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Abstract. We consider the security of compression functions built by combining
smaller perfectly secure compression functions modeled as fixed input length
random oracles. We give tight security bounds and generic attacks for various
parameters of these constructions and apply our results to recent proposals of
block cipher-based hash functions.
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1 Introduction

Cryptographic hash functions are fundamental primitives in information security [17]
used in a variety of applications such as message integrity, authentication schemes or
digital signatures. Mathematically speaking, it is a function from {0,1}∗, the set of all
finite length bit strings, to {0,1}l where l is the fixed size of the hash value. Ideally, a
cryptographic hash function should possess the following properties:

– collision resistance: finding a pair x 6= x′ ∈ {0,1}∗ such that H(x) = H(x′) should
require 2l/2 operations

– 2nd preimage resistance: for a given x ∈ {0,1}∗, finding a x′ 6= x such that H(x) =
H(x′) should require 2l operations

– preimage resistance: for a given y∈ {0,1}l , finding a x∈ {0,1}∗ such that H(x) = y
should require 2l operations.

All currently used hash functions are so-called iterated hash functions which are de-
signed by iterating a compression function with a fixed-length input, say h : {0,1}l+l′→
{0,1}l . The iterated hash function H is then defined thanks to domain extension meth-
ods. The most popular one is the Merkle-Damgård method [5,18] which consists in
first padding the input x so that the length of the padded message is a multiple of l′

and outputing, for a padded message consisting of m l′-bit blocks Pad(x) = x1‖ . . .‖xm,
the value ym defined by the recurrence yi = h(xi‖yi−1), where y0 is a fixed constant of
{0,1}l . The yi’s are called chaining variables. The popularity of the MD method comes
from the fact that the hash function obtained is at least as resistant to collision attacks



as the compression function. However, recent results have highlighted the intrinsic lim-
itations of the MD approach [8,9] and motivated the study of other domain extension
methods [1,4].

Most popular hash functions (e.g. MD5, SHA1) make use of compression func-
tions build “from scratch”, not appealing to any lower-level primitive. Another direc-
tion of research consists in trying to turn a block cipher into a compression function.
This approach has been revived by the recent attacks on hash function using compres-
sion functions of dedicated design [28,27]. The question of how to turn a block cipher
into a single block length (SBL) compression function (i.e. whose output length is the
same as the block length of the block cipher) can be more or less considered as closed
since the systematic study of Preneel et al. [23] and Black et al. [2]. However, the block
length of the most trusted and standardized block ciphers such as DES and AES is
too short to prevent collision attacks by the birthday paradox on SBL hash functions
based on them. This is why there has been much effort in order to build a double block
length (DBL) or more generally a multiple block length (MBL) compression function
whose output is twice (or more) the block length of the block cipher. Most of the earlier
proposals [3,15,16,22,24] turned out to have weaknesses [10,15]. Proofs of security for
block cipher-based hash functions date back to Winternitz [29], who used the ideal ci-
pher model of Shannon [25] to prove the security of the Davies-Meyer scheme against
preimage attacks. Black et al. [2] used the same paradigm to study all the natural ways
of building SBL compression functions, a work which had been initiated in [23]. Hi-
rose [6,7] demonstrated the security of a family of DBL compression functions using
two independent block ciphers with key length twice the block length, again in the
ideal block cipher model. However, no secure DBL scheme using block ciphers with
key length equal to the block length has been proposed so far. Nandi et al. [20] pro-
posed DBL schemes with better rates than those of Hirose and claimed to have proved
that an adversary must make Ω(22n/3) oracle queries to get a collision and Ω(24n/3) or-
acle queries to get a preimage. However, in light of the attacks presented in [11] (where
a preimage attack requiring only O(2n) queries is described), we spotted a mistake in
the security proof of [20]. One of the goal of this paper is to remedy the strategy they
adopted.

At Asiacrypt ’06 [21], Peyrin et al. presented a general framework to analyse how
to combine secure compression functions in order to obtain compression functions with
longer output. This approach had already been adopted in a series of papers [12,13,14]
where partial answers were given thanks to error-correcting codes theory. Analysing
two types of generic attacks, Peyrin et al. derived necessary conditions for the com-
pression functions of their framework to be secure. Nevertheless, no security proofs
were given. The aim of this paper is to analyse the constructions of the general frame-
work introduced in [21] in a proof oriented manner. Though we will work in the fixed
input length (FIL) random oracle model, this must be understood as a first step in the
systematic study of MBL compression functions based on block ciphers.

The paper is organized as follows. In section 2 we establish the notations and some
useful lemmas. In section 3 and 4 we carry out the security analysis for preimage resis-
tance and collision resistance respectively. In section 5 we apply our results to previous



proposals of block cipher-based hash functions and we draw our conclusions and pro-
pose future work in section 6.

