
Overtaking VEST

Antoine Joux1,2 and Jean-René Reinhard3

1 DGA
2 Université de Versailles St-Quentin-en-Yvelines, PRISM
45, avenue des États-Unis, 78035 Versailles Cedex, France

antoine.joux@m4x.org
3 DCSSI Crypto Lab

51, Boulevard de La Tour-Maubourg
75700 Paris 07 SP, France

jean-rene.reinhard@m4x.org

Abstract. VEST is a set of four stream cipher families submitted by
S. O’Neil, B. Gittins and H. Landman to the eSTREAM call for stream
cipher proposals of the European project ECRYPT. The state of any
family member is made of three components: a counter, a counter diffusor
and a core accumulator. We show that collisions can be found in the
counter during the IV Setup. Moreover they can be combined with a
collision in the linear counter diffusor to form collisions on the whole
cipher. As a consequence, it is possible to retrieve 53 bits of the keyed
state of the stream cipher by performing a chosen IV attack. For the
default member of a VEST family, we present a “long” IV attack which
requires 222.24 IV setups, and a “short” IV attack which requires 228.73

IV setups on average. The 53 bits retrieved can be used to reduce the
complexity of the exhaustive key search. The chosen IV attack can be
turned into a chosen message attack on a MAC based on VEST.
Keywords: Stream cipher, inner collision, chosen IV attack

1 Introduction

VEST [8] is a set of four stream cipher families proposed to the eSTREAM
project [6] by S. O’Neil, B. Gittins and H. Landman . VEST-v, with v ∈
{4, 8, 16, 32}, is a family of stream ciphers with expected security respectively
280, 2128, 2160 and 2256, and output rate v bits by clock cycle. All families share
the same design. Only the sizes of the components change to meet the target
security. There also is a selection algorithm which given a parameter called the
family key outputs a specific member of a VEST family.

Recently, VEST specifications have been updated [9]. Compared to the ear-
lier specification [8], changes include some modifications in the parameters used
and also the definition of additional modes, that turn VEST in a MAC or an
authenticated encryption scheme.

In this paper, we point out basic weaknesses of VEST components. The
weaknesses can be used to create inner collisions in the algorithm, in a way similar
to local collisions in hash function of the SHA family [4]. As a consequence we

are able to mount a chosen IV attack against VEST stream cipher that recovers
53 bits of the keyed state. This information enables us to reduce by 53 bits the
complexity of an exhaustive key search. The chosen IV attack on VEST stream
cipher can also be used as an existential forgery attack against the VEST MAC.

In section 2, we give a description of VEST components and of their internal
modes of operation. Then we describe in section 3 the basic weaknesses we
found on the counter and linear counter diffusor components. In section 4, we
describe two efficient chosen IVs attacks that recover 53 bits of the keyed state
of the cipher. In section 5, we use these 53 bits to greatly speed-up exhaustive
key search. Finally, in section 6, we describe briefly how to turn the attacks of
section 4 into existential forgery attacks against VEST in MAC mode.

2 Description of VEST

Members of the VEST stream cipher families are made of four components:

– a set of 16 non linear feedback shift registers, called counter,
– a linear counter diffusor,
– an accumulator,
– a memory-less linear output filter.

There are three main internal modes of operation:

– The Key Setup mode which introduces the key into the cipher state. The
state of the cipher is first set to all 0’s, then the key is introduced and
produces a keyed state. In this mode, the cipher does not output any data.

– The IV Setup mode which introduces an IV into a keyed state. This mode
also has no output data.

– The Keystream generation mode which produces a stream of pseudo random
bits.

We review in the following the four components of a VEST stream cipher
and the Key Setup and IV Setup mechanisms.

2.1 Counter

The counter, a set of 16 registers ci, (0 ≤ i < 16), is the autonomous part of
the stream cipher in Keystream generation mode. Each register is a non linear
feedback shift register (NLFSR) of size w = 10 or 11 bits. As in [8, 9], we note
cr
i j the value of bit j of register i at step r. Their update function is described

in Fig. 1.
Each register is updated independently. There are two register modes of op-

eration. While in register counter mode, the registers are autonomously updated.
In register keying mode, the update function of a register is disturbed by one
bit at each clock cycle. The functions gi are non-linear and chosen such that the
graphs of the registers update functions are made of two cycles of approximately

