
Distinguishing Attacks
on the Stream Cipher Py?

Souradyuti Paul‡, Bart Preneel‡, and Gautham Sekar‡†

‡Katholieke Universiteit Leuven, Dept. ESAT/COSIC,
Kasteelpark Arenberg 10,

B–3001, Leuven-Heverlee, Belgium
†Birla Institute of Technology and Science, Pilani, India,

Dept. of Electronics and Instrumentation, Dept. of Physics.
{souradyuti.paul, bart.preneel}@esat.kuleuven.be,

gautham.sekar@gmail.com

Abstract. The stream cipher Py designed by Biham and Seberry is
a submission to the ECRYPT stream cipher competition. The cipher
is based on two large arrays (one is 256 bytes and the other is 1040
bytes) and it is designed for high speed software applications (Py is more
than 2.5 times faster than the RC4 on Pentium III). The paper shows a
statistical bias in the distribution of its output-words at the 1st and 3rd
rounds. Exploiting this weakness, a distinguisher with advantage greater
than 50% is constructed that requires 284.7 randomly chosen key/IV’s
and the first 24 output bytes for each key. The running time and the
data required by the distinguisher are tini · 284.7 and 289.2 respectively
(tini denotes the running time of the key/IV setup). We further show
that the data requirement can be reduced by a factor of about 3 with
a distinguisher that considers outputs of later rounds. In such case the
running time is reduced to tr ·284.7 (tr denotes the time for a single round
of Py). The Py specification allows a 256-bit key and a keystream of 264

bytes per key/IV. As an ideally secure stream cipher with the above
specifications should be able to resist the attacks described before, our
results constitute an academic break of Py. In addition we have identified
several biases among pairs of bits; it seems possible to combine all the
biases to build more efficient distinguishers.

1 Introduction

The cipher Py, designed by Biham and Seberry [3], was submitted to the ECRYPT
project [7] as a candidate for Profile 1 which covers software based stream ciphers
suitable for high-speed applications. In the last couple of years a growing interest
has been noticed among cryptographers to design fast and secure stream ciphers

? This work was supported in part by the Concerted Research Action (GOA) Mefisto
2000/06 and Ambiorix 2005/11 of the Flemish Government and in part by the Eu-
ropean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT.

because of weaknesses being found in many de facto standards such as RC4 and
also due to the failure of the NESSIE project [12] to find a stream cipher that
met its very stringent security requirements. The current stream cipher, namely
Py, is one of the attempts in this direction.

Py is the most recent addition to the class of stream ciphers whose design
principles are motivated by that of RC4 (see [9, 10, 13–15]). Like RC4, Py also
uses the technique of random shuffle to update the internal state. In addition,
Py uses a new technique of rotating all array elements in every round with a
minimal running time. The high performance (it is 2.5 times faster than the RC4
on Pentium III) and its apparent security make this cipher very attractive for
selection to the Profile 1 of the ECRYPT project.

This paper identifies several biased pairs of output bits of Py at rounds t and
t + 2 (where t > 0). The weaknesses originate from the non-uniformity of the
distributions of carry bits in modular addition used in Py. Using those biases, we
have constructed a class of distinguishers. We show that the best of them works
successfully with 284.7 randomly chosen key/IV’s, the first 24 bytes for each key
(i.e., a total of 289.2 bytes) and running time tini · 284.7 where tini is the running
time of the key/IV setup of Py. We also show that a simple adjustment to the
above distinguisher reduces the number of key/IV’s, the data complexity and
the running time to 228.7, a total of 287.7 bytes and tr · 284.7 respectively, where
tr is the running time of a single round of Py. Note that the allowable key-size
and keystream length of Py are 256 bits and 264 bytes respectively. Therefore,
these results imply that – even if our attack has a larger total complexity – Py
fails to provide the security level expected from an ideal stream cipher with the
parameter sizes of Py. Therefore, we believe that our results present a theoretical
break of the cipher; see Sect. 9 for an elaborate discussion on this issue. It is
important to note that the weaknesses of Py which are described in this paper,
still cannot be implemented in practice in view of the its high time complexity.
However, the individual distinguishers open the possibility to combine them in
order to generate more efficient distinguishers.

2 Description of Py

Py is a synchronous stream cipher which normally uses a 32-byte key (however,
the key can be of any size from 1 byte to 256 bytes) and a 16-byte initial value or
IV (IV can also be of any size from 1 byte to 64 bytes). The allowable keystream
length per key/IV is 264 bytes. Py works in three phases – a key setup algorithm,
an IV setup algorithm and a round function which generates two output-words
(each output-word is 4 bytes long). The internal state of Py contains two S-boxes
Y , P and a variable s. Y contains 260 elements each of which is 32 bits long. The
elements of Y are indexed by [-3, -2,..., 256]. P is a permutation of the elements
of {0, ..., 255}. The main feature of the stream cipher Py is that the S-boxes are
updated like ‘rolling arrays’ [3]. The technique of ‘rolling arrays’ means that, in
each round of Py, (i) one or two elements of the S-boxes are updated (line 1 and
7 of Algorithm 1) and (ii) all the elements are cyclically rotated by one position

2

toward the left (line 2 and 8 of Algorithm 1). In our analysis, we have assumed
that, after the key/IV setup, Y , P and the variable s are uniformly distributed
and independent. Under this assumption we analyzed the round function of Py
(or Pseudorandom Bit Generation Algorithm) which is described in Algorithm 1.
See [3] for a detailed description of the key/IV setup algorithms.