2 Definitions and Notations

Basic Notations. In all the following, In will denote the set {0,1}n, and F (a,b) the
set of all functions from {0,1}a to {0,1}b. We will often consider vectors of elements
of In of various length which will be denoted by bold letters. For a binary vector l =
(l1, . . . , lr) ∈ {0,1}r and X = (X1, . . . ,Xr) ∈ (In)r, X · lT = l1X1⊕·· ·⊕ lrXr. Similarly,
for a binary matrix L = [lT

1 , . . . , lT
s ] ∈Mr,s({0,1}), X ·L is the vector (X · lT

1 , . . . ,X · lT
s ).

Given two vectors X = (X1, . . . ,Xr) and Y = (Y1, . . . ,Ys), X‖Y will denote the vector
(X1, . . . ,Xr,Y1, . . . ,Ys). Finally, ‖·‖H will denote the Hamming weight of a vector and E
the expected value of a random variable.

Generic Constructions. The aim of this paper is to analyse the security of a very gen-
eral class of compression functions build from smaller secure compression functions.
Namely, our building blocks will be t compression functions f (1), . . . , f (t) taking each
k n-bit blocks as input and outputing one n-bit block. For the security analysis, we will
assume that these functions are independent random oracles. The larger compression
function will take as input m n-bit message blocks and c n-bit chaining variable blocks,
which will be denoted respectively M = (M1, . . . ,Mm) and H = (H1, . . . ,Hc). These
blocks will be named external input blocks to distinguish them from the t ∗ k input
blocks to the inner compression functions, which will be named internal input blocks.
They are obtained as linear combinations of the external input blocks. Namely, for each
i ∈ [1..t], there is a binary matrix Ai ∈M(m+c,k)({0,1}) such that the input to the i-th
internal compression function is M‖H ·Ai.
The output blocks of the internal compression functions

F = ( f (1)(M‖H ·A1), . . . , f (t)(M‖H ·At))

are then mixed by a linear output layer B ∈M(t,c)({0,1}) to give the external output
blocks H ′= (H ′1, . . . ,H

′
c) according to H ′= F ·B . In all the following, it will be assumed

that B has full rank (otherwise the external output blocks are linearly dependent, which
is clearly undesirable).
A compression function construction h is thus completely determined by the parameters
(c, t,k,m) and the input and output layers (Ai)i∈[1..t] and B . The compression function
obtained once the internal compression functions f (1), . . . , f (t) are instantiated will be
noted h( f (1),..., f (t)). The construction can be summarized by the formula (see also Fig. 1)

h( f (1),..., f (t))(M‖H) =
(

f (1)(M‖H ·A1), . . . , f (t)(M‖H ·At)
)
·B. (1)

A more general framework could encompass a feedforward of the external input blocks,
i.e. allowing to xor some external input blocks with some internal output blocks. Though
it would definitely be useful in the ideal block cipher model, we do not believe this
would strengthen in any way the constructions in the random oracle model, and thus we
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Fig. 1. The compression function h taking (m+c) n-bit blocks in input and delivering c n-bit out-
put blocks. It is build from t compression functions f (i) taking k n-bit input blocks and outputing
one n-bit block.

consider this feature as out of the scope of the article.
In the following, we will often consider linear combinations of the coordinates of the
function h. For this, we will use the following notations. For x ∈ {0,1}c, Gx will be the
function

Gx : M‖H 7→ h( f (1),..., f (t))(M‖H) · xT .

Alternatively, Gx may be seen as a linear combination of the t functions M‖H 7→
f (i)(M‖H ·Ai). Indeed, writing y = x ·BT ∈ {0,1}t , one has

Gx(M‖H) = ( f (1)(M‖H ·A1), . . . , f (t)(M‖H ·At)) · yT .

It will often be more convenient to define the set Sx of “active” inner compression
functions, i.e. the set of integers j ∈ [1..c] such that the j-th coordinate of x ·BT is 1.
Then Gx can be expressed by

Gx(M‖H) =
⊕
j∈Sx

f ( j)(M‖H ·A j).

Security Model. In the following we will analyse the resistance of the compression
functions we just described against preimage attacks and collision attacks. An adver-
sary will be an algorithm with access to oracles for the inner compression functions



f (1), . . . , f (t). Given a finite set S, s $←− S denotes the operation of selecting s in the prob-
ability space S endowed with the uniform distribution. We will work in the random
oracle model, meaning that the inner compression functions are uniformly and inde-
pendently selected in the set F (kn,n). When these functions are asked queries from an
algorithm, their output is uniform and independent from all other outputs, but consis-
tent with answers to queries already asked. We now define the preimage and collision
resistance of the compression function constructions.

