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Abstract. In this article we present a detailed analysis of the impact
of carries on the estimation of the attack complexity for SHA-1. We
build up on existing estimates and refine them. We show that the attack
complexity is slightly lower than estimated in all published work to date.
We point out that it is more accurate to consider probabilities instead
of conditions.

1 Introduction

In past years, significant progress has been made in the cryptanalysis of the hash
functions MD4, MD5, RIPEMD, SHA-0, and SHA-1 [2,3,5,6,9,10,11,13,14,15]. In
2004 and 2005, Wang et al. announced that they had broken the hash functions
MD4, MD5, RIPEMD, HAVAL, SHA-0, and SHA-1 [16,17,19,20,21].

SHA-1, a widely used hash function in practice, has attracted most attention
over the last years. This year, at the CRYPTO 2005 rump session, Wang et
al. announced that they have further improved their attack on SHA-1. They
updated the attack complexity from 269 to 263 [18].

As it will be explained in Section 2, the attack complexity is mainly de-
termined by the probabilities of so-called 6-step local collisions in a linearized
variant of SHA-1. For each local collision, the attacker derives conditions such
that the local collision holds for the original SHA-1. Based on the derived condi-
tions the attack complexity is conjectured. The main contribution of this article
is that we will show that it is more accurate to look at probabilities instead of
estimating the attack complexity based on the number of conditions.

The remainder of this article is structured as following. We start with a short
description of the hash function SHA-1 and review the basic attack strategy
of Wang et al. in Section 2. In Section 3, we perform a detailed analysis of
local collisions. Section 3.2 describes how Wang et al. derive conditions for local
collisions. In Section 3.3 and Section 3.4 we present a more accurate analysis of
local collisions and the corresponding probabilities. Based on these results we
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update the complexity of the collision attack on SHA-1 in Section 3.5. Finally,
we present conclusions in Section 4.

2 Collision Attacks on SHA-1

In this section we will review the basic attack strategy for collision attacks on
SHA-1. We start with a short description of SHA-1, giving only the details we
need later in this article.

2.1 Short Description of SHA-1

The input message is split into 512-bit message blocks (after padding). The
compression function is then applied to each of these 512-bit message blocks.
The compression function basically consists of two parts: the message expansion
and the state update. The message expansion expands the 512-bit input message
block into 80 32-bit words Wi that are used in each step of the state update. A
single step of the state update is shown in Figure 1.
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Fig. 1. One step of the state update of SHA-1

As it can be seen in Figure 1, in each step the function f is applied to the
inputs Bi, Ci, and Di. The function f depends on the step number: steps 0 to
19 (round 1) use fIF and steps 40 to 59 (round 3) use fMAJ . fXOR is applied
in the remaining steps (round 2 and 4). The functions are defined as:

fIF (B,C, D) = B ∧ C ⊕B ∧D (1)
fMAJ (B,C, D) = B ∧ C ⊕B ∧D ⊕ C ∧D (2)
fXOR(B,C, D) = B ⊕ C ⊕D . (3)

For a detailed description of SHA-1 refer to [12].

2.2 The Basic Attack Strategy on SHA-1

In 1998, Chabaud and Joux presented an attack on SHA-0 [3]. They used a
linearized variant of SHA-0 to find a characteristic, which we will refer to as L-
characteristic throughout the remainder of this article. For the linearized variant
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all modular additions are replaced by XOR and the functions fMAJ and fIF

are replaced by fXOR. They observed the following: the probability that the
characteristic holds for the original SHA-1 is related to the Hamming weight of
the characteristic. In general, the lower the weight the higher the probability.