The inputs to Algorithm 1 are Y [−3, ..., 256], P [0, ..., 255] and s, which are
obtained after the key/IV setup. Lines 1 and 2 describe how P is updated and
rotated. In the update stage, the 0th element of P is swapped with another
element in P , which is accessed indirectly, using Y [185]. The next step involves
a cyclic rotation by one position, of the elements in P . This implies that the
entry in P [0] becomes the entry in P [255] in the next round and the entry in P [i]
becomes the entry in P [i− 1] (∀i ∈ {1, 2, ..., 255}). Lines 3 and 4 of Algorithm 1
indicate how s is updated and its elements rotated. Here, the ‘ROTL32(s, x)’
function implies a cyclic left rotation of s by x bit-positions. The output-words
(each 32-bit) are generated in lines 5 and 6. The last two lines of the algorithm
explain the update and rotation of the elements of Y . The rotation of Y is carried
in the same manner as the rotation of P .

Algorithm 1 Single Round of Py
Input: Y [−3, ..., 256], P [0, ..., 255], a 32-bit variable s
Output: 64-bit random output

/*Update and rotate P*/
1: swap (P [0], P [Y [185]&255]);
2: rotate (P);

/* Update s*/
3: s+ = Y [P [72]]− Y [P [239]];
4: s = ROTL32(s, ((P [116] + 18)&31));

/* Output 8 bytes (least significant byte first)*/
5: output ((ROTL32(s, 25)⊕ Y [256]) + Y [P [26]]);
6: output ((s ⊕Y [−1]) + Y [P [208]]);

/* Update and rotate Y */
7: Y [−3] = (ROTL32(s, 14)⊕ Y [−3]) + Y [P [153]];
8: rotate(Y);

2.1 Notation and Convention

As Py uses different types of internal and external states (e.g. integer arrays, 32-
bit integer) and they are updated every round, it is important to denote all the
states and rounds in a simple but consistent way. In every round of Py, the S-box
P and the variable s are updated before the output generation (see Algorithm 1).
The other S-box, namely Y , is updated after the output generation.

1. In the beginning of any round i, the components of the internal state are
denoted by Pi−1, si−1 but Yi.

3

2. At the end of any round i, the internal state is updated to Pi, si and Yi+1.
(If the above two conventions are followed, we have Pi, si and Yi in the
formulas for the generation of the output-words in round i (line 5 and 6 of
Algorithm 1)).

3. The nth element of the arrays Yi and Pi, are denoted by Yi[n] and Pi[n]
respectively. The jth bit of Yi[n], Pi[n] and si are denoted by Yi[n](j), Pi[n](j)
and si(j) respectively (following the convention that the least significant bit
is the 0th bit).

4. The output-words generated in line 5 and line 6 of Algorithm 1 are referred
to as the ‘1st output-word’ and the ‘2nd output-word’ respectively.

5. Ol,m denotes the lth (l ∈ {1, 2}) output-word generated in the mth round
of Py. Ol,m(j) denotes the jth bit of Ol,m. For example, O1,3(5) denotes the
5th bit of the 1st output-word in round 3.

6. The ‘+’ operator denotes addition modulo 232 except when it is used to
increment elements of P (particularly in expressions of the form Pi[n] =
Pj [m] + 1, where ‘+’ denotes addition over Z). Similarly, ‘-’ and ‘⊕’ denote
subtraction modulo 232 and bitwise exclusive-or.

7. P [A] denotes the probability of occurrence of the event A.
8. [a, b] denotes the set of all integers between a and b including both.
9. A Pseudorandom Bit Generator will be denoted by PRBG.

2.2 Assumption

We assume that the key setup and the IV setup algorithms of Py are perfect, i.e.,
after the execution of them, the permutation P , the elements of Y and the s are
uniformly distributed and independent. When we are interested in the analysis
of the mixing of bits of the internal state by the PRBG, the above assumption is
reasonable, particularly when it is difficult to derive any relation between inputs
and outputs of the key/IV setup algorithm. Apart from that the assumption is
in agreement with a claim made in Sect. 6.4 of [3] that the key/IV setup leaks
no statistical information on the internal state.

3 Motivational Observation

Our main observation is that, if certain conditions on the elements of the S-box
P are satisfied then the least significant bit (lsb) of the 1st output-word at the
1st round is equal to the lsb of the 2nd output-word at the 3rd round.

Theorem 1. O1,1(0) = O2,3(0) if the following six conditions on the elements of
the S-box P are simultaneously satisfied.

1. P2[116] ≡ −18(mod 32) (event A),
2. P3[116] ≡ 7(mod 32) (event B),
3. P2[72] = P3[239] + 1 (event C),
4. P2[239] = P3[72] + 1 (event D),
5. P1[26] = 1 (event E),

4

G

−1 0 1 254 256 255

−1 0 1 254 255 256

−1 0 1 254 255 256

(a) The S−box Y after Key/IV Set up

(b) Y after the first round

(c) Y after the second round

O11

O23

H G

H G

H

Fig. 1. (a) P1[26] = 1 (condition 5): G and H are used in O1,1, (b) Y2 (i.e., Y after the
1st round), (c) P3[208] = 254 (condition 6): G and H are used in O2,3

6. P3[208] = 254 (event F).

Proof. The formulas for the O1,1, O2,3 and s2 are given below (see Sect. 2):

O1,1 = (ROTL32(s1, 25)⊕ Y1[256]) + Y1[P1[26]] , (1)
O2,3 = (s3 ⊕ Y3[−1]) + Y3[P3[208]] , (2)

s2 = ROTL32(s1 + Y2[P2[72]]− Y2[P2[239]], ((P2[116] + 18) mod 32)) . (3)

• Condition 1 (i.e., P2[116] ≡ −18(mod 32)) reduces (3) to

s2 = s1 + Y2[P2[72]]− Y2[P2[239]] .