Definition 1 (Preimage resistance of a compression function). Let h be a (c, t,k,m)-
compression function construction and let A be an adversary. Then the advantage of A
in finding a preimage for h is the real number

Advpre
h (A) = Pr

[
( f (1), . . . , f (t)) $←− F (kn,n)t ;H ′ $←− (In)c;

M‖H $←− A(H ′) : h( f (1),..., f (t))(M‖H) = H ′
]
.

We associate to each compression function construction h the insecurity measure

Advpre
h (q) = max

A
{Advpre

h (A)}

where the maximum is taken over all adversaries making at most q oracle queries to
each inner compression function f (1), . . . , f (t).

Definition 2 (Collision resistance of a compression function). Let h be a (c, t,k,m)-
compression function construction and let A be an adversary. Then the advantage of A
in finding a collision for h is the real number

Advcoll
h (A) = Pr

[
( f (1), . . . , f (t)) $←− F (kn,n)t ;(M1‖H1,M2‖H2)

$←− A :

M1‖H1 6= M2‖H2∧h( f (1),..., f (t))(M1‖H1) = h( f (1),..., f (t))(M2‖H2)
]
.

We associate to each compression function construction h the insecurity measure

Advcoll
h (q) = max

A
{Advcoll

h (A)}

where the maximum is taken over all adversaries making at most q oracle queries to
each inner compression function f (1), . . . , f (t).

For the remainder of this paper we will make the following classical assumptions re-
garding the adversaries. First, they are computationally unbounded, in consequence of
what we can restrain ourselves wlog to deterministic adversaries (so that we do not have
to take into account any more the randomness coming from the random choices of the
algorithm). Second, an adversary does not make the same oracle query more than once.
Third, we will restrain ourselves to adversaries making exactly q queries to each inner
compression function. These assumptions does not restrict the generality of the analysis
in that for any adversary A asking at most q queries there exists another adversary A′

verifying the assumptions that achieves at least the same advantage as A.



Type I Constructions. A natural requirement for the compression functions studied
here would be that the image of two distinct inputs by any linear combination of the
output blocks are independent. This is generally not the case, and compressions func-
tions which does not possess this property are subject to devastating attack called DF
attacks (degrees of freedom) in [21]. This feature is achieved by letting every external
output block depend on all external input block, no matter which invertible transforma-
tions of the external inputs and outputs are used. Expressing it mathematically yields
the following definition.

Definition 3 (Type I (for Independent) compression function construction). A (c, t,k,m)-
compression function construction will be said to be of type I iff for all x∈ {0,1}c \{0},⋂

j∈Sx kerA j = {0}.

For such constructions, one can prove the following property (the proof is given in
Appendix A).

Lemma 1. Let h be a (c, t,k,m) compression function construction of type I. Then for
all x∈{0,1}c\{0}, and for all distinct M1‖H1 and M2‖H2, Gx(M1‖H1) and Gx(M2‖H2)
are uniformly random and independent.

Not all parameter sets permit to build type I compression function constructions. More
precisely, one has the following necessary condition, which was proved in [21].

Lemma 2 ([21]). Let h be a (c, t,k,m) compression function construction of type I.
Then necessarily ∀x ∈ {0,1}c \ {0}, ‖x ·BT‖H ≥ m+c

k . In other words, B must have
minimal distance at least dm+c

k e.

Computable Inputs. In order to make our explanations more rigorous, we will need the
following notions of computability, which are generalizations of concepts introduced
in [20]. Informally speaking, once an adversary has made certain queries to the inner
compression functions, we want to define for each M‖H the number of coordinates of
h(M‖H) the adversary is able to compute.

Definition 4 (Gx-computable input). Let Q1, . . . ,Qt ⊂ (In)k be sets of queries to each
of the inner compression functions. For x ∈ {0,1}c, we will say that an external input
M‖H ∈ (In)m+c is Gx-computable with respect to these sets of queries if M‖H ·Ai ∈Qi,
for each i ∈ Sx.

It is easy to verify that given sets of queries Q1, . . . ,Qt and x1, . . . ,xr ∈ {0,1}c, M‖H
is Gxi -computable for all i ∈ [1..r] implies that M‖H is Gx-computable for all x ∈
Vec(x1, . . . ,xr). It is thus natural to give the following definitions.

