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Abstract. This paper presents two key-recovery attacks against Achter-
bahn-128/80, the last version of one of the stream cipher proposals in the
eSTREAM project. The attack against the 80-bit variant, Achterbahn-
80, has complexity 261. The attack against Achterbahn-128 requires 280.58

operations and 260 keystream bits. These attacks are based on an im-
provement of the attack due to Hell and Johansson against Achterbahn
version 2. They mainly rely on an algorithm that makes pro�t of the
independence of the constituent registers.
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1 Introduction

Achterbahn [4, 6] is a stream cipher proposal submitted to the eSTREAM project.
After the cryptanalysis of the �rst two versions [10, 9], it has moved on to a new
one called Achterbahn-128/80 [5] published in June 2006. Achterbahn-128/80
corresponds to two keystream generators with key sizes of 128 bits and 80 bits,
respectively. Their maximal keystream length is limited to 263.

We present here two attacks against both generators. The attack against the
80-bit variant, Achterbahn-80, has complexity 261. The attack against Achterbahn-
128 requires 280.58 operations and 261 keystream bits. These attacks are based
on an improvement of the attack against Achterbahn version 2 and also on an
algorithm that makes pro�t of the independence of the constituent registers.

The paper is organized as follows. Section 2 presents the main speci�cations
of Achterbahn-128/80. Section 3 then describes the general principle of the attack
proposed by Hell and Johansson [9] against the previous version of the cipher
Achterbahn version 2, since our attacks rely on a similar technique. We also
exhibit a new attack against Achterbahn version 2 with complexity 253, while
the best previously known attack had complexity 264. Section 4 then presents two
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distinguishing attacks against Achterbahn-80 and Achterbahn-128 respectively.
Section 5 describes how this previous distinguishing attacks can be transformed
into key-recovery attacks.

2 Main speci�cations of Achterbahn-128/80

2.1 Main speci�cations of Achterbahn-128
Achterbahn-128 is a keystream generator, consisting of 13 binary nonlinear feed-
back shift registers (NLFSRs) denoted by R0, R1, . . . , R12. The length of register
i is Li = 21+ i for i = 0, 1, . . . , 12. These NLFSRs are primitive in the sense that
their periods Ti are equal to 2Li − 1. The sequence which is used as an input
to the Boolean combining function is not the output sequence of the NLFSR
directly, but a shifted version of itself. The shift amount depends on the register
number, but it is �xed for each register. In the following, xi = (xi(t))t≥0 for
0 ≤ i ≤ 12 denotes the shifted version of the output of the register i at time t.
The output of the keystream generator at time t, denoted by S(t), is the one of
the Boolean combining function F with the inputs corresponding to the output
sequences of the NLFSRs correctly shifted, i.e. S(t) = F (x0(t), . . . , x12(t)). The
algebraic normal form of the 13-variable combining function F is given in [5].

Its main cryptographic properties are: balancedness, algebraic degree 4, cor-
relation immunity order 8, nonlinearity 3584, algebraic immunity 4.

2.2 Main speci�cations of Achterbahn-80
Achterbahn-80 consists of 11 registers, which are the same ones as in the above
case, except for the �rst and the last ones. The Boolean combining function, G,
is a sub-function of F :

G(x1, . . . , x11) = F (0, x1, . . . , x11, 0).

Its main cryptographic properties are: balancedness, algebraic degree 4, correla-
tion immunity order 6, nonlinearity 896, algebraic immunity 4. As we can see,
Achterbahn-128 contains Achterbahn-80 as a substructure.

2.3 The key-loading algorithm
The key-loading algorithm uses the key K of 128/80 bits and an initial value
IV of 128/80 bits. The method for initializing the registers is the following one:
�rst of all, all registers are �lled with the bits of K||IV . After that, register i is
clocked a−Li times where a is the number of bits of K||IV , and the remaining
bits of K||IV are added to the feedback bit. Then, each register outputs one bit.
Those bits are taken as input on the Boolean combining function, which outputs
a new bit. This bit is now added to the feedbacks for 32 additional clockings.
Then we overwrite the last cell of each register with a 1, in order to avoid the
all zero state.