• Condition 2 (i.e., P3[116] ≡ 7(mod 32)) together with Condition 1 implies

s3 = ROTL32((s1 + Y2[P2[72]]− Y2[P2[239]] + Y3[P3[72]]− Y3[P3[239]]), 25) .

• Condition 3 and 4 (that is, P2[72] = P3[239] + 1 and P2[239] = P3[72] + 1)
reduce the previous equation to

s3 = ROTL32(s1, 25) . (4)

From (1), (2), (4) we get:

O1,1 = (ROTL32(s1, 25)⊕ Y1[256]) + Y1[P1[26]] , (5)
O2,3 = (ROTL32(s1, 25)⊕ Y3[−1]) + Y3[P3[208]] . (6)

In Fig. 1, conditions 5 and 6 are described. According to the figure,

H = Y1[P1[26]] = Y3[−1] , (7)
G = Y1[256] = Y3[P3[208]] . (8)

5

Applying (7) and (8) in (5) and (6) we get,

O1,1(0) ⊕O2,3(0) = Y1[256](0) ⊕ Y1[P1[26]](0) ⊕ Y3[−1](0) ⊕ Y3[P3[208]](0) = 0 .

This completes the proof. ut

4 Bias in the Distribution of the 1st and the 3rd Outputs

In this section, we shall compute P [O1,1(0) ⊕ O2,3(0) = 0] using the results of
Sect. 3. We now recall the six events (or conditions)A,B, C,D, E, F as described
in Theorem 1. First, we shall compute P [A∩B ∩C ∩D ∩E ∩F]. The elements
involved in the calculation of the probability are P1[26], P2[72], P2[116], P2[239],
P3[72], P3[116], P3[208], and P3[239]. Now we observe that Algorithm 1 ensures
that all the above elements occupy unique indices in round 1. We calculate the
probabilities step by step using Bayes’ rule under the assumption described in
Sect. 2.2.

1. P [E] = 1
256 ,

2. P [E ∩ F] = P [F |E] · P [E] = 1
255 · 1

256 ,

3. P [A ∩ E ∩ F] = P [A|E ∩ F] · P [E ∩ F] = 8
254 · 1

255 · 1
256 ,

4. P [A ∩B ∩ E ∩ F] = P [B|A ∩ E ∩ F] · P [A ∩ E ∩ F] = 8
253 · 8

254 · 1
255 · 1

256 ,

5. Similarly, P [A ∩B ∩ C ∩ E ∩ F] = 247
251·252 · 8

253 · 8
254 · 1

255 · 1
256 ,

6. P [A ∩B ∩ C ∩D ∩ E ∩ F] ≈ 244
249·250 · 247

251·252 · 8
253 · 8

254 · 1
255 · 1

256 ≈ 2−41.9 .

Under the assumption of randomness and uniformity of the distributions of the
S-box elements and of s after the key/IV setup, if any of the six events – described
in Theorem 1 – does not occur then P [O1,1(0)⊕O2,3(0) = 0] = 1

2 (see Appendix A
for a justification for that). That is,

P [O1,1(0) ⊕O2,3(0) = 0|(A ∩B ∩ C ∩D ∩ E ∩ F)c] =
1
2
.

We denote the event A ∩ B ∩ C ∩D ∩ E ∩ F by L and its complement by Lc.
Therefore,

P [O1,1(0) ⊕O2,3(0) = 0] = P [O1,1(0) ⊕O2,3(0) = 0|L] · P [L]
+ P [O1,1(0) ⊕O2,3(0) = 0|Lc] · P [Lc]

= 1 · 2−41.91 +
1
2
· (1− 2−41.91)

=
1
2
· (1 + 2−41.91) . (9)

Note that, if Py had been an ideal PRBG then the above probability would have
been exactly 1

2 .

6

5 The Distinguisher

A distinguisher is an algorithm which distinguishes a stream of bits from a per-
fectly random stream of bits, that is, a stream of bits that has been chosen
according to the uniform distribution. There are several ways a cryptanalyst
may try to distinguish between a string, generated by an insecure pseudoran-
dom bit generator, and one from a perfectly random source. In one case, she
selects a single key/IV randomly and produce keystream, seeded by the chosen
key/IV, long enough to distinguish it from random with high success probability.
This attack scenario is rather common and such distinguisher is called a regu-
lar distinguisher. In a different scenario, to build a distinguisher, the adversary
may use many randomly chosen key/IV’s rather than a single key and a few
specified bytes from each of the keystreams generated by those key/IV’s. The
distinguisher, so constructed, is called a prefix distinguisher. A bias present in
the output at time t in a single stream may hardly be detected by a regular
distinguisher but a prefix distinguisher can easily discover the anomaly with a
few bytes. This fact was nicely demonstrated by Mantin and Shamir [11] to de-
tect a strong bias toward zero in the second output byte of RC4. In addition to
that, there exist hybrid distinguishers that may fall between the above two ex-
treme cases, that is, the adversary may use many key/IV’s and for each key/IV
she collects long keystream. The idea of constructing distinguishers using many
randomly chosen key/IV’s has been a well studied subject. Goldreich has shown
that a distribution which is computationally indistinguishable from the uniform
distribution based on a single sample is also computationally indistinguishable
from the uniform distribution based on multiple samples [8].