In 2004 and 2005, Wang et al. announced that they have broken the hash
functions MD4, MD5, RIPEMD, SHA-0, and SHA-1 [19,20,21]. For the colli-
sion attack on SHA-1 they use basically the following strategy, which is also
depicted in Figure 2. They search for a low-weight L-characteristic that leads
to a pseudo collision in the last 60 steps (referred to as P2 in Figure 2). Then
by using a nonlinear characteristic (referred to as NL-characteristic) in the first
20 steps (referred to as P1 in Figure 2), they are able to turn the pseudo colli-
sion into a collision. Furthermore, they improved their attack by searching for
an L-characteristic that leads to a pseudo-near collision in P2. As before, they
turn the pseudo collision into a collision with the NL-characteristic and by us-
ing two-block messages they construct a collision from the near collision in each
block. The fact that it is easier to find a near collision than a collision was ob-
served already by Biham and Chen in [1]. An important property of this attack
strategy is that the NL-characteristic has no impact on the complexity of the
attack since conditions in P1 are fulfilled by using message modification tech-
niques invented by Wang et al. Therefore, only the L-characteristic determines
the attack complexity.

collision

pseudo collision

pseudo-near collision

 = 00

 = 0

 0  0

 = 0

IV
state

out

20 79L-characteristic

P1 P2

Fig. 2. Attack strategy of Wang et al.

The L-characteristic consists of overlapped single local collisions as it has
been shown in [19]. To determine the attack complexity, Wang et al. count the
number of conditions for each local collision such that it holds for the origi-
nal SHA-1. Then they conjecture the attack complexity by assuming that after
fulfilling the first 20 steps, random trials are performed to find the colliding
messages. The complexity for this random trials is estimated to be 2# conditions.

Many researchers investigated the L-characteristic and tried to find L-charact-
eristics with lower weight. A possible approach is to exploit coding theory since
finding a low-weight L-characteristic in P2 corresponds to finding a low-weight
codeword in a linear code describing P2. Results of the coding-theory approach
are presented for instance in [8,11,13,15]. In 2005, Jutla and Patthak [7] used a
computer aided proof to show that the minimum Hamming weight in the last
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Table 1. Notation

notation description

step the SHA-1 compression function consists of 80 steps, 0 ≤ i ≤ 79
round the SHA-1 compression function consists of 4 rounds = 4× 20 steps
Wi,j bit j of expanded message word in step i, 0 ≤ j ≤ 31
w′j sign of bit difference in bit position (j mod 32), w′j ∈ {−1, 0, +1}

W ′
j = w′j2

j signed bit difference in bit position (j mod 32), W ′
j ∈ {−2j , 0, +2j}

W ′
i,j signed bit difference in step i, bit position j

(j + n mod 32) bit position j rotated to the left by n positions
(j − n mod 32) bit position j rotated to the right by n positions

60 steps of the SHA-1 message expansion is 25. This low-weight vector is also
referred to as the disturbance vector, since it contains the disturbances for the
single local collisions. However, Wang et al. use a disturbance vector with higher
weight (weight = 27). The reason for this is that the vector with higher weight
leads to a smaller number of conditions (see [19]). Since the attack complexity is
determined by the number of local collisions and the corresponding probabilities
(conditions) we will analyze them accurately in the next section.

3 Detailed Analysis of Local Collisions in SHA-1

In the first part of this section, we start with deriving the conditions and corre-
sponding probabilities for all possible local collisions in the L-characteristic of
SHA-1. We follow the work of Wang et al. in [19] to conjecture the overall prob-
ability of a collision attack on SHA-1 based on these local collisions. Note that
the L-characteristic does not include the first 20 steps of SHA-1 and therefore,
we only consider the functions fXOR and fMAJ described in Section 2.1. In the
second part of this section, we derive a more accurate estimation of the proba-
bilities for local collisions. With this analysis we update the attack complexity
of Wang et al. presented in [19].

3.1 Notation and Definitions

For the analysis of local collisions we follow the notation given in Table 1.
Throughout the remainder of this article we will use signed bit differences. In
the following we describe the basic properties of signed bit differences that we
require for our analysis. A detailed discussion of signed bit differences can be
found in [4, Chapter 4].