Definition 5 (V -computable input). Let V be a subspace of {0,1}c, V 6= /0, let Q1, . . . ,Qt ⊂
(In)k be the sets of queries to each of the inner compression functions. We will say that
an external input M‖H ∈ (In)m+c is V -computable with respect to these sets of queries
if M‖H is Gx-computable for all x ∈V .
Let VM‖H be the biggest subspace such that M‖H is V -computable (possibly reduced to
{0}). If r is the dimension of VM‖H , we will say that M‖H is r-computable. We will also
talk of h-computable input when r = c and of uncomputable input when r = 0 .



Definition 6 (Maximal number of (at least) r-computable inputs with q queries).
Let h be a compression function construction and q≥ 1. We define the maximal number
of (at least) r-computable inputs with q queries βr(q) as being

βr(q) = max
Q1,...,Qt

#{M‖H ∈ (In)m+c |M‖H is at least r-computable}

where the maximum is taken over all the possible sets of q queries to the inner compres-
sion functions.
We will also need the following slightly different notion for r = 1:

β
′
1(q) = max

x∈{0,1}c\{0}
max

Q1,...,Qt
#{M‖H ∈ (In)m+c |M‖H is Gx-computable}

where the maximum is taken over all the non-zero linear combinations of output blocks
and over all the possible sets of q queries to the inner compression functions.

The following proposition is rather obvious and given without proof.

Proposition 1.
q≤ βc(q)≤ βc−1(q)≤ . . .≤ β1(q).

β1(q) and β′1(q) capture approximately the same characteristic of the compression func-
tion for it is immediate to verify that

β
′
1(q)≤ β1(q)≤ 2c

β
′
1(q). (2)

In our security analysis, we will make an extensive use of the following lemma (see the
proof in Appendix A).

Lemma 3 (Independency lemma). Let Q1, . . . ,Qt ⊂ (In)k be sets of queries to the
inner compression functions such that M‖H is r-computable. Let (x1, . . . ,xr) be a basis
of VM‖H , and X1, . . . ,Xr,X ∈ In. Then ∀x ∈ {0,1}c \VM‖H ,

Pr[Gx(M‖H) = X | Gx1(M‖H) = X1, . . . ,Gxr(M‖H) = Xr] =
1
2n .

More generally, if H ′ is such that for all i ∈ [1..r], H ′ · xT
i = Xi, then

Pr[h(M‖H) = H ′ | Gx1(M‖H) = X1, . . . ,Gxr(M‖H) = Xr] =
1

2(c−r)n .

3 Security Analysis for Preimage Resistance

In this section we begin with providing a security bound to preimage attacks for the
constructions of the general framework studied in this paper. Then we show that this
security bound is tight by analysing an attack whose advantage is close to the security
bound.



Theorem 1 (Security bound for preimage resistance). Let h be a (c, t,k,m)-compression
function construction (non necessarily of type I) with parameter β1(q) defined by defi-
nition 6. Then

Advpre
h (q)≤ 1

2n +
β1(q)
2cn .

Proof. Let A be a preimage-finding adversary attacking the compression function h.
We suppose wlog that the random input H ′ to the adversary is 0. We first define Preim
as being the set of external inputs M‖H which are h-computable with respect to the
final sets of queries of A and such that h( f (1),..., f (t))(M‖H) = 0. First of all, if A does
not find any external input in this set, its probability of success is very low. Indeed,
A is bound to output an M‖H which is not h-computable. According to Lemma 3,
the probability for this output to be a good preimage is ≤ 1/2n. Therefore we have
Pr[A wins]≤ 1/2n +Pr[Preim 6= /0].
We now bound Pr[Preim 6= /0]. For this, we analyse the behavior of A in a sequen-
tial manner: A makes its queries to the inner functions in a certain order. During this
process, each external input M‖H goes through successive states: either it is uncom-
putable, or it is r-computable and still a potential candidate to be mapped on to 0, or it
is r-computable and discarded because there exists x ∈ VM‖H such that Gx(M‖H) 6= 0.
More precisely, consider partial sets of queries Q ′1, . . . ,Q ′t ⊂ (In)k. We will say that
an external input M‖H is compatible with these partial sets of queries if ∀x ∈ VM‖H ,
Gx(M‖H) = 0. Note that an external input which is h-computable with respect to the
final sets of queries of A was necessarily 1-computable at some stage in the sequential
queries of A. Said differently, an external input cannot “jump” from the state uncom-
putable to a state where it is r-computable for r > 1 with one single query because one
single query never enables to compute more than one output block or linear combination
of output blocks1. When it exists, we will note G1

M‖H the linear combination of output
blocks associated with the first x ∈ {0,1}c \{0} such that M‖H is Gx-computable. Let
us define the set Pot1 as being the set of all M‖H such that, at some stage in the se-
quential queries of A, M‖H was 1-computable and compatible. Then one clearly has
Pot1 ⊃ Preim, so that

Pr[M‖H ∈ Preim] = Pr[M‖H ∈ Preim|M‖H ∈ Pot1] ·Pr[M‖H ∈ Pot1].