This algorithm has been modi�ed in relation to the previous versions. The
aim of this modi�cation is to prevent the attacker from recovering the key K
from the knowledge of the initial states of some registers.

3 Attack against Achterbahn version 2 in 253

3.1 Principle of Hell and Johansson attack
Achterbahn version 2 was the previous version of Achterbahn. The main and
most important di�erences to this last one, which are used by the attack are
that:

� it had 10 registers, with lengths between 19 and 32 bits,
� the Boolean function, f , had correlation immunity order 5.

This version has been broken by Hell and Johansson [9] using a quadratic
approximation. Their attack is a distinguishing attack that relies on a biased
parity-check relation between the keystream bits which holds with probability

p =
1
2
(1 + η) with |η| ¿ 1,

where η is the bias of the relation. The attack then consists of an exhaustive
search on 2k initial states. For each of those states, the parity-check relation is
computed for N samples in order to detect the bias. As noticed in [8], the usual
estimate [9�11] of the number of samples which are required for distinguishing
the keystream,

N ∼ 1
η2

,

is a bit underestimated. Actually, this problem can be seen as a decoding prob-
lem where the received word corresponds to the sequence formed by the N
parity-check evaluations. And this received word can be seen as the result of the
transmission of a codeword through a binary symmetric channel with cross-over
probability p. Then, the number of samples N required for decoding is

N =
k

C(p)
,

where C(p) is the capacity of the channel, i.e.,

C(p) = 1 + p log2(p) + (1− p) log2(1− p).

Moreover, when p = 1
2 (1 + η) with |η| ¿ 1, we have C(p) ∼ η2

2 ln(2) , leading to

N ∼ 2k ln 2
η2

,

where 2k is the number of possible initial states of the guessing registers, as we
will see.



The attack proposed by Hell and Johansson exploits a quadratic approxima-
tion q of the combining function f :

Q(y1, . . . , yn) =
s∑

j=1

yij
+

m∑

i=1

(yji
yki

)

with m quadratic terms and which satis�es

Pr[F (y1, . . . , yn) = Q(y1, . . . , yn)] =
1
2
(1 + ε).

We build the parity-check equations, as the ones introduced by [10], that
make disappear the quadratic terms by summing up:

q(t) =
s∑

j=1

xij
(t) +

m∑

i=1

xji
(t)xki

(t)

at 2m di�erent epochs (t+τ), where τ varies in the set of the linear combinations
with 0−1 coe�cients of Tj1Tk1 , Tj2Tk2 , . . . , TjmTkm , where Ti denotes the period
of Ri. In the following, this set is denoted by 〈Tj1Tk1 , . . . , TjmTkm〉, i.e.,

I = 〈Tj1Tk1 , . . . , TjmTkm〉 =

{
m∑

i=1

ciTjiTki , c1, . . . , cm ∈ {0, 1}
}

.

This leads to a parity-check sequence pc de�ned by:

pc(t) =
∑

τ∈I
q(t + τ) =

∑

τ∈I
(xi1(t + τ) + . . . + xis(t + τ)) .

We then decimate the sequence (pc(t))t≥0 by the periods of r sequences among
(xi1(t))t≥0, . . . , (xis(t))t≥0. We can suppose here without loss of generality that
the periods of the �rst r sequences have been chosen. Now a new parity-check,
pcr, can be de�ned by:

pcr(t) = pc(tTi1 . . . Tir ).

This way, the in�uence of those r registers on the parity-check pcr(t) corresponds
to the addition of a constant for all t ≥ 0, so it will be 0 or 1 for all the parity-
checks.

Now, the attack consists in performing an exhaustive search for the initial
states of the (s−r) remaining registers, i.e. those of indices ir+1, . . . , is. For each
possible values for these initial states, we compute the sequence:

σ(t) =
∑

τ∈〈Tj1Tk1 ,...,TjmTkm 〉


S(tTi1 . . . Tir + τ) +

s∑

j=r+1

xij (tTi1 . . . Tir + τ)


(1)

We have
Pr[σ(t) = 0] ≥ 1

2
(1 + ε2m

).