– Register Keying mode
• cr+1

i 0 = gi(c
r
i 0, c

r
i 1, c

r
i 2, c

r
i 6, c

r
i 7) ⊕

cr
i wi−1

• cr+1
i 1 = cr

i 0 ⊕ kr
i

• cr+1
i j = cr

i j−1

– Register Counter mode
• cr+1

i 0 = gi(c
r
i 0, c

r
i 1, c

r
i 2, c

r
i 6, c

r
i 7) ⊕

cr
i wi−1

• cr+1
i j = cr

i j−1

Fig. 1. Register update

same length, the length of all cycles being pairwise relatively prime. Thus, a
minimum period of evolution of the set of registers can be guaranteed. 32 non
linear functions meeting this requirement are specified in [9, Appendix F], 16
for registers of length 11 and 16 for registers of length 10. For a given member
of a family, every register is associated to a non linear function specified for its
length. Every cycle, bit 1 is extracted from each of the 16 registers.

2.2 Linear counter diffusor

The linear counter diffusor is a 10–bit value used to disturb the core accumulator.
Every cycle, the linear counter diffusor is updated linearly with the 16–bit output
from the counter. As in [8, 9], we note dr

j the value at step r of bit j of the linear
counter diffusor. We note

D(r) =

dr
0

dr
1
...

dr
9

 C(r) =

cr
0 1

cr
1 1
...

cr
15 1

 .

The linear counter diffusor update function can be written as

D(r+1) = A ·D(r) ⊕M · C(r) ⊕B,

with

A =

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

M =

0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0
1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0
0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1
1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1
0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0
1 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1

B =

1
0
0
0
1
0
0
1
1
1

.

2.3 Accumulator

The remainder of the state of a VEST stream-cipher is an accumulator. Every
cycle the accumulator state goes through a substitution phase and a permutation
phase. Then the output of the counter diffusor is XOR-ed to the first 10 bits of
the accumulator state. For a full description of the accumulator, we refer to [9].

2.4 Output Combiner

At each clock cycle, depending on its current state the cipher outputs either
0 or n bits. Each output bit is computed by taking the exclusive-or of 6 bits
taken from the accumulator state. The number of output bits is at least 18
times smaller than the size of the accumulator. The design of the core of the
algorithm, that is to say the accumulator and this output filter follows the same
design strategy as the LEX stream cipher, another candidate to the eSTREAM
project [1, 2]. The idea is to extract a small part of a state which is updated by
one round of a block cipher, the round-key being provided by an autonomous
component.

2.5 Key Setup mode

The Key Setup takes as input a F–bit key K, where F is a multiple of 8, and
enters it in the cipher state. At the beginning of the Key Setup, all bits of the
state are set to 1. At the end of the Key Setup, the value of the state of the
cipher is called the keyed state. During Key Setup, no output is produced by
the cipher. The linear counter diffusor and the accumulator work as described
above. The registers of the counter go through two phases:

– The first phase of the keysetup introduces K in the registers. First the key is
prepended with fifteen 0’s, and appended with a single 1 followed by fifteen
0’s, creating a key K ′. During F + 16 steps the registers operate in register
keying mode. At each step r, the bits K ′

r, . . . ,K
′
r+15 are used to disturb the

evolution of registers 0, . . . , 15 respectively.
– The second phase of the Key Setup introduces a 8–bit constant in the first

8 registers, and mixes the state of the cipher. During the introduction of the
constant, the first 8 registers are in keying mode, register i being disturbed
by bit i of the constant, and the last 8 registers are in counter mode. Then
the state of the cipher is mixed by going through 31 steps during which all
the registers are in counter mode.

The keyed state can be stored and reloaded later into the state of the cipher,
if one wants for example to speed up IV setups using the same key. The keyed
state is equivalent to the key introduced.

2.6 IV Setup mode

The IV Setup may be applied after the Key Setup. It takes as input an IV of
length W bits, with W a multiple of 8. As for the Key Setup, no output is
produced during IV Setup and the accumulator and counter diffusor work as
described above. The counter goes through 2 phases:

– During the first phase of the IV Setup, the IV is introduced into the counter.
This phase lasts W/8 steps. Note that the IV is not introduced in all registers
as the key. Instead it only affects 8 registers as the constant introduced in the
second phase of the keying process. As a consequence each bit of IV affects
a single register. At each clock cycle, one byte of the IV is introduced.

– The second phase is identical to the Key Setup second phase with a different
value of the constant.