The key point in the proof is the fact that according to Lemma 3, one has, for all M‖H,

Pr[M‖H ∈ Preim|M‖H ∈ Pot1]≤ Pr[h( f (1),..., f (t))(M‖H) = 0|M‖H ∈ Pot1]

≤ 1
2(c−1)n .

In consequence,

Pr[Preim 6= /0]≤ 1
2(c−1)n ∑

M‖H
Pr[M‖H ∈ Pot1].

1 Suppose that one single query enables to compute both Gx1(M‖H) and Gx2(M‖H). This means
that all the other queries necessary to compute them have been made previously. But this
implies that M‖H is already Gx1⊕x2 -computable, so that in fact the computability of M‖H has
only been increased by 1.



Now we want to bound the sum ∑M‖H Pr[M‖H ∈ Pot1]. Recall that by the definition of
Pot1, M‖H ∈ Pot1 is the event that M‖H is at least 1-computable with respect to the final
sets of queries of A, and G1

M‖H(M‖H) = 0. Now conditioning on the event that M‖H is
at least 1-computable with respect to the final sets of queries of A, the probability that
G1

M‖H(M‖H) = 0 is 1/2n. Summing up this reasoning with formulas yields

∑
M‖H

Pr[M‖H ∈ Pot1]≤ ∑
M‖H

Pr[G1
M‖H(M‖H) = 0|M‖H is 1-computable]·

Pr[M‖H is 1-computable]

≤ 1
2n ∑

M‖H
Pr[M‖H is 1-computable]

≤ 1
2n E(#{M‖H |M‖H is 1-computable})

≤ β1(q)
2n .

The theorem follows immediately. ut
Remark 1. The reasoning used in [20] concludes that preimage resistance is O(βc(q)/2cn),
which cannot be in view of the generic attack presented hereafter. We reproduce this
faulty reasoning and point out the mistake in Appendix C.

Theorem 2 (Preimage attack matching the security bound). Let h be a (c, t,k,m)-
compression function construction of type I with parameter β′1(q) defined by definition
6. Then β′1(q) = Ω(2cn) and q = Ω(2(c−1)n) implies that Advpre

h (q) = Ω(1).

Proof. Once again we suppose wlog that the random input H ′ to the adversary is 0.
Consider the following adversary: A first identifies x ∈ {0,1}c \{0} such that β′1(q) is
reached and makes the q queries to the inner compression functions f (i) involved in the
calculation of Gx (i.e. such that i ∈ Sx), thus obtaining β′1(q) images by Gx. Let NGx

be the random variable counting among these β′1(q) Gx-computable inputs the number
of them such that Gx(M‖H) = 0. The compression function construction considered
being of type I, the β′1(q) images by Gx obtained are random and pairwise independent.
As β′1(q) = Ω(2cn), with overwhelming probability NGx = Ω(2(c−1)n). After this first
step, A selects min(NGx ,q) M‖H such that Gx(M‖H) = 0. If NGx > q, it selects them
randomly. A then queries the remaining compression functions in order to obtain the
full image of the selected external inputs. Restricting the number of selected external
inputs to q ensures that A is always able to obtain their image by h. The probability for
one of these external inputs to be a good preimage is 1/2(c−1)n. As q = Ω(2(c−1)n) by
hypothesis, the adversary finds a preimage of 0 with non-negligible probability. Hence
the result. ut

Conclusion for Preimage Resistance. The results of this section show that preimage
resistance of a (c, t,k,m)-compression function construction of type I is governed by the
parameter β1(q). Combining Theorems 1 and 2, and recalling inequality (2) proves that,
at least for constructions such that one may have β′1(q) = Ω(2cn) and q = Ω(2(c−1)n) at
the same time, preimage resistance is Θ(β1(q)/2cn).



4 Security Analysis for Collision Resistance

Theorem 3 (Security bound for collision resistance). Let h be a (c, t,k,m) compres-
sion function construction (non necessarily of type I) with parameter β1(q) defined by
definition 6. Then

Advcoll
h (q)≤ 1

2n +
β1(q)2

2 ·2cn .

The proof of this theorem is very similar to the proof of Theorem 1 and is given in
Appendix B. We now exhibit two collision attacks matching sometimes the security
bound.

First Collision Attack. The first attack presented here is very simple and meets the
security bound in some cases. It simply consists in computing the image by h of βc(q)
external inputs. For a type I construction, they are random and independent, and a clas-
sical calculus tells us that the probability to obtain a collision is 1−∏

βc(q)−1
i=1 (1− i/2cn).