It has been recently observed by Hell and Johansson that the total bias may be
much higher than this bound. However, it can be shown that equality holds in
some particular cases, as noted in [7]. An interesting case of equality is when f
is v-resilient, and we build parity-checks from the terms appearing in a linear
approximation of (v +1) variables (see Appendix). This also provides the bias of
the parity-checks obtained in [9, 8] from some quadratic approximations, since
they can also be derived from such linear approximations.

This result is going to be used all along our attacks, as we will work with
linear approximations of (v + 1) variables.

3.2 Complexity
Using the previously computed bias, we can distinguish the keystream (S(t))t≥0

from a random sequence and also recover the initial states of (s− r) constituent
registers.
� We will have 2m terms in each parity-check. That means that we need to

compute ε−2m+1×2×∑s
j=r+1(Lij

−1)× ln(2) = 2nb2
m+1×2×∑s

j=r+1(Lij
−

1)× ln(2) values of σ(t) for mounting the distinguishing attack, where nb =
log2 ε−1. Besides, σ(t) is de�ned by (1), implying that the attack requires

2nb2
m+1+

Pr
j=1 Lij × 2×

s∑

j=r+1

(Lij − 1)× ln(2) +
m∑

i=1

2Lji
+Lki keystream bits,

where Lij are the lengths of the registers associated to the periods by which
we have decimated, and the last term corresponds to the maximal distance
between the bits involved in each parity-check.

� Time complexity will be

2m2nb2
m+1+

Ps
j=r+1(Lij

−1) × 2×
s∑

j=r+1

(Lij − 1)× ln(2)

where ir+1, . . . , is are the indices of the registers over whom we have made
an exhaustive search and whose initial state we are going to �nd.

3.3 Example with Achterbahn version 2
Hell and Johansson [9] have used this attack against Achterbahn version 2 with
the following quadratic approximation:

Q(x1, . . . , x10) = x1 + x2 + x3x8 + x4x6.

Then, they decimate by the period of the second register, whose length is 22.
After that, they make an exhaustive search over the �rst register, of length 19.
Time complexity will be 267 and data complexity 264 (the complexity given in [9],
equal to 259.02, is obtained by using the estimation N = ε−2 instead of the one
given in Section 3.1). Using the small lengths of the registers, time complexity
can be reduced below data complexity, so the overall complexity of the attack
will be 264.



3.4 Improvement of the attack against Achterbahn version 2
We are going to improve the previously described attack against Achterbahn
version 2 and we reduce the complexity to 253.

For this attack, we use the idea of associating the variables in order to reduce
the number of terms that we will have in the parity-checks. The only negative
e�ect that this could have on the �nal complexity of the attack is to enlarge the
number of required keystream bits; but being careful, we make it stay the same
while reducing the time complexity.

The chosen approximation. At �rst, we searched for all the quadratics approxi-
mations of f with one and two quadratic terms, as the original attack presented
by Hell and Johansson was based on a quadratic approximation. Finally, after
looking for a trade-o� between the number of terms, the number of variables,
the bias, etc., we found that none quadratic approximation was better for this
attack than linear ones. It is worth noticing that, since the combining function
f is 5-resilient, any approximation of f involves at least 6 input variables. More-
over, the highest bias corresponding to an approximation of f by a 6-variable
function is achieved by a function of degree one as proved in [3]. After analyzing
all linear approximations of the Boolean combining function, we found that the
best one was:

g(x1, . . . , x10) = x8 + x6 + x4 + x3 + x2 + x1.

We have f(x1, . . . , x10) = g(x1, . . . , x10) with a probability of 1
2 (1 + 2−3).

Parity-checks. Let us build a parity-check as follows:

ggg(t) = g(t) + g(t + T1T8) + g(t + T2T6) + g(t + T1T8 + T2T6),

with
g(t) = x8(t) + x6(t) + x4(t) + x3(t) + x2(t) + x1(t).

The terms x8, x6, x2, x1 will disappear and, so, ggg(t) is a sequence that depends
uniquely on the sequences x3 and x4. Adding four times the approximation has
the e�ect of multiplying the bias four times, so the bias of

σ(t) = S(t) + S(t + T1T8) + S(t + T2T6) + S(t + T1T8 + T2T6)

is 2−3×4 = 2−12 because 4 is the number of terms in ggg(t). That means that
we will need 23×4×2 × 2 × (L4 − 1) × ln(2) = 229 values of the parity-check for
detecting this bias. If we decimate ggg(t) by the period of register 3, we will
need

229T3 + T1T8 + T2T6 = 229+23 + 229+19 + 227+22 = 252 bits of keystream,

and time complexity will be 229 × 2L4−1 = 253 as we only guess the initial state
of register 4. This complexity is 253 while the complexity of the previous attack
was equal to 264.



