has access to an n-bit to m-bit oracle function f . C works

as follows: first it invokes algorithm A. Consequently it has to answer A’s n-
bit oracle queries xi with L-bit responses. For such a query, C queries its own
oracle function f with the same query value xi, gets an m-bit answer yi =
f(xi), computes the L-bit value g(yi), and answers this value to algorithm A.
When A halts, C halts as well and outputs the same output as A. Therefore



we have Pr(CfK = 1) = Pr(Ag◦fK = 1) = Pr(AgK = 1) and Pr(Cf∗ = 1) =
Pr(Ag◦f∗ = 1). This implies that

∣∣Pr(CfK = 1) − Pr(Cf∗ = 1)
∣∣ is equal to∣∣Pr(AgK = 1)− Pr(Ag◦f∗ = 1)

∣∣, i.e.

Advprf
F (C) = δ1.

Furthermore the time required for algorithm C is equal to the time required
for algorithm A plus q times the time of computing g. Therefore Advprf

F (C) is
upper-bounded by Advprf

F (t + qTL
g , q), i.e. δ1 ≤ Advprf

F (t + qTL
g , q). Finally we

have for any A

Advprf
G (A) ≤ δ1 + δ2 ≤ Advprf

F (t + qTL
g , q) + qAdvprng

g (t + qTL
g ).

Consequently

Advprf
G (t, q) ≤ Advprf

F (t + qTL
g , q) + qAdvprng

g (t + qTL
g ).ut

Proof of Theorem 2

Theorem 2. Let g : {0, 1}m −→ {0, 1}L be a PRNG which generates L ≥ 2m
outputs bits and produces its 2m first output bits in time T 2m

g and let F g =
{fy}y∈{0,1}m be the family of n-bit to m-bit functions derived from g by the
Tree Based Construction. The (t, q) advantage of PRF F g is related to the
single-query advantage of PRNG g by the following inequality:

Advprf
F g (t, q) ≤ nqAdvprng

g (t + q(n + 1)T 2m
g ).

Proof. First we define, for 0 ≤ i ≤ n, a family F g
i of {0, 1}n −→ {0, 1}m func-

tions; each F g
i can be viewed as an intermediate PRF between F g and the set

F ∗
n,m of perfect random n-bits to m-bit functions.

– F g
0 = {fg

y0
}y0∈{0,1}n where fg

y0
: (x1, . . . , xn) 7−→ gxn

◦ . . . ◦ gx1(y0).

– F g
1 = {fg

y0,y1
}(y0,y1)∈{0,1}2n

where fg
y0,y1

: (x1, . . . , xn) 7−→ gxn
◦ . . . ◦ gx2(yx1).

– F g
i = {fg

y0,y1,...,y2i−1
}y0,y1,...,y2i−1∈{0,1}2in

where fg
y0,...,y2i−1

: (x1, . . . , xn) 7−→ gxn ◦ . . . ◦ gxi+1(yx1...xi)
(in the former expression yx1,...xi represents yPi

t=1 xi2i−1)

– F g
n = {fg

y0,y1,...,y2n−1
}y0,y1,...,y2n−1∈{0,1}2n

where fg
y0,...,y2n−1

: (x1, . . . , xn) 7−→ (yx1...xn
).

It is easy to see that F g
0 is equal to F g, and that F g

n is the set F ∗
n,m of all

n-bit to m-bit functions.



Let us consider any (t, q) distinguishing algorithm A for F g, i.e. a testing
algorithm capable to query an n-bit to m-bit oracle function up to q times, and
let us denote its distinguishing probability by

ε =
∣∣Prf∈F g (Af = 1)− Prf∈F∗

n,m
(Af = 1)

∣∣.
We denote Prf∈F g

i
(Af = 1) by pi. Thus we have

ε = |p0 − pn|.