As a consequence we have the following result:

Theorem 4 (First collision attack.). Let h be a (c, t,k,m)-compression function con-
struction of type I with parameter βc(q) defined by definition 6. Then Advcoll

h (q) ≥
0.6 βc(q)(βc(q)−1)

2·2cn .
In consequence, for constructions such that βc(q) ∼ β1(q) when q→ ∞, the security
bound given in Theorem 3 is tight.

Proof. We have the following inequalities:

Advcoll
h (q)≥ 1−

βc(q)−1

∏
i=1

(1− i
2cn )

≥ 1− exp

(
−

βc(q)−1

∑
i=1

i
2cn

)

= 1− exp
(
−βc(q)(βc(q)−1)

2 ·2cn

)
≥
(

1− 1
e

)
βc(q)(βc(q)−1)

2 ·2cn .

The inequality (1− e−1) > 0.6 completes the proof. ut

Second Collision Attack. The second attack is more similar to the preimage attack
presented previously and may achieve or not a better advantage than the first one de-
pending on the input and output mappings. The adversary proceeds as follows. A first
identifies x ∈ {0,1}c \ {0} such that β′1(q) is reached and makes the q queries to the
inner compression functions involved in the calculation of Gx, thus obtaining β′1(q) im-
ages by Gx. A quotients the set of the external inputs which are Gx-computable at this
stage by the equivalence relation Gx(M1‖H1) = Gx(M2‖H2) and orders the quotient



classes by decreasing cardinal. It then calculates the full image by h of the elements of
the quotient classes, looking for a collision on the (c−1) remaining output blocks, and
beginning with the quotient class of larger cardinal in order to maximize its probability
of success. A is able to calculate at least q images. Analysing this adversary enables to
enunciate the following result.

Theorem 5 (Second collision attack). Let h be a (c, t,k,m)-compression function con-
struction of type I with parameter β′1(q) defined by definition 6. Then qβ′1(q) = Ω(2cn)
and β′1(q) = Ω(n2n) implies Advcoll

h (q) = Ω(1).

Proof. Let us analyse the probability of success of the adversary we just described. The
fact that β′1(q) = Ω(n2n) implies that with probability 1−O(1), A obtains 2n quotient
classes containing Θ(β′1(q)/2n) elements each (this is a classical “balls and bins” result,
see for example [19]). Though A will not always be able to obtain the image by h of all
the β′1(q) inputs, we can ensure that it will be able to do so for at least q inputs. So the
number C of quotient classes in which it will be able to look for a full collision under h
is such that C · β′1(q)

2n = q, i.e. C = q2n

β′1(q) . The events “finding a collision in quotient class

i”, i ∈ [1..C] are independent and their probability pi verify (the proof is analog to the
proof of Theorem 4)

pi ≥ 0.6
#Ci(#Ci−1)

2(c−1)n

where #Ci is the cardinal of the quotient class being explored for a full collision. As
#Ci = Θ(β′1(q)/2n)) with overwhelming probability, we have that the total probability
to find a collision is

Ω

C ·

(
β′1(q)

2n

)2

2(c−1)n

= Ω

(
qβ′1(q)

2cn

)
.

Consequently qβ′1(q) = Ω(2cn) implies that the probability of success of the adversary
is Ω(1). This concludes the proof. ut

Conclusion for Collision Resistance. The security analysis of (c, t,k,m)-compression
functions for collision resistance is not as tight as for preimage resistance. We proved
in this section that collision resistance is O(β1(q)2/2cn), while the attacks we described
show that a lower bound for collision resistance is Ω(max(βc(q)2,qβ1(q))/2cn).

5 Application to Previously Proposed Schemes

Hirose Schemes. We call Hirose schemes the (c, t,k,m)-compression function con-
structions where k = m+ c. In this case, using only t = c inner compression functions,
setting M‖H ·Ai = M‖H for all i∈ [0, t] and taking for B the c×c identity matrix yields
a compression function such that β1(q) = βc(q) = q, so that its preimage resistance is
Θ( q

2cn ) and its collision resistance is Θ( q2

2cn ), which is optimal. This is not a surprising
result since it is easy to see that in the random oracle model, the compression function
obtained is itself a random function from F ((m+c)n,cn). These type of schemes have



been studied by Hirose in [6,7], where it is shown how to construct such an optimally
resistant compression function with one ideal block cipher when c = 2.