3 Basic weaknesses of VEST components

In this section, we identify two weaknesses of VEST stream ciphers. They concern
the differential behaviour of the NLFSRs in keying mode and of the counter
diffusor.

3.1 Differential characteristics of the registers

During the first phase of IV Setup, the update function of register i, 0 ≤ i ≤ 7
can be viewed as a function

fi : {0, 1}wi × {0, 1}n → {0, 1}wi × {0, 1}n,

which modifies a state with an input IV of length n. The output of the function
is the modified state and an output value of length n. Studying the differential
behaviour of this function with respect to its second input, we find some kind of
imbalance.

The differential patterns relevant within the context of the IV Setup are

0×∆ → 0× α :

starting from a common value (for example the keyed register state) we introduce
a pair of IVs with difference ∆ and look for a collision on the register state after
the first phase of the IV Setup and a fixed difference α on the output. For an
IV pair, we call colliding states the states starting from which we get a collision
and the expected difference α on the register output after processing each IV of
the pair.

Differential behaviour over one step. In order to understand the source of
the imbalance, let us consider the effect of a single bit difference in the register
state on one step of the IV Setup. We can distinguish three cases:

Fig. 2. Differential pattern and colliding states

– The difference is at position w−1: the update moves the difference to position
0,

– The difference is at position j /∈ {0, 1, 2, 6, 7}: the update shifts the difference
to position j + 1

– The difference is at position j ∈ {0, 1, 2, 6, 7}: the update shifts the difference
to position j + 1 and, depending on the non linear function, may also create
a difference at position 0.

We still have to take into account the IV bit introduction at this step. After
the computation of the feedback and the shift of the register, but before the
output at this step, one bit of IV is XOR-ed at position 1. In our differential
setting this bit can be used either to introduce a new difference in position 1 or
to correct a difference that was present at position 0 at the end of the previous
step.

At the end of each step, the output is the bit in position 1 of the register
state.

Local Collisions. We now adopt a strategy very similar to the local collisions
used in [4] to attack SHA-0. The key idea is to introduce a single difference in
the register state and control its propagation until it vanishes. We first consider
the linear part of the update function. We then take into account the non-linear
part.

At step 0 we introduce a difference through different IV bits. Thus, after
step 0 there is a difference in position 1 of the register. The linear part of the
update function consists solely of a rotation of the register bits. After step 1
the difference is in position 2, then after step 2 in position 3 ... and after step
w−1 the difference is in position 0. At step w it comes back in position 1, where
we can cancel it by using a secondary difference on the IV pair. Thus when the
non-linear feedback function is not used, it takes w + 1 steps to introduce and
then cancel a difference. Looking at the output difference α, taken from bit 1,
we see that it consists in a single 1 followed by w 0’s. In the sequel, we show how
to build collisions following the same pattern, w + 1 steps and same value α.

We now add the non linear function (NLF). The collision described above
does no longer occur all the time. Indeed, when the NLF is active, i.e. when
there is a difference on at least one of its input, there may be a difference on
its output. Heuristically, this happens with probability 1/2. Thus after a step

during which the NLF is active, there may be an additional difference in position
0. To prevent the propagation of this difference, we use the IV introduction in
position 1 at the next step to cancel it. Combining all the IV bit differences on
the w + 1 steps we get a corrective pattern. Note that with IV differences on
w + 1 steps, it is not possible to correct additional differences produced during
step w.

Due to the propagation of the initial difference through every position of
the register, the number of active steps is at least 5 : steps 1, 2, 6, 7 and w.
Heuristically, after each active step there is probability 1/2 that another differ-
ence appear in position 0, thus that the next step is also active. We can expect
that some corrective patterns lead to collisions with probability 2−5. Thus, there
should be 2w−5 colliding states for some corrective patterns.

In practice, w = 10 or w = 11. So we are able to compute all the differential
characteristic of length w + 1 of a counter. In fact, for a given IV and starting
state, there is at most one IV difference that creates a collision after w +1 steps
and has the correct output difference α. We computed all these values and stored
for each IV pair, the initial states for which a collision occurs. We performed this
exhaustive search for each of the possible non linear functions. This computation
takes a few minutes an Intel Celeron 1.4 Ghz.