We now construct a q-query distinguisher B for g, which when input with a
q-tuple (z1, . . . , zq) of 2m-bit words is using one invocation of algorithm A to
output either 0 or 1. In order to processes an input q-tuple (z1, . . . , zq), B first
randomly draws an integer i comprised between 0 and n − 1, and then inputs
(z1, zq) to a testing algorithm Bi, and outputs Bi’s binary output. Each testing
algorithm Bi is defined as follows: Bi invokes algorithm A, and computes the
answers to the up to q distinct n-bit oracle queries of A. For that purpose, Bi

uses its random generation capability to simulate an auxiliary random function
α : {0, 1}i −→ {1, q} that is initially undetermined. At each novel n bit oracle
query xj = (xj

1, . . . , x
j
n) of A, algorithm Bi uses:

– the bits xj
1 to xj

i to determine a 2m-bit value zk as follows: Bi first checks
if α is defined on point (xj

1, . . . , x
j
i ). If not, it selects randomly a value in

{1, q}, affects it to α(xj
1, . . . x

j
i ) and stores the new point of α. Otherwise Bi

simply read the previously stored value. In both case, we denote by k the
obtained value of α(xj

1, . . . x
j
i ); k is used to select the k-th input zk from Bi’s

input (z1, . . . , zq);
– the bit xj

i+1 to select an m-bit word y equal to the substring of the m left
bits of zk if xj

i+1 = 0, and of the m right bits of zk if xj
i+1 = 1;

– the bits xj
i+2 to xj

n to compute As L-bit oracle response gxj
n
◦ . . . ◦ gxj

i+2
(y).

Finally when A halts, Bi halts also and returns A’s binary output.
It is not too difficult to see that:

– if Bi’s input is (g(a1), . . . , g(aq)), where (a1, . . . , aq) is a randomly drawn
q-tuple of m-bit, then A’s oracle queries and response pairs have exactly the
same probability distribution as if A were run with an n-bit to m-bit oracle
function f randomly drawn from the family F g

i :

Pr(Bi((g(a1), . . . , g(aq)) = 1) = Prf∈F g
i
(Af = 1) = pi.

– if Bi’s input is is a randomly drawn q-tuple (z1, . . . , zq) of 2m-bit values,
then A’s oracle queries and response pairs have exactly the same probability
distribution as if A was run with an n-bit to m-bit oracle function f randomly
drawn from the family F g

i+1:

Pr(Bi(z1, . . . , zq) = 1) = Prf∈F g
i+1

= (Af = 1) = pi+1.



The above equalities imply:∣∣Pr(B((g(a1), . . . , g(aq)) = 1)− Pr(B(z1, . . . , zq) = 1)
∣∣

=
∣∣ 1
n

n−1∑
i=0

pi −
1
n

n∑
i=1

pi

∣∣ =
1
n
|p0 − pn| =

ε

n
.

In other words:
Advprng

g (B) =
1
n
Advprf

F g (A).

However, algorithm B requires at most t+qnT 2m
g , where t is the time required

by A and T 2m
g′ is the time required by g′ to produce 2m bits. Therefore for any

A we have
Advprf

F g (A) ≤ nAdvprng
g (t + qnT 2m

g , q).

Finally, since Advprng
g (t + qnT 2m

g , q) ≤ qAdvprng
g (t + q(n + 1)T 2m

g ) due to
Lemma 1, we obtain

Advprf
F g (t, q) ≤ qnAdvprng

g (t + q(n + 1)T 2m
g ).ut

Main Reduction Theorem of [3]

Theorem 4. Let L = λ(k− 1)n be the number of keystream bits produced by in
time λTS using λ iterations of our construction. Suppose there exists an algo-
rithm A that distinguishes the L-bit keystream sequence associated with a known
randomly chosen system S and an unknown randomly chosen initial internal
state x ∈ {0, 1}n from a random L-bit sequence in time T with advantage ε.
Then there exists an algorithm C, which given the image S(x) of a randomly
chosen (unknown) n-bit value x by a randomly chosen n-bit to m-bit quadratic
system S produces a preimage of S(x) with probability at least ε

23λ over all pos-
sible values of x and S in time upper bounded by T ′.

T ′ =
27n2λ2

ε2

(
T + (λ + 2)TS + log

(
27nλ2

ε2

)
+ 2

)
+

27nλ2

ε2
TS