Nandi et al. Schemes. Nandi et al. proposed two schemes in [20] which are depicted in
Fig. 2. For these schemes, it was shown in [20] that β2(q)≤ q3/2 and it is not difficult to
convince oneself that β′1(q)≤ q2. Conversely, β2(q)≥ bq1/2c3 and, for q≤ 2n, β1(q)≥
q2. Consequently their preimage resistance is Θ(q2/22n), and an attack requiring Θ(2n)
operations was described in [11]. For the collision resistance, our security proof shows
that it is O(q4/22n) while the two collision attacks we described achieve advantage
Ω(q3/22n). The authors of [20] claimed to have proved that collision resistance for
their schemes is O(q3/22n), however we explain in Appendix C why their reasoning is
incorrect. Nevertheless, we conjecture that our security proof can be enhanced to prove
that collision resistance is indeed O(q3/22n). But this must not discourage to look in the
direction of finding better collision attacks than the one described in [11], which needs
Θ(22n/3) oracle queries.

f (1) f (2) f (3)

H ′
1 H ′

2

H1 M1 H1 H2 H2 M1

(M1, H1, H2)

f (1) f (2) f (3)

H ′
1 H ′

2

H1 H2 M1 H1 M1 M2 H1 H2 M2

(M1, M2, H1, H2)

N1 N2

Fig. 2. Nandi et al. schemes [20].

Peyrin et al. Schemes. Peyrin et al. proposed two schemes in [21] which verified the
necessary conditions they established for a scheme to be secure. They are depicted in
Fig. 3. For the first scheme, one can prove with techniques similar to the ones used for
Nandi et al. schemes that β1(q) = Θ(q3/2) and β2(q) = Θ(q3/2), so that the security
analysis is tight in the collision case (collision resistance is Θ(q3/22n) as well as in the
preimage case (preimage resistance is Θ(q3/2/22n)). For the second scheme, β1(q) =
Θ(q3/2) and β2(q) = Θ(q4/3). Here preimage resistance is Θ(q3/2/22n), and collision
resistance is O(q3/22n), while the first collision attack achieves advantage Ω(q8/3/22n).
Here again it is an open question to close the gap between the security proof and the
attack.



Related Algorithmic Problems. We want to emphasize that one must make a clear
distinction between security analysis in terms of number of oracle queries and number
of operations. While the number of queries is an obvious lower bound for the number
of operations, it is not always clear how an attacker will be able to reach this lower
complexity bound. For example for the scheme N1 of Fig. 2, the preimage resistance
is Θ(q2/22n) so that an adversary must make Θ(2n) oracle queries to find a preimage
with non negligible probability. The authors of [11] presented an attack also requiring
Θ(2n) operations. Fundamentally, this is achievable thanks to an efficient algorithm for
solving the so-called 2-sum problem which consists in finding, in two lists L1 and L2,
two elements x1 ∈ L1 and x2 ∈ L2 such that x1⊕x2 = 0. The generalization to k lists was
thoroughly studied by Wagner [26]. In the same way as the (in)security of the schemes
of Nandi et al. is linked to efficient ways of solving the 2-sum problem [26], we con-
jecture that the security in terms of operations of the schemes of Peyrin et al. is related
to the 3-sum problem, for which no good algorithm is known. Giving a reductionist
security proof linking the security of these schemes to a 3-sum hard problem would be
an elegant result.

f (1) f (2) f (3) f (4) f (5)

H ′
1 H ′

2

H1 H2 H2 M1 M1 H1 ⊕H2 H1 M1 H1 H2

f (1) f (2) f (3) f (4) f (5)

H ′
1 H ′

2

H1 H2 M1 H1 H2 M2 H1 M1 M2 H1 H2 M1 H2 M1 M2

Fig. 3. Peyrin et al. schemes [21].



6 Concluding Remarks

In this paper we conducted the security analysis in terms of oracle queries of very
general constructions combining compression functions modeled as independent FIL
random oracles to obtain a compression function with longer output. Using the concept
of computable input, we gave a security bound for preimage resistance and collision
resistance which is tight for some constructions.

Future work includes carrying the security analysis in the ideal block cipher model
as it was done for Hirose schemes [6,7], a more systematic study of the parameters
βi(q), and closing in the general case the security gap, especially for collision resistance.
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A Proof of Lemmata

Proof of Lemma 1. Consider x ∈ {0,1}c \ {0} and two distinct inputs M1‖H1 and
M2‖H2. By definition of Sx, we have that

Gx(M‖H) =
⊕
j∈Sx

f ( j)(M‖H ·A j).