4 Distinguishing attacks against Achterbahn-128/80

4.1 Distinguishing attack against Achterbahn-80

This attack is very similar to the improvement of the attack against Achterbahn
version 2 which has been described in the previous section.

Our attack exploits the following linear approximation of the combining func-
tion G:

`(x1, . . . , x11) = x1 + x3 + x4 + x5 + x6 + x7 + x10.

Since G is 6-resilient, ` is the best approximation by a 7-variable function.
For `(t) = x1(t)+x3(t)+x4(t)+x5(t)+x6(t)+x7(t)+x10(t), the keystream

(S(t))t≥0 satis�es Pr[S(t) = `(t)] = 1
2 (1− 2−3).

Parity-checks. Let us build a parity-check as follows:

``(t) = `(t) + `(t + T4T7) + `(t + T6T5) + `(t + T4T7 + T6T5).

The terms containing the sequences x4, x5, x6, x7 vanish in ``(t), so ``(t) depends
exclusively on the sequences x1, x3 and x10.

Adding four times the approximation has the e�ect of multiplying the bias
four times, so the bias of

σ(t) = S(t) + S(t + T7T4) + S(t + T6T5) + S(t + T7T4 + T6T5)

where (S(t))t≥0 is the keystream, is 2−4×3.
We now decimate σ(t) by the period of the R10, which is involved in the

parity-check, so we create like this a new parity-check σ′(t) = σ(t(231 − 1)).
Then, the attack performs an exhaustive search for the initial states of reg-

isters 1 and 3. Then we need 23×4×2 × 2 × (46 − 2) × ln(2) = 230 parity-checks
σ′(t) to detect this bias. Its time complexity is 230 × 2L1+L3−2 = 274.

The number of keystream bits that we need is 230×T10 +T4T7 +T6T5 = 261.

4.2 Distinguishing attack against Achterbahn-128

Now, we present a distinguishing attack against the 128-bit version of Achter-
bahn which also recovers the initial states of two registers.

We consider the following approximation of the combining function F :

`(x0, . . . , x12) = x0 + x3 + x7 + x4 + x10 + x8 + x9 + x1 + x2.

Then, for `(t) = x0(t)+x3(t)+x7(t)+x4(t)+x10(t)+x8(t)+x9(t)+x1(t)+x2(t),
we have Pr[S(t) = `(t)] = 1

2 (1 + 2−3).



Parity-checks. The period of any sequence obtained by combining the registers
0, 3 and 7 is equal to lcm(T0, T3, T7), i.e. 259.3 as T0 T3 and T7 have common
divisors. We are going to denote this value by T0,3,7.