The distinguishers that we construct in this section and Sect. 6, using the
bias described in Sect. 4, are prefix distinguishers. In Sect. 7, we build a regu-
lar distinguisher ; however, the number of outputs needed for this distinguisher
exceeds the allowable keystream length per key/IV. In Section 8, we propose a
hybrid distinguisher mainly to reduce the time cost of our prefix distinguisher.

Algorithm 2 A Distinguisher separating Py from Random
Input: An n-bit sequence (z1, z2, z3, · · · , zn)
Output: Whether the sequence is random or generated by Py
1: Compute LLR =

P
i log(P0[zi]

P1[zi]
);

2: If LLR ≥ 0 then return 1 (i.e., “The sequence is from Py”)
else 0 (i.e., “The sequence is random”);

Algorithm 2. The prefix distinguisher that separates Py from random is de-
scribed in Algorithm 2. The input to the algorithm is a realization of the
sequence of binary random variables (z1, z2, z3, · · · , zn). The adversary first
generates n key/IV pairs X1, X2, X3, · · · , Xn randomly and then computes
zi = O1,1(0) ⊕ O2,3(0) for all Xi, 1 ≤ i ≤ n. Using the results obtained by

7

Baignères, Junod and Vaudenay [1], it can be shown that Algorithm 2 is an
optimal distinguisher. Given a fixed number of samples, an optimal distinguisher
attains the maximum advantage. Note that the random variables zi’s are inde-
pendent of each other and each of them follows the distribution computed in
Sect. 4 (call the distribution D0). Let the uniform distribution on alphabet [0, 1]
be denoted by D1. In Algorithm 2, P0[zi] (shorthand for PD0 [zi]) denotes the
probability of occurrence of zi when chosen according to D0 (similarly P1[zi]
and PD1 [zi]).

Let the Algorithm 2, the sequence of variables (z1, z2, z3, · · · , zn) and the
quantity

∑
i log(P0[zi]

P1[zi]
) be denoted by F , Z and LLR respectively. Now we will

compute the advantage of F (the advantage of this distinguisher has been inde-
pendently calculated by Paul Crowley [5]). The advantage of a distinguisher –
a measure indicating the efficiency of an algorithm to distinguish a distribution
from another – is given by the following formula [1]:

AdvnF =
∣∣PDn0

[F(Z) = 1]− PDn1
[F(Z) = 1]

∣∣ . (10)

Following the results in [1], it can be shown that for large n,

PDn0
[F(Z) = 1] = PD0 [LLR ≥ 0] ≈ Φ

(√
nµ0

σ0

)
,

PDn1
[F(Z) = 1] = PD1 [LLR ≥ 0] ≈ Φ

(√
nµ1

σ1

)
.

where Φ is the standard normal distribution function expressed as,

Φ(z) =
1√
2π

∫ z

−∞
e−

1
2u

2
du.

If the two distributions D0 and D1 are close (i.e.,
∣∣P0[z]− P1[z]

∣∣� P1[z]) then

µ0 ≈ −µ1 ≈ 1
2

∑

z∈[0,1]

(P0[z]− P1[z])2

P1[z]
and σ2

0 ≈ σ2
1 ≈

∑

z∈[0,1]

(P0[z]− P1[z])2

P1[z]
.

The above equations suggest that, for a given n, using the known distributions D0

and D1, the advantage of Algorithm 2 can be computed from (10). Some simple
calculations show that, if P0[0] − P1[0] = 1

M , then, to ensure the advantage of
the distinguisher to be greater than 0.5, the required number of samples is

n = 0.4624 ·M2 . (11)

In the present case P0[0] − P1[0] = 1
242.9 (see Sect. 4). Therefore, from (11),

n = 0.4624 · (242.9)2 = 284.7 samples (i.e., as many randomly chosen key/IV’s)
can distinguish Py from random with an advantage that exceeds 0.5. The time
cost to build this distinguisher is tini · 284.7 where tini is the running time of the
key/IV setup of Py. Note that, for each key/IV, we collect the first 24 bytes of the
keystream. Therefore, the number of bytes required to establish the distinguisher
is 284.7 · 24 = 289.2.

8

6 Biases among other Pairs of Bits and Distinguishers

In Sect. 4, we have showed a bias in (O1,1(0), O2,3(0)). In this section, we show
that the bias is present in (O1,1(i), O2,3(i)), where 0 ≤ i ≤ 31; however, the bias
gradually reduces as i increases. From (1) and (2), we get:

O1,1(i) = ROTL32(s1, 25)(i) ⊕ Y1[256](i) ⊕ Y1[P1[26]](i) ⊕ c1(i) ,

O2,3(i) = s3(i) ⊕ Y3[−1](i) ⊕ Y3[P3[208]](i) ⊕ c3(i) ,

where 0 ≤ i ≤ 31 and c1, c3 are the carry terms in (1) and (2) respectively.