The fact that Gx(M1‖H1) and Gx(M2‖H2) are uniformly random is obvious because
they are linear combination of the uniformly random outputs of the f ( j)’s. Moreover
the internal input blocks of the f ( j)’s differ in at least one bit for M1‖H1 and M2‖H2,
otherwise, as M1‖H1 6= M2‖H2 it would be possible to construct a non zero element in⋂

j∈Sx kerA j, which is {0} by hypothesis. As the output of the f ( j)’s are random and
independent, Gx(M1‖H1) and Gx(M2‖H2) are also independent.

Proof of Lemma 3. As x ∈ {0,1}c \Vec(x1, . . . ,xr), and as B has full rank, then nec-
essarily x ·BT is not a linear combination of the (xi ·BT )i∈[1..r]. Consequently, there
exists j ∈ [1..t] such that f ( j) intervenes in Gx but in none of the (Gxi)i∈[1..r]. As the
outputs of the inner compression functions are independent, Gx(M‖H) is independent
from (Gxi(M‖H))i∈[1..r]. The generalization follows easily by induction.

B Proof of Theorem 3

Let A be a collision-finding adversary attacking the compression function h. Instead
of working on single external inputs as for the proof of Theorem 1, we will work on
pairs of distinct external inputs, but the reasoning will be quite similar and readers
are recommended to read the preimage proof before this one. Let P2 be the set of all
2-elements subsets of {0,1}m+c. External inputs will be noted X instead of M‖H for
concision. Let define Coll as being the set of pairs of distinct external inputs {X1,X2}
which are h-computable with respect to the final set of queries of A and which collide
under h. As for preimage, it is easy to see that Pr[A wins]≤ 1/2n +Pr[Coll 6= /0].
We now bound Pr[Coll 6= /0]. Given partial sets of queries Q ′1, . . . ,Q ′t ⊂ (In)k, we will say
that the pair {X1,X2} ∈ P2 is compatible if X1 and X2 collide on V{X1,X2} = VX1 ∩VX2 ,
meaning that for all x ∈ V{X1,X2}, Gx(X1) = Gx(X2). Here also it is possible to show



that if V{X1,X2} 6= {0} with respect to the final sets of queries of A, then there is an
unique x ∈ {0,1}c \ {0} such that V{X1,X2} = Vec(x) when it becomes strictly bigger
than {0}. We will note G1

{X1,X2} the linear combination of output blocks associated with
this x. We define Pot1 as being the set of all {X1,X2} ∈ P2 such that X1 and X2 are
at least 1-compatible with respect to the final sets of queries of A and G1

{X1,X2}(X1) =
G1
{X1,X2}(X2). It is now straightforward to follow the same reasoning as for the preimage

proof, which we do without further justification:

Pr[Coll 6= /0]≤ ∑
{X1,X2}

Pr[{X1,X2} ∈ Coll]

≤ ∑
{X1,X2}

Pr[{X1,X2} ∈ Coll|{X1,X2} ∈ Pot1]·

Pr[{X1,X2} ∈ Pot1]

≤ 1
2(c−1)n ∑

{X1,X2}
Pr[{X1,X2} ∈ Poti]

≤ 1
2(c−1)n ∑

{X1,X2}
Pr[G1

{X1,X2}(X1) = G1
{X1,X2}(X2)|X1 and X2 are

1−computable] ·Pr[X1 and X2 are 1−computable]

≤ 1
2(c−1)n

1
2n ∑
{X1,X2}

Pr[X1 and X2 are 1−computable]

≤ β1(q)2

2 ·2cn .

Hence the result.

C Why the Reasoning of [20] was Faulty

We’d like to emphasize why the following reasoning, which was the one used in [20]
for their security proof for preimage attacks, is tempting but fallacious.
One can surely write (see the proof of Theorem 1 for the notations)

Pr[Preim 6= /0]≤ ∑
M‖H

Pr[M‖H ∈ Preim]

≤ ∑
M‖H

Pr[M‖H is h-computable∧h( f (1),..., f (t))(M‖H) = 0].



At this stage, it is tempting to claim that the events “M‖H is h-computable” and “h( f (1),..., f (t))(M‖H)=
0” are independent, thus concluding that

Pr[Preim 6= /0]≤ 1
2cn ∑

M‖H
Pr[M‖H is h-computable]

≤ 1
2cn E(#{M‖H |M‖H is h-computable})

≤ βc(q)
2cn .

However, this is false because these two events are not independent. Indeed, one can
intuitively argue that the fact that h( f (1),..., f (t))(M‖H) = 0, being detected on one of the
output blocks by the adversary, will increase the probability that A makes the queries
needed to compute M‖H on other output blocks, thus increasing the probability for
M‖H to be h-computable.
The same type of problem arises for collision resistance, where an analogue but still
hasty reasoning would conclude that Pr[Coll 6= /0]≤ βc(q)2

2·2cn .