If we build a parity check as follows:

```(t) =
∑

τ∈〈T0,3,7,T4,10,T8,9〉
`(t + τ),

the terms containing the sequences x0, x3, x7, x4, x10, x8, x9 will disappear from
```(t), so ```(t) depends exclusively on the sequences x1 and x2:

```(t) =
∑

τ∈〈T0,3,7,T4,10,T8,9〉
`(t + τ)

=
∑

τ∈〈T0,3,7,T4,10,T8,9〉
x1(t + τ) + x2(t + τ)

= σ1(t) + σ2(t),

where σ1(t) and σ2(t) are the parity-checks computed over the sequences gener-
ated by NLFSRs 1 and 2.

Adding eight times the approximation has the e�ect of multiplying the bias
eight times, so the bias of σ(t) =

∑
τ∈〈T0,3,7,T4,10,T8,9〉 S(t + τ) where (S(t))t≥0 is

the keystream, is 2−8×3. So:

Pr[σ(t) + σ1(t) + σ2(t) = 1] =
1
2
(1− ε8).

This means that we need 23×8×2×2×(45−2)×ln(2) = 254 values of σ(t)+σ1(t)+
σ2(t) to detect this bias, when we perform an exhaustive search on registers 1
and 2.

We now describe an algorithm for computing the sum σ(t)+σ1(t)+σ2(t) over
all values of t. This algorithm has a lower complexity than the trivial algorithm
which consists on computing the 254 parity-checks for all the initial states of the
registers 1 and 2. Here we use (254−28) values of t since (254−28) = T2×(231+28).
We can write it down as follows:
254−28−1∑

t′=0

σ(t′)⊕ ```(t′) =
T2−1∑

k=0

231+28−1∑
t=0

σ(T2t + k)⊕ ```(T2t + k)

=
T2−1∑

k=0

231+28−1∑
t=0

σ(T2t + k)⊕ σ1(T2t + k)⊕ σ2(T2t + k)

=
T2−1∑

k=0


(σ2(k)⊕ 1)




231+28−1∑
t=0

σ(T2t + k)⊕ σ1(T2t + k)


 +

σ2(k)


(231 + 28)−

231+28−1∑
t=0

σ(T2t + k)⊕ σ1(T2t + k)





 ,



since σ2(T2t + k) is constant for a �xed value of k.
At this point, we can obtain σ(t) from the keystream and we can make an

exhaustive search for the initial state of register 1. More precisely:

� We choose an initial state for register 2, e.g. the all one initial state. We
compute and save a binary vector V2 of length T2:

V2[k] = σ2(k),

where the sequence x2 is generated from the chosen initial state. The com-
plexity of this step is T2 × 23 operations.

� For each possible initial state of register 1:

• we compute and save a vector V1 composed of T2 integers of 32 bits.

V1[k] =
231+28−1∑

t=0

σ(T2t + k)⊕ σ1(T2t + k).

The complexity of this step is 254 × (24 + 25) = 259.58 for each possible
initial state of register 1, where 24 corresponds to the number of opera-
tions required for computing each (σ(t) + σ1(t)) and (231 + 28) × 25 =
(231 + 28)× 32 is the cost of summing up 231 + 28 integers of 32 bits.

• For each possible i from 0 to T2 − 1:
∗ we de�ne V ′

2 of length T2:

V ′
2 [k] = V2[k + i mod T2].

Actually, (V ′
2 [k])k<T2

corresponds to (σ2(k))k<T2
when the initial

state of register 2 corresponds to the internal state after clocking
register 2 i times from the all-one initial state.

∗ With the two vectors that we have obtained, we compute:

T2−1∑

k=0

[
(V ′

2 [k]⊕ 1)V1[k] + V ′
2 [k]

(
231 + 28 − V1[k]

)]
. (2)

When we do this with the correct initial states of registers 1 and 2, we will
�nd the expected bias. The major di�erence with the classical exhaustive search
used in [9, 8, 10] is that the sequence V1[k] is computed independently of the
choice of the initial state of R2. As a comparison, the classical algorithm has
time complexity 2102.



for each possible initial state of R1 do
for k = 0 to T2 − 1 do

V1[k] =
P231+28−1

t=0 σ(T2t + k)⊕ σ1(T2t + k)
end for
for each possible initial i state of R2 do
for k = 0 to T2 − 1 do

V ′
2 [k] = V2[k + i mod T2]

end forPT2−1
k=0

č
(V ′

2 [k]⊕ 1) V1[k] + V ′
2 [k]

ą
231 + 28 − V1[k]

ćď
if we �nd the bias then

return the initial states of R1 and R2
end if

end for
end for

Table 1: Algorithm for �nding the initial states of registers 1 and 2

The total time complexity of the attack is going to be:

2L1−1 × [
254 × (

24 + 25
)

+ T2 × 2× T2 × 25
]
+ T2 × 23 = 280.58,

where 2 × T2 × 25 is the time it takes to compute the sum described by (2).
Actually, we can speed up the process by rewriting the sum (2) in the following
way

T2−1∑

k=0

(−1)V2[k+i]

(
V1[k]− 231 + 28

2

)
+ T2

231 + 28

2
.

The issue is now to �nd the i that maximizes this sum, this is the same as
computing the maximum of the crosscorrelation of two sequences of length T2.