A Special Case. If all the 6 conditions of Theorem 1 are satisfied, O1,1 and
O2,3 can be written in the following form (see Theorem 1):

O1,1 = (S ⊕G) +H , (12)
O2,3 = (S ⊕H) +G , (13)

which implies that

O1,1(i) ⊕O2,3(i) = c1(i) ⊕ c3(i), 0 ≤ i ≤ 31 ,

where the carries c1(i) and c3(i) can be calculated from the following recursive
relations (note that c1(0) = c3(0) = 0),

c1(i) = c1(i−1)(S(i−1) ⊕G(i−1))⊕ c1(i−1)H(i−1) ⊕
H(i−1)(S(i−1) ⊕G(i−1)) , (14)

c3(i) = c3(i−1)(S(i−1) ⊕H(i−1))⊕ c3(i−1)G(i−1) ⊕
G(i−1)(S(i−1) ⊕H(i−1)) . (15)

Computing P [O1,1(i) ⊕O2,3(i) = 0]. Note that

P [O1,1(i) ⊕O2,3(i) = 0] = P [O1,1(i) ⊕O2,3(i) = 0|L] · P [L]
+ P [O1,1(i) ⊕O2,3(i) = 0|Lc] · P [Lc]
= P [c1(i) ⊕ c3(i) = 0|L]︸ ︷︷ ︸

pi

·P [L]

+ P [O1,1(i) ⊕O2,3(i) = 0|Lc]︸ ︷︷ ︸
Xi

·P [Lc] , (16)

where i ∈ [0, 31] and the event L is A ∩ B ∩ C ∩ D ∩ E ∩ F . Note that four
components are involved in (16); they are P [L], P [Lc], pi and Xi. Next, we show
how to determine these four quantities.

1,2. Computing P [L] and P [Lc]: the results in Sect. 4 show that P [L] = 2−41.9

and P [Lc] = (1− 2−41.9).

9

3. Computing pi: now we recursively compute P [c1(i) ⊕ c3(i) = 0|L], denoted
by pi in (16) (similarly pi−1 should be understood), from the following equation
derived directly from (14) and (15).

c1(i) ⊕ c3(i) = (c1(i−1) ⊕ c3(i−1))(S(i−1) ⊕G(i−1) ⊕H(i−1))⊕
S(i−1)(G(i−1) ⊕H(i−1)) . (17)

Note that the variables G, H, S are uniformly distributed and independent. The
truth table for (17) is shown in Table 1. From Table 1, using Bayes’ rule, we

Table 1. Truth table for (17). The last column in each row indicates the probability
of the occurrence of that row

c1(i−1) ⊕ c3(i−1) S(i−1) B(i−1) A(i−1) c1(i) ⊕ c3(i) Probability

0 0 0 0 0 pi−1/8

0 0 0 1 0 pi−1/8

0 0 1 0 0 pi−1/8

0 0 1 1 0 pi−1/8

0 1 0 0 0 pi−1/8

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0 pi−1/8

1 0 0 0 0 (1− pi−1)/8

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0 (1− pi−1)/8

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

obtain the following recursion to compute pi,

pi =
pi−1

2
+

1
4
.

We already know that p0 = 1 (i.e., P [O1,1(0) ⊕ O2,3(0) = 0|L] = 1). Therefore,
solving the above recurrence relation, finally we get

pi =
1
2

+
1

2i+1
, 0 ≤ i ≤ 31 . (18)

4. Computing Xi: according to the results obtained in Appendix A it is
reasonable to assume that

Xi =
1
2
, for all i ∈ [0, 24] ∪ [26, 31] .

10

General Expression. Using the above results, recalling (16), we find,

P [O1,1(i) ⊕O2,3(i) = 0] =
1
2

(1 + 2−(41.9+i)) , (19)

where i ∈ [0, 24] ∪ [26, 31]. It is also reasonable to assume (due to the event L′

as described in Appendix A) that

P [O1,1(25) ⊕O2,3(25) = 0] ≥ 1
2

(1 + 2−(41.9+25))

≥ 1
2

(1 + 2−66.9) .

From (19), one may see that P [O1,1(i) ⊕ O2,3(i) = 0] attains the maximum
value if i = 0. Our distinguisher, described in Sect. 4 and 5, exploits the case
if i = 0. Equation (19) suggests that many distinguishers can be generated us-
ing different (O1,1(i), O2,3(i))’s rather than only (O1,1(0), O2,3(0)), however, the
amount of bias decreases as i increases (i.e., we get the most effective distin-
guisher if i = 0). For example, if i = 1,

P [O1,1(1) ⊕O2,3(1) = 0] =
1
2

(1 + 2−42.91) .

For the above case, taking the 1st bits of O1,1 and O2,3, the number of samples
(i.e., the number of key/IV’s) required to establish a distinguisher with advantage
exceeding 0.5 is 286.7 (see (11)). Similarly, if we consider i = 2 then the number
of required samples is 288.7.

7 Generalizing the Bias at Rounds t and t + 2: A
Distinguisher Using a Single Keystream

Under assumptions similar to those in Sect. 2.2, the results of Sect. 3 and Sect. 4
are valid even if we consider any rounds t and t+2 (t > 0) instead of just rounds
1 and 3. In other words, instead of (O1,1(0), O2,3(0)), one can show that the bias
exists even in the distribution of (O1,t(i), O2,(t+2)(i)). Now, we state a theorem
which is the generalized version of Theorem 1.