We observe that for some good pairs of IVs with appropriate difference pat-
terns, the number of colliding states is higher than 2w−5, sometimes exceeding
2w−5 by a factor of 2 or more. We give in Table 1 the maximum number of
colliding states Ni for the best IV pair for each proposed non linear function in
[9, Appendix F]. For the first (resp. last) 16 functions w = 11 (resp. 10) and the
expected number of colliding states is 64 (resp. 32).

Table 1. Size of the largest colliding states for register update functions

i Ni i Ni i Ni i Ni i Ni i Ni i Ni i Ni

0 127 4 106 8 122 12 102 16 70 20 44 24 59 28 52
1 107 5 107 9 95 13 96 17 67 21 60 25 76 29 64
2 117 6 96 10 90 14 104 18 74 22 62 26 65 30 54
3 128 7 150 11 156 15 136 19 52 23 77 27 54 31 77

3.2 Collision in the Counter Diffusor

In Section 2.2, a description of the linear counter diffusor was given. Matrix M
having more columns than rows has a non zero kernel, generated by vectors:

(1,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0)T,
(1,1,1,1,0,1,1,0,1,1,1,0,0,0,0,0)T ,
(0,1,1,0,0,0,1,0,1,0,0,1,0,0,0,0)T ,
(0,1,0,1,1,0,1,0,1,0,0,0,1,0,0,0)T ,
(1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0)T ,
(0,1,0,1,0,0,0,0,0,1,0,0,0,1,0,1)T

This clearly contradicts the property of collision freeness in elementary VEST
components claimed in [9, Section 5.4]. If the output of the counter at step r
differs by a linear combination of these vectors, the contribution of the counters
to the update of the diffusion bits {dr

j}j will be the same. The highlighted kernel
vector only uses the first 8 registers which can, to some extent, be controlled
and is especially useful in our attack.

4 Partial Keyed State Recovery

In this section, we exploit the vulnerabilities described in the previous section to
recover the value of a fixed part of the keyed state. All the attacks described are
chosen IVs differential attacks. The first attack assumes no constraints on the IV
length. The second attack uses an IV as short as possible and can be used when
the length of the IV is constrained to some standard value, namely 128 bits. In
fact, we show that an attack is possible as soon as the IV length is greater than
96 bits.

4.1 Attack with long IVs

We describe in this subsection a first attack which assumes that the IV length
is greater than 23× 8 = 184 bits. We note that [9] doesn’t specify any limit on
the IV length.

The goal of the attack is to exploit the above weaknesses to build a pair of
colliding IVs, that is to say a pair of IVs such that the state of the cipher is the
same after the Key Setup using a unknown key K and the IV Setup using each
IV of the pair. We have studied in the previous section the differential behaviour
of the NLFSRs in keying mode and of the counter diffusor. Our attack uses
the outlined properties to introduce differences into the counter and then cancel
them, while introducing no differences in the core accumulator.

Indeed, during the first phase of the IV Setup, all the NLFSRs are not up-
dated in the same way. NLFSRs 0 to 7 work in keying mode and are disturbed
by IV bits, each IV bit being used exactly once, while NLFSRs 8 to 15 work
in counter mode. As a consequence, an attacker can only influence the first 8
NLFSRs. In order to introduce no difference in the core accumulator, the counter

diffusor state must remain the same while the counter state varies. The counter
diffusor update depending linearly on the NLFSRs output through matrix M ,
this is possible if and only if the counter output difference lies in the kernel of M .
Furthermore, as the attacker can only introduce differences in the first 8 NLF-
SRs, the counter output difference can only be non zero on the corresponding
components. Unfortunately for VEST security, one such element exists in the
kernel of M (see section 3.2). Thus, if the outputs of the NLFSRs are different
for exactly NLFSRs 0, 4, 5, 6 and 7, the counter diffusor is updated in the same
way as if there were no difference. As a consequence, if there is no difference
in the counter diffusor and in the core accumulator and if the counter output
difference is as above, no difference is introduced in the counter diffusor and in
the core accumulator.

Furthermore, we described in section 3.1 differential patterns on the NLFSRs.
The output difference for these differential patterns is a single 1 followed by w
0’s. If we combine such differential patterns, one pattern for each of the five
NLFSRs 0, 4, 5, 6 and 7, making them start at the same step, and introduce no
difference on the three NLFSRs 1, 2 and 3, and no difference on NLFSRs 0, 4, 5,
6 and 7 after the differential patterns, we get a differential pattern on the whole
counter such that:

– there is a collision on the whole counter state if the starting state of the
counter is in a good set;

– the output of the NLFSRs doesn’t introduce differences in the counter dif-
fusor and in the core accumulator. Indeed the counter output difference is
either all 0’s, or equal to the highlighted element of the kernel of M given
in 3.2.