We can do that e�ciently using a fast Fourier transform as explained in [1,
pages 306-312]. The �nal complexity will be in O(T2 log T2). Anyway, this does
not change our total complexity as the higher term is the �rst one.

The complexity is going to be, �nally:

2L1−1 × [
254 × (

24 + 25
)

+ O(T2 log T2)
]
+ T2 × 23 = 280.58.

The length of keystream needed is T0,3,7 + T4,10 + T8,9 + 254 < 261 bits.
We can apply the algorithm to the attack against Achterbahn-80 described

in Section 4.1 and its time complexity will be reduced to:

2L1−1 × [
230 × (

23 + 22.59
)

+ O(T3 log T3)
]
+ T3 × 22 = 254.8.

4.3 Attack with a new keystream limitation

Recently, the authors of Achterbahn have proposed a new limitation of the
keystream length [7], which is 252 for Achterbahn-80 and 256 for Achterbahn-
128. Those limitations are not restrictive enough to prevent the cipher from
being cryptanalysed. In fact, we can mount an attack against the 128-bit version
which is very similar to the last one with the same linear approximation, where



the sequences considered for building the parity-checks are generated by only
two terms (so R1 and R10, R2 and R9, R3 and R8). Then we perform an exhaus-
tive search over registers 0, 4 and 7 with the previously described the algorithm,
where we consider register 0 and register 4 together. The complexity is, �nally:

2L0−1 × 2L4−1 × [
254.63 × (

24 + 24.7
)

+ O(T7 log T7)
]
+ T7 × 23 = 2104.

The length of keystream needed is

254.63 + T1,10 + T2,9 + T3,8 = 254.63 + 253 + 253 + 253 < 256 bits.

For Achterbahn-80 there is also a succesfull attack which is only slightly di�erent
from the one we have previously described [12].

5 Recovering the key

As explained by Hell and Johansson in [8], if we recover the initial states of all the
registers, we will be able to retrieve the key as all the initialization steps which
do not involve the key become invertible. It is easy to show that once we have
found the initial states of two registers, the complexity of �nding the remaining
ones will be lower (for the other registers appearing in the used approximation it
is quite obvious: we apply the same method but simpli�ed, as now we know two
variables. For the other registers we can use the same method but with other
linear approximations making pro�t of the already-known variables). Once we
have found the initial states of all the registers, we can invert all the initializing
steps until the end of the second step, which corresponds to the introduction of
the key bits. At this point, there are two methods proposed in [8]. The �rst one
is clocking backwards register i (|k| −Li) times for each i. We do this for all the
possibles values of the last |k|−Lm key bits, where Lm is 21 for Achterbahn-128
and 22 for Achterbahn-80. When all the registers have the same �rst Lm bits,
we have found the correct |k|−Lm bits of the key. The second method proposed
is a meet-in-the-middle attack with time-memory tradeo� as explained in [10].
It leads to a complexity of:

� For Achterbahn-80: 258 in time or 240 in memory and 240 in time.
� For Achterbahn-128: 2107 in time or 240 in memory and 288 in time.

We can do better. We are going to explain the technique for Achterbahn-128.
The idea is that we do not need to invert all the clocking steps in the meet-in-the-
middle attack, if we split the key into 2 parts composed of the �rst 40 bits and
the last 88 bits, we could make an exhaustive search for the �rst part and store
in a table the states of the registers obtained after applying the initialization
process for each set of 40 bits. Then, if we make an exhaustive search through
the 88 remaining key bits, and we clock backwards the registers from the known
states, we will �nd a match in the table. But we do not need to make this search
over all the 88 remaining bits. Instead, we make it through the last 73 bits (that
means that 15 rounds are not inverted). At the end of doing this, we need that,



for all i, the �rst Li−15 bits of the state of register i match with the last Li−15
bits of the states of the registers saved in the table. For instance, for the register
0 we will have a match on 6 bits, and for register 12 we will have 18. We do not