Theorem 2. O1,t(0) = O2,(t+2)(0) if the following six conditions on the elements
of the S-box P are simultaneously satisfied.

1. Pt+1[116] ≡ −18(mod 32),
2. Pt+2[116] ≡ 7(mod 32),
3. Pt+1[72] = Pt+2[239] + 1,
4. Pt+1[239] = Pt+2[72] + 1,
5. Pt[26] = 1,
6. Pt+2[208] = 254.

11

Using the above theorem and the techniques used before, it is easy to show
that (see (9))

P [O1,t(0) ⊕O2,(t+2)(0) = 0] =
1
2

(1 + 2−41.91) .

The fact that the above probability is valid,∀ t > 0, allows us to generate a
regular distinguisher with the number of rounds 284.7 of a single keystream (see
Sect. 5 for a definition of a regular distinguisher). This means that 284.7 × 23 =
287.7 bytes of a single stream generated by a randomly chosen key/IV are suffi-
cient to distinguish Py from random with success probability greater than 0.5.
The work-load here is also comparable to 287.7. However, this attack is ren-
dered ineffective because the amount of required bytes falls outside the allowable
keystream length of 264 bytes.

8 A More Efficient Hybrid Distinguisher

The results of Sect. 5 and Sect. 7 lead us in a natural way to build a hybrid
distinguisher by making a trade-off between the number of key/IV’s and output
bytes per key/IV. It is apparent from the previous discussion that, to realize our
distinguisher, we need 284.7 pairs of internal states (recall that the internal state
of Py consists of the arrays P , Y and a 32-bit integer s) with each pair being
separated by one round. Then, under the assumption that the first state of each
pair is randomly generated, those pairs can be used to build a distinguisher.
As the allowable number of rounds per key/IV is 264−8 = 256, the number
of required key/IV’s is 284.7−56 = 228.7 to construct this hybrid distinguisher.
The main difference between the prefix distinguisher in Sect. 5 and this hybrid
distinguisher is that the running time to build this hybrid distinguisher is much
smaller, as it requires the key/IV setup to run only for 228.7 times compared
to 284.7 times for the previous prefix distinguisher. Therefore, the time and the
data complexity of this distinguisher are tr · 284.7 and 287.7 bytes respectively,
where tr is the running time of a single round of Py. Furthermore, this hybrid
distinguisher does not breach the cipher specifications.

9 Do Our Distinguishers Break the Cipher Py?

The subject of what constitutes a break of a practical stream cipher or a PRBG is
a highly contentious issue even if the area is quite well developed in theory. The-
oretically, a cryptographically strong pseudorandom bit generator (CSPRBG)
is an algorithm A that, on being given a random seed k as input, generates a
sequence of pseudo-random bits a1, a2, a3, · · · . The function A possesses the
following properties (see Blum and Micali [4]):

1. Each bit ai can be produced in time polynomial in the length of seed k.
2. Given the algorithm A and the first s output bits generated by an unknown

seed k, it is computationally infeasible to predict the s+ 1st bit with biased
probability. The s is polynomial in the length of the seed k.

12

We see that, theoretically, a PRBG is studied according to how it behaves when
the length of seed is increased asymptotically. The major problem in fitting the
analyses of practical stream ciphers into the above framework is that, most of
the ciphers work with fixed sized keys and keystream bits (e.g. Py allows 256-
bit key and 264 bytes of keystream per key/IV pair). Such constraints make
the asymptotic analyses of practical stream ciphers impossible. For a practical
PRBG with a fixed sized key (such as Py), given the first s output bits generated
by an unknown key/IV, the s+ 1st bit can be predicted with a high probability
with running time bounded above by a trivial exhaustive search. As there is
no non-trivial upper bound on the running time of a distinguishing attack on a
stream cipher (or PRBG) with a fixed sized key, any legal distinguishing attack
with running time less than exhaustive search constitutes an academic break of
the cipher.1 Therefore, our attacks from Sect. 5, Sect. 6 and Sect. 8 imply a
theoretical break of Py. However, it should be noted that each of the attacks
presented in the paper requires a workload larger than 285 and therefore, poses
no practical threats to the cipher.

Do our distinguishing attacks on Py violate the designers’ claims?

The stream cipher Py is claimed by the designers to have up to 256-bit se-
curity (see Appendix A of [3]). In the authors’ words, “The security claims are
for keys up to 256 bits (32 bytes) and IVs up to 128 bits (16 bytes)”. 256-bit is
also the category of security level under which Py is included in the ECRYPT
project [6]. According to the discussion on the definition of n-bit security of a
perfectly secure stream cipher, it is clear that this claim is compromised by our
attacks.

However, in Sect. 6.1 of [3], the authors claim,“There are no distinguishing
attacks that succeed given less than 264 bytes of key stream with a complexity
less than of exhaustive search.” It is understood from [2], that those 264 bytes,
as mentioned in the claim, may be generated by many keys rather than a single
key. Under this interpretation, our attacks do not violate this claim, since our
best attack requires 287.7 bytes of output.

As a result we conclude that two claims, mentioned above, contradict each
other with respect to the attacks mentioned in this paper. At this point, we leave
it to the reader to decide on the implications of our distinguishers.