In order to make the good set explicit, we first remind that during the IV
Setup first phase different NLFSRs are updated independently. Furthermore, we
can extract from the IV the part that affects a particular register. Having a global
collision on the whole counter state is thus equivalent to five partial collisions on
the registers 0, 4, 5, 6 and 7. Thus the set of initial states of the counter that leads
to collisions is the cartesian product S of the sets Sr of registers initial states
that lead to collisions for the IV pairs used. Note that due to the guaranteed
output difference of the partial collisions, this leads to a collision on the whole
cipher state at the end of the first phase of the IV Setup. As no difference is
introduced in the second phase of the IV Setup, there is a collision on the whole
cipher state at the end of the IV Setup.

The idea of the basic attack is to choose for each register an IV pair that
maximizes the number of colliding states. This also maximizes the number of
initial states leading to a collision on the whole counter. If we choose an initial
counter state randomly, the probability it yields a collision is the number of
colliding states divided by the total number of states. For the default member
of a VEST family the value of this probability is:

p ≈ 2−21.24.

We then build IV pairs of length 23 bytes, such that the first 11 bytes are random
and identical, and the last 12 bytes is a fixed IV pair, the composition of the
best IV pairs for registers 0, 4, 5, 6 and 7 and some fixed values for registers 1,
2 and 3. We note that on average 11 bits are enough to completely randomize
the counter state. As a consequence p is the probability that such an IV pair
collides on the IV Setup, resulting in a collision on the whole cipher state after
the IV Setup as explained above. To test this collision, we compare the first 32
bits of the keystream output after each IV setup. If a collision occurs in the IV
Setup the keystream bits are identical. If there is no collision, the probability of
having for two different IVs the same first 32 bits of keystream is 2−32. After
approximately 1/p pairs of IV setups we find with high probability a pair of IVs
yielding the same first keystream bits and with high probability it is because of
an inner collision on the counter.

Once such a pair is obtained, it is easy to retrieve the 53 bits of the keyed state
in registers 0, 4, 5, 6 and 7 (w = 11 for registers 0, 4 and 7, w = 10 for registers
5 and 6). We proceed register by register. Having a collision after the IV Setup,
the state of register i after step 11 is a colliding state for the IV pair extracted
from the colliding IVs by taking the IV part relative to register r, restricted to
step 12 to 23. We then make a guess on this value, among the set Sr of colliding
states. Backtracking the 11 first steps of the IV Setup, we obtain a candidate for
the register value after Key Setup. In order to test this value, starting from the
colliding IV pair, we build another IV pair which only differs on its contribution
to register r. The first 11 bits are chosen to ensure that the new starting value
for register r after the randomizing step belongs to Sr if the guess is correct.
The remaining 12 bits are left unchanged in both element of the IV pair. If the
IV setup using this new pair does not give rise to a collision, we eliminate the
guessed values from the candidates. The probability for a wrong candidate to
pass one test successfully is #Sr/2wr . Iterating this procedure we get rapidly rid
of the wrong candidates. Repeating this procedure on all interesting registers for
some examples we were able to retrieve the value of the registers in the keyed
state using a little less than 500 additional IV setups. It is possible to improve
this basic approach and eliminate several values at once using a single IV setup.
This lowers the number of additional IV setups below 200.

Of course, this attack can easily be adapted to contexts were the IV is longer
than 23 bytes. It can also be adapted when using shorter IVs, as long as the
IV length is greater than 12. In that case, this version of the attack won’t work
anymore for all the keys, since the randomizing of the register states isn’t guar-
anteed to turn the keyed register states into an element of S. Thus the attack
becomes key-dependent.

The limiting part of the attack is the look-up of a collision on the whole
counter. It’s complexity is approximately 2/p ≈ 222.24 IV setups. We imple-
mented this attack. On a Pentium Xeon 2.8 GHz it takes a few minutes on the
average to find a pair of colliding IVs.

4.2 Attack with short IVs

In the previous subsection, we described a differential attack that allows to
recover part of the keyed state provided the IV length is long enough. We also
mentioned that the attack becomes key-dependent when the IV length is reduced,
and that the minimal IV length for which an attack may be possible is 12 bytes.
In this subsection we describe an improved approach that works for all keys
using IVs of minimal length, i.e. 12 bytes.