have to worry about matches coming from wrong values of the 73 bits since the
number of such false alarms is:

288−15 × 240

2329−13×15
= 2−21,

as (329− 13× 15) is the number of bits we consider for a match, 240 is the size
of the table, and 273 is the number of possibilities for the exhaustive search. As
we can see, with such a match we have found 113 bits of the key. The other 15
can be found with very low complexity by clocking the registers until �nding
the desired state. So the �nal complexity for the step of retrieving the key in
Achterbahn-128 once we have the initial states of all the registers is 273 in time
and 240 × (329 − 13 × 15) ' 248 in memory. If we do the same thing with
Achterbahn-80, we could have a complexity of 240 in time and 241 in memory.

6 Conclusion
We have proposed an attack against Achterbahn-80 in 255 operations, so we
can consider as the total complexity the data complexity which is equal to 261,
since it is bigger. An attack against Achterbahn-128 is also proposed in 280.58

where fewer than 261 bits of keystream are required. After that we can recover
the key of Achterbahn-80 with a complexity of 240 in time and 241 in memory
(the time complexity is less than for the distinguishing part of the attack).
For Achterbahn-128 we can recover the key with a complexity of 273 in time
and 248 in memory. The complexities of the best attacks against all versions of
Achterbahn are summarized in the following table:

version data complexity time complexity references
v1 (80-bit) 232 255 [10]
v2 (80-bit) 264 267 [9]
v2 (80-bit) 252 253

v80 (80-bit) 261 255

v128 (128-bit) 260 280.58

Table 2: Attacks complexities against all versions of Achterbahn (Each complexity
corresponds to the best key-recovery attack).
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A On the biases of parity-checks derived from linear
approximations

Proposition 1. Given a v-resilient Boolean function f , the bias of a parity-
check built from a (v + 1)-variable linear approximation of f with bias ε is ε
raised to the power of the number of terms in the parity check.

Proof. Let f be a v-resilient Boolean function of n variables and ` = xj0 +
. . . + xjv = α · x be a linear approximation of f with bias ε. We can now build
g(x1, . . . , xn) = f(x1, . . . , xn) + `(xj0 , . . . , xjv ). We have

Pr[g(x1, . . . , xn) = 0] =
1
2
(1 + ε).



Let W denote the subspace of Fn
2 spanned by the basis vectors ej0 , . . . , ejv , and

let V be in direct sum with W . Then, for any n-variable function f , and any
a ∈ Fv+1

2 , f|a+V denotes the restriction of f to (a + V ). In other words, f|a+V

is the function of (n − v − 1) variables derived from f when xj0 , . . . , xjv
are

�xed and equal to a0, . . . , av. If we build the parity-checks with g considering
the sequences de�ned by the terms of the linear approximation we will have:

Pr


 ∑

τ∈〈Tj0 ,...,Tjv 〉
g(x1(t + τ), . . . , xn(t + τ)) = 0




=
1

2v+1

∑

a∈Fv+1
2

Pr


 ∑

τ∈〈Tj0 ,...,Tjv 〉
g|a+V (x1(t + τ), . . . , xn(t + τ)) = 0


 .

It is quite obvious that the variables appearing in the terms of the sum over τ
are independent, as the variables that could be repeated are the (v + 1) �xed
ones. So, as all the variables appearing are independent, each sum has the e�ect
of multiplying the corresponding bias by itself 2v+1 times. Now we want to show
that this bias is also equal to ε. This equivalently means that

1
2n−v−1

∑

x∈a+V

(−1)g|a+V (x) =
1
2n

∑

x∈Fn
2

(−1)g(x).

Let f̂(a) denote the Walsh coe�cient of f at point a ∈ Fn
2 , i.e:

f̂(a) =
∑

x∈Fn
2

(−1)f(x)+ax.

Then, from [2, pages 2005-2006] we have

2v+1
∑

x∈a+V

(−1)g|a+V (x) =
∑

u∈W

ĝ(u)

=
∑

u∈W

f̂(α + u)

= f̂(α) = ĝ(0)

since f is v-resilient. So:

Pr


 ∑

τ∈〈Tj0 ,...,Tjv 〉
g(x1(t + τ), . . . , xn(t + τ)) = 0


 =

1
2vr+1

×2vr+1×0.5(1+ε2v

).

And then, the bias of the parity check will be ε2v . It is obvious that if, instead of
building the parity-checks by considering each term in the linear approximation
separately, we do it by associating several terms, the result will not change. The
�nal bias of the parity-check will also be the bias of the linear approximation
raised to the power of the number of terms in the parity-check. ¦