10 Future Work

One could try to combine the individual biases of the pairs of bits presented
here to develop a more sophisticated distinguisher with fewer output bytes. Paul
Crowley has reduced the time and output bytes of our distinguisher to 272 each,
by analyzing our observation in Sect. 3 using a Hidden Markov Model [5]. A
plausible strategy consists of identifying many more correlations between internal
1 A legal distinguishing attack is the one which does not violate the specified param-

eters of the cipher.

13

and external states of Py in order to reduce the time and data complexity of the
distinguisher.

11 Conclusion and Remarks

The paper presented several weaknesses of the stream cipher Py. We discovered
a class of distinguishers for the cipher, the best of which works with 287.7 bytes
and comparable time. We also showed that the output stream of Py with a
recommended keystream length of 264 bytes, contains biases at different points
– this fact can be exploited to build more effective distinguishers. These results
break the cipher Py academically. However, the data complexity for the best
distinguishing attack falls well beyond the time complexity what is feasible today.
Therefore, these weaknesses pose no practical threat to the security of the cipher
at this moment. However, the shortened version of Py, known as Py6, may
contain more serious weaknesses than the ones described here, but the complete
description of Py6 has not been provided in [3].

Acknowledgments

We thank Paul Crowley for providing us with useful references. It is a great
pleasure to thank Eli Biham for his comments on our work. Thanks are due
to Hongjun Wu and Jongsung Kim for numerous valuable discussions. We also
acknowledge the constructive comments of the anonymous reviewers of FSE’06.

References

1. T. Baignères, P. Junod and S. Vaudenay, “How Far Can We Go Beyond Linear
Cryptanalysis?,”Asiacrypt 2004 (P. Lee, ed.), vol. 3329 of LNCS, pp. 432–450,
Springer-Verlag, 2004.

2. E. Biham, Personal Communication, Dec. 2005.
3. E. Biham, J. Seberry, “Py (Roo): A Fast and Secure Stream Cipher using Rolling

Arrays,” eSTREAM, ECRYPT Stream Cipher Project, Report 2005/023, 2005.
4. M. Blum, S. Micali, “How to Generate Cyptographically Strong Sequence of Psudo-

random Bits,”Siam Journal of Computing, vol. 13, No. 4, pp. 850–864, November
1984.

5. P. Crowley, “Improved Cryptanalysis of Py,” Workshop Record of SASC 2006 –
Stream Ciphers Revisited, ECRYPT Network of Excellence in Cryptology, February
2006, Leuven (Belgium), pp. 52–60.

6. Daniel. J. Bernstein, “Comparison of 256-bit stream ciphers at the beginning of
2006,” Workshop Record of SASC 2006 – Stream Ciphers Revisited, ECRYPT
Network of Excellence in Cryptology, pp. 70–83.

7. Ecrypt, http://www.ecrypt.eu.org.
8. O. Goldreich, “Lecture Notes on Pseudorandomness–Part-I,” Department of Com-

puter Science, Wiezmann Institute of Science, Rehovot, Israel, January 23, 2001.
9. G. Gong, K. C. Gupta, M. Hell, Y. Nawaz, “Towards a General RC4-Like

Keystream Generator,” First SKLOIS Conference, CISC 2005 (D. Feng, D. Lin,
M. Yung, eds.), vol. 3822 of LNCS, pp. 162–174, Springer-Verlag, 2005.

14

10. Robert J. Jenkins Jr., “ISAAC,” Fast Software Encryption 1996 (D. Gollmann,
ed.), vol. 1039 of LNCS, pp. 41–49, Springer-Verlag, 1996.

11. I. Mantin, A. Shamir, “A Practical Attack on Broadcast RC4,” Fast Software
Encryption 2001 (M. Matsui, ed.), vol. 2355 of LNCS, pp. 152–164, Springer-
Verlag, 2001.

12. NESSIE: New European Schemes for Signature, Integrity and Encryption,
http://www.cryptonessie.org.

13. Souradyuti Paul, Bart Preneel, “A New Weakness in the RC4 Keystream Generator
and an Approach to Improve the Security of the Cipher,” Fast Software Encryption
2004 (B. Roy, ed.), vol. 3017 of LNCS, pp. 245–259, Springer-Verlag, 2004.

14. Hongjun Wu, “A New Stream Cipher HC-256,” Fast Software Encryption 2004
(B. Roy, ed.), vol. 3017 of LNCS, pp. 226–244, Springer-Verlag, 2004.

15. Bartosz Zoltak, “VMPC One-Way Function and Stream Cipher,” Fast Software
Encryption 2004 (B. Roy, ed.), vol. 3017 of LNCS, pp. 210–225, Springer-Verlag,
2004.

A Uniformity of Bits If L Does Not Occur

We first write the general formula to calculate Z = O1,1 ⊕O2,3.

O1,1 = (ROT32(s, 25)⊕G) +H , (20)
O2,3 = (ROT32(ROT32(s+ I − J , r) +K − L , l)⊕M) +N , (21)

where
s = s1, G = Y1[256], H = Y1[P1[26]], I = Y2[P2[72]], J = Y2[P2[239]], r =
P2[116] + 18 mod 32, K = Y3[P3[72]], L = Y3[P3[239]], l = P3[116] + 18 mod 32,
M = Y3[−1], N = Y3[P3[208]].