The former attack generates random states from the keyed state until one
random state falls in a particular set S. The idea of the attack described below
is to generate a family of sets {Si}i which covers the entire state space.

Indeed, for a particular register r, we can associate to a pair of IVs Cr
i for

this register the set of the states starting from which we get the expected register
output difference (1 followed by 0’s) and a collision on the register state after
IV setups using each of the IVs of Cr

i . We saw in section 3.1 that for certain
IV pairs Cr the cardinality of the associated set Sr,#Sr, might be particularly
high. The register size w being only 10 or 11 bits, we saw it was possible to
compute for each IV pairs with IV length w+1 the set of colliding states for this
pair. By doing this we get a family of sets. We have verified that the union of
these sets covers the whole space of register values for any of the proposed non
linear function. Thus, it is possible to select N (r) < 2wr sets, Sr

1 ,Sr
2 , . . . ,Sr

N(r) ,
so that the union of these sets covers {0, 1}wr . By composing 5 families of sets
picked for registers 0, 4, 5, 6 and 7 by cartesian product, we get a family of sets
whose union covers all the possible values for the 53–bit part of the keyed state
made of these registers. The size of this family {Si}i is the product of the size
of the families for each registers: N = N (0)N (4)N (5)N (6)N (7). The elements of
the family are sets of states for which a collision occurs after the IV setup using
an IV pair obtained as a combination of the IV pairs for each register.

Suppose that we have such a family {Si}i and the associated family of IV
pairs. By doing two IV setups for each pair, we are bound to find a pair of IV
for which there is a collision after the IV Setup. The complexity of this attack
in number of IV setups is 2N in the worst case. Furthermore, if we first test the
pairs whose associated set of colliding states is largest, the expected number of
IV setups on the average case becomes smaller.

In order to get the best complexity we have to build for each register a family
of covering IV pairs {Cr

i }i. In order to improve the average complexity, we use
a greedy algorithm to pick up these families. We first build all the colliding sets
for all the IV pairs. We then sort them by decreasing cardinality and pick up the
first pair. We then remove the states in the colliding set of the picked IV pair
from all the unpicked sets and sort again the list of sets by decreasing size. We
iterate this step until we get a list of pairs so that every state is in the colliding
state of a pair in the list. We give in Table 2 the length of the obtained lists for
the functions used by registers 0, 4, 5, 6 and 7 in the default member of a VEST
family.

Once we have obtained the families for the five interesting registers, we have
to combine them to get a family of IV pairs for the whole counter. In order

Table 2. Size of the covering families for some non linear functions

function number covering family size
0 59
1 93
19 77
20 86
2 96

to get the best average complexity for the attack using these 5 families, we
have to test the pairs by decreasing order of their colliding sets of states. For
VEST-v default member the number of pairs is ≈ 231.70. The generic sorting
algorithms are difficult to apply because of the amount of memory required.
However, we do not really need to store the IV pairs order, as long as we are
able to enumerate them rapidly. Furthermore, the only information required to
make the comparison is the size of the colliding states sets for each IV pair. Thus
we are left with the following problem:

Given two lists of integers (ai)1≤i≤Na
, (bj)1≤j≤Nb

sorted by decreasing order,
enumerate in decreasing order all the products aibj .

In [10] and [3], an algorithm is proposed to solve this problem. This algorithm
does not store all the products. Assuming Na > Nb, its time complexity is
O(NaNb log Nb) and its memory complexity O(Nb).

Implementing this algorithm and using the 5 families obtained we were able
to enumerate the 231.70 IV pairs of covering family in decreasing order in less
than 2 hours on a 1.4 GHz Celeron M processor. Noting (Ci)1≤i≤N this list of
pairs, (Si)1≤i≤N the associated list of colliding states and (Ni = #Si)1≤i≤N

the decreasing list of the cardinality of these sets, the mean complexity of the
collision search, evaluated in number of pairs of IV setups is:

C =
N∑

i=1

i · Ni

253
.

Computing this sum during the enumeration of the pairs in decreasing order, we
obtain for the VEST-v default member C ≈ 227.73.

Once a collision is obtained, we have a small list of candidate values for
the keyed state value of every interesting registers. By testing these candidates
separately for each register, we are able to retrieve 53 bits of the keyed state. The
number of additional IV setups for these tests is negligible before the number of
IV setups necessary to find an IV collision.

The attack described in this subsection enables an attacker to retrieve 53
bits of the keyed state in 228.73 IV setups on average and 232.70 in the worst
case. This is slightly more than the complexity of the basic attack. However
this attack uses IVs of minimal length. Indeed, at least 12 steps are required
to create a collision in registers 0, 4 and 7. With longer IVs, of length between
12 and 23 bytes, we can use the beginning of the IVs as a partial randomizer

and add an early abort strategy to the attack of this subsection, to improve the
overall complexity of the attack.

5 Key Recovery

In this section, we show how the partial keyed state value recovered by the
attacks of the previous section can be used to recover the key of the stream
cipher faster than exhaustive search. This enables to evaluate the impact on the
cipher security of the collisions that were discovered in the IV Setup mechanism.

5.1 Backtracking the Key Setup second phase

We begin by backtracking the second phase of the key setup. As all the bits
entering the interesting registers (0, 4, 5, 6 and 7) are known, we are able to
retrieve the states of these registers after the key bits introduction. We also
know that the registers are set to 1 before the key bits introduction. Thus we
are able to perform a meet-in-the-middle attack on the key, even though the key
bits are introduced in all the registers through a sliding window mechanism. The
same kind of attack disqualified double-DES as a successor of DES.

5.2 Meet-in-the-middle attack

One can notice that bits 0 to l − 1 (resp. l to F − 1) of the key are introduced
in register r between step 15 − r and step l − 1 + 15 − r (resp. l + 15 − r and
F − 1 + 15− r). By guessing the first l bits or the last F − l bits of the key, one
can compute the values of register r before step l + 15 − r. This enables us to
implement a time/memory tradeoff attack against VEST ciphers. We build the
table A of the 53–bit values of the 5 interesting registers, at steps l + 15 − r.
This requires 2l memory.

Then, for each 2F−l values j of the end of the key we perform the following:

– backtrack the register values assuming j: we note x the 53–bit value obtained;
– look for i so that A[i] = x. The probability of the match is 2−53;
– for each match, check the key (i||j), where || designates the concatenation.

Complexity. This enables to explore all the keys which sets the states of the
interesting registers to the recovered values. This attack recovers the key used
by the cipher using 2max(F−53,F−l) time and 2l memory. The average number of
keys to test is 2F−53.

5.3 Key recovery through related-key attack

It is also possible to mount a very efficient related key attack. Assume we are
given two ciphers keyed with key K and key K ′ which differs of K only on bit
F − l− 1. Performing our chosen IV attack, we are able to retrieve for both keys

the keyed states of the interesting registers. By guessing the last l bits of the key,
we can backtrack their introduction from the keyed state up to the step after the
key difference introduction for each register. For the correct guess, there should
only be a difference at position 1 of the registers after the backtracking. This
happens with probability 2−53. Thus we are able to check our guesses if l < 53.
For the registers to behave in a random way l should also be larger than their
length.

Once we have determined the last l bits of the key, we can iterate this process
on the unknown part of the key. For a 128–bit key, taking l = 16 we are able to
recover the whole key with 8 related keys performing ≈ 226 IV setups and ≈ 219

partial key introduction backtracking.

5.4 Security Discussion

The attacks described above show that the differential attack result can theoret-
ically be exploited to recover the cipher key faster than exhaustive key search.
It seems that this is also the case in more practical attacker models. This breaks
VEST cipher when it is used with keys of size of the security parameters. In [9,
Section 3.3], the authors of VEST recommend to use keys of size at least twice
the security parameter. In this case VEST could be considered as resistant to
this attack since the complexity of our time memory tradeoff may remain greater
than the security parameter. It will nevertheless fall to the same related-key at-
tack. Anyway, it is usually considered as a bad practice to use cryptosystems
where part of the key material can easily be recovered.

The current specification of VEST stream cipher does not forbid the common
usage consisting of taking a key the length of the security parameter. In the case
of use of a key the length of the security parameter, it even recommends the use
of long IVs, which makes our attack more efficient. In its latest version, VEST
does not meet its claimed security.