Below we isolate 18 cases, divided into 4 groups, where the relation between
internal and external states is not trivial. The symbol ‘/’ is used to mean ‘or’.
Note that the equalities in each group are satisfied if they do not violate the
condition of uniqueness of permutation elements of S-box P . The notation A⇔
B signifies that the A and B are identical elements in two different rounds of
the S-box Y (i.e., A = B but their indices may be changed in different rounds).

1. I ⇔ N/M , J ⇔M/N , K ⇔ G/H, L⇔ H/G (a total of 4 cases). See Fig.2.
2. I ⇔ K/L, J ⇔ L/K, M ⇔ H, N ⇔ G (a total of 2 cases). See Fig.3.
3. I ⇔ N/M , J ⇔ K/L. The G is identical to one of the remaining two

elements (so is the H) (a total of 6 cases). See Fig.2.
4. Similar to the above, J ⇔M/N , I ⇔ L/K. The G is identical to one of the

remaining two elements (so is the H) (a total of 6 cases).

Fact 1 After the key/IV setup, if the permutation P falls outside all of the 18
cases described above then O1,1 and O2,3 are independent and uniformly dis-
tributed over [232 − 1, 0].

Now we denote O1,1(0) ⊕O2,3(0) by R0.

15

Group 1 Group 3

H

I

J

G

N/M

M/N

K/L

L/K

I

J

N/M

K/L

L/K

H/G

G/H

M/N

Fig. 2.

Theorem 3. After the key/IV setup, let the S-box P be one of the 16 cases
described in Groups 1,3 and 4. Then

Prob[R0 = 0 |P] =
1
2
.

Proof. Now we prove the theorem by considering Groups 1, 3 and 4 separately.
Group 1 (see Fig. 2). For this group, R0 can be written in the following form,

R0 = s(7) ⊕ s(w) ⊕ (G(0) ⊕H(0) ⊕K(u) ⊕ L(u))
⊕(I(w) ⊕ J(w) ⊕M(0) ⊕N(0))⊕ C.

Note that the C is a nonlinear function of several bits of s, M , N , H, G. Now
we take three possible subcases.

1. If u 6= 0 then R0 is uniformly distributed since C is independent of K(u) and
L(u).

2. If u = 0, w 6= 0 then R0 is uniformly distributed since C is independent of
I(w) and J(w).

3. If u = 0, w = 0 then R0 = s(7)⊕s(0). Therefore, R0 is uniformly distributed.

Group 3 (see Fig. 2). R0 can be written in the following form,

R0 = s(7) ⊕ s(w) ⊕ (G(0) ⊕N(0))⊕ (K(u) ⊕ J(w))
⊕(H(0) ⊕ L(u))⊕ (M(0) ⊕ I(w))⊕ C.

Of the 6 cases in Group 3, we are considering only the following case where
I ⇔ M , J ⇔ K, G ⇔ N and H ⇔ L. In a similar way as above we divide this
case into three subcases.

1. If u 6= 0 then C is independent of L(u) and thus R0 is uniformly distributed.

16

2. If u = 0, w 6= 0 then R0 is uniformly distributed since C is independent of
J(w).

3. If u = 0, w = 0 then R0 = s(7)⊕s(0). Therefore, R0 is uniformly distributed.

All the other 5 cases of this group can be proved in a similar fashion.
Group 4. Proof for this group is similar to that for Group 3. ut

Group 2(b)

HN

K I

L J

GM

HN

K I

L J

GM

 Group 2(a)

Fig. 3. Group 2(a): I ⇔ K, J ⇔ L, M ⇔ H, N ⇔ G; Group 2(b): I ⇔ L, J ⇔ K,
M ⇔ H, N ⇔ G

Discussion. From Fact 1 and Theorem 3, it is clear that, if P does not fall
within Group 2 then Prob[R0 = 0|P] = 1

2 . The probability of the occurrence
of Group 2 is approximately 2−31. Therefore, for a fraction of (1 − 2−31) of all
cases, R0 is uniformly distributed. Sect. 4 shows that, for the event L occurring
with probability 2−41.9, Prob[R0 = 0 |P = L] = 1.

Therefore, we are able to prove that, for a fraction of (1− 2−31.001) of cases,
there exists a bias in R0 toward zero. It is, however, nontrivial to determine the
distribution of R0 for the remaining fraction of 2−31.001 of the cases, because of
vigorous mixing of bits in a nonlinear way. Our experiments suggest that it is
very unlikely that the positive bias generated in a large fraction of (1− 2−31.01)
of the cases can be compensated by a very minuscule fraction of 2−31.001 of them.
According to a small number of experiments that we carried out, a slight bias
toward zero was detected for that remaining fraction of 2−31.001 also. However,
we ignored that bias and assumed R0 to be uniformly distributed for those cases
in building the distinguishers described in the paper.

In addition to the event L, for which Ri is biased toward zero ∀i ∈ [1, 31] (see
Sect. 6), we also identify another event L′, for which R25 is again biased toward
zero (all other Ri’s are uniformly distributed individually). The event L′ oc-
curs when P2[116] ≡ −18(mod 32), P3[116] ≡ 7(mod 32), P2[72] = P3[72] + 1,
P2[239] = P3[239] + 1, P1[26] = 1, P3[208] = 254 (see Group 2(a) of Fig. 3). Us-
ing similar arguments as above, it can be shown that Ri is uniformly distributed
over [0, 1] for the rest of the cases.

17