6 Existential forgeries for VEST hash MAC mode

VEST can be used as a keyed hash function using the procedure described in
[9, Section 3.4]. The VEST cipher is first keyed. Then the data to be MAC-
ed is introduced into the cipher as an IV during the IV Setup, using a different
constant for the second phase. Finally 2n bits are output by the cipher in counter
mode. In order to finish the description of this keyed hash function, a padding
should be described to hash messages of arbitrary length. Independently of this
padding we can transpose the chosen IV attack into an existential forgery attack.

Indeed, IVs in the previous attacks can be replaced by messages in the current
setting. Thus, asking an oracle for approximately 222.24 chosen message MACs
enables an attacker to retrieve 53 bits of the keyed state of a VEST-v default
member. The attacker can then create a pair of messages that collide and ask
for the MAC of one of the messages. This MAC is the MAC value for the other
message of the pair. This provides an easy existential forgery chosen message
attack.

7 Conclusion

In this paper, we showed that despite its apparent complexity, the VEST stream
cipher has simple properties which allows for the easy creation of internal col-
lision. The overall result gives an efficient partial key recovery attack against
VEST.

Our chosen IV attacks are practical. We were able to generate collisions for
both attacks. The simple attack requires about 30 minutes on an Intel Xeon 2.8
GHz, the short IV attack required a few hours on the same machine.

Once again this shows that IV Setup is a very crucial part of a stream cipher
security [11, 7, 5, 12].

Following this cryptanalysis, the authors of VEST proposed a modified ver-
sion of their algorithm. The update function of the linear counter diffusor has
been changed so that there is no inner collision in the diffusor during the IV
setup. This makes the modified version immune to the differential attack pre-
sented in this paper. However, its security remains to be analyzed in the light of
the weaknesses presented here.

Acknowledgements. We would like to thank Dan Bernstein for his paralleliza-
tion of the key recovery attack.

References

1. A. Biryukov. A new 128 bit key stream cipher : LEX. eSTREAM, ECRYPT Stream
Cipher Project, Report 2005/013, 2005. http://www.ecrypt.eu.org/stream.

2. A. Biryukov. The Design of a Stream Cipher LEX. In E. Biham and A. Youssef,
editors, Selected Areas in Cryptography – SAC 2006, Lecture Notes in Computer
Science. Springer, 2006. to appear.

3. D. Boneh, A. Joux, and P. Nguyen. Why Textbook ElGamal and RSA Encryption
are Insecure. In T. Okamoto, editor, Advances in Cryptology — Proceedings of
ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages
30–43. Springer, 2000.

4. F. Chabaud and A. Joux. Differential Collisions in SHA-0. In H. Krawczyk, editor,
Advances in Cryptology — Proceedings of CRYPTO 1998, volume 1462 of Lecture
Notes in Computer Science, pages 56–71. Springer, 1998.

5. C. Cid, H. Gilbert, and T. Johansson. Cryptanalysis of Pomaranch. eSTREAM,
ECRYPT Stream Cipher Project, Report 2005/060, 2005. http://www.ecrypt.
eu.org/stream.

6. ECRYPT. eSTREAM: ECRYPT Stream Cipher Project, IST-2002-507932. http:
//www.ecrypt.eu.org/stream.

7. E. Jaulmes and F. Muller. Cryptanalysis of ECRYPT Candidates F-FCSR-8 and
F-FCSR-H. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/046, 2005.
http://www.ecrypt.eu.org/stream.

8. S. O’Neil, B. Gittins, and H. Landman. VEST – Hardware-Dedicated Stream
Ciphers. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/032, 2005.
http://www.ecrypt.eu.org/stream.

9. S. O’Neil, B. Gittins, and H. Landman. VEST Ciphers. eSTREAM, ECRYPT
Stream Cipher Project, 2006. http://www.ecrypt.eu.org/stream/p2ciphers/
vest/vest_p2.pdf.

10. R. Schroeppel and A. Shamir. A T = O(2n/2), S = O(2n/4) algorithm for certain
NP-complete problems. SIAM Journal on Computing, 10(3):456–464, 1981.

11. H. Wu and B. Preneel. Chosen IV Attack on Stream Cipher WG. eSTREAM,
ECRYPT Stream Cipher Project, Report 2005/045, 2005. http://www.ecrypt.
eu.org/stream.

12. H. Wu and B. Preneel. Key Recovery Attack on Py and Pypy with Chosen IVs.
eSTREAM, ECRYPT Stream Cipher Project, Report 2006/052, 2006. http://
www.ecrypt.eu.org/stream.