We define the sign of a difference in bit position j as

w′j = wj − w∗j , where wj , w
∗
j ∈ {0, 1} and w′j ∈ {−1, 0, +1} . (4)

In particular, if w′j = 0 the difference is zero. The signed bit difference is then
defined as W ′

j = w′j2
j . A useful property of signed bit differences is the fact that
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Table 2. Addition of signed bit differences

A′j B′
j C′j S′j C′j+1 A′j B′

j C′j S′j C′j+1

0 0 0 0 0 0 u v 0 1
2
(u + v)

0 0 v (−1)Aj⊕Bj v −v(Aj ⊕Bj) u 0 v 0 1
2
(u + v)

0 v 0 (−1)Aj⊕Cj v −v(Aj ⊕ Cj) u v 0 0 1
2
(u + v)

v 0 0 (−1)Bj⊕Cj v −v(Bj ⊕ Cj) v v −v (−1)Aj⊕Bj⊕1v (−1)Aj⊕Bj v

v v v (−1)Aj⊕Bj⊕1v (−1)Aj⊕Bj v v −v v (−1)Aj⊕Cj⊕1v (−1)Aj⊕Cj v

−v v v (−1)Bj⊕Cj⊕1v (−1)Bj⊕Cj v

Table 3. Differential properties of fXOR and fMAJ for signed bit differences

B′
j C′j D′

j fXOR(B′
j , C

′
j , D

′
j) fMAJ(B′

j , C
′
j , D

′
j)

0 0 v (−1)Bj⊕Cj v (Bj ⊕ Cj)v

0 v 0 (−1)Bj⊕Dj v (Bj ⊕Dj)v

v 0 0 (−1)Cj⊕Dj v (Cj ⊕Dj)v

the difference also includes information about the values of wj and w∗j . This is
shown in (5).

W ′
j =





+2j if wj = 1 and w∗j = 0
0 if wj = w∗j
−2j if wj = 0 and w∗j = 1

(5)

Let us now consider the addition of two signed bit differences. The addition
S = A + B is defined as Sj = Aj ⊕ Bj ⊕ Cj and Cj+1 = fMAJ (Aj , Bj , Cj)
with C0 = 0, where Cj+1 is the resulting carry of the addition in bit position j.
Table 2 lists all possible cases for the output and carry difference of a signed bit
addition with v, u ∈ {−1, +1}.

To perform the addition of two signed bit differences we can use Table 2
for computing the resulting difference. We know that the output difference is
C ′j+12

j+1 + S′j2
j . For instance, if there are two non-zero differences at the input

with opposite signs, then both C ′j+1 and S′j are zero and hence the output
difference is zero. If the differences have the same sign, for instance −2j and
−2j , the output difference is −2j+1, since C ′j+1 = −1 and S′j = 0.

For our analysis we need the differential properties of fXOR and fMAJ with
respect to signed bit differences. In Table 3, we list the cases that occur in a local
collision (see Figure 3) where v ∈ {−1, +1}. As it can be seen in Table 3, for
fXOR the sign of the input difference is flipped with probability 1/2 depending
on the input values. For fMAJ the sign is preserved but the difference propagates
with probability 1/2.

3.2 Considering the Number of Conditions

In [3], Chabaud and Joux showed how the corrections for a single bit disturbance
in SHA-0 can be constructed. Since the state update for SHA-0 and SHA-1 is the
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Table 4. Local collision (disturbance-corrections) for SHA-1

step difference description
fXOR fMAJ

i W ′
i = +2j +2j single bit disturbance at bit position j

i + 1 W ′
i+1 = −2j+5 −2j+5 correction

i + 2 W ′
i+2 = ±2j −2j correction

i + 3 W ′
i+3 = ±2j−2 −2j−2 correction

i + 4 W ′
i+5 = ±2j−2 −2j−2 correction

i + 5 W ′
i+8 = −2j−2 −2j−2 correction

same, this construction is also valid for SHA-1. Table 4 shows a local collision
with signed bit differences for fXOR and fMAJ .

For the local collision defined in Table 4, we can now derive the number
of conditions and the corresponding probabilities such that the local collision
holds for the original SHA-1. We refer to conditions that contain only expanded
message words as easy conditions since we can easily fulfill them. Conditions that
include state variables are considered to be hard conditions. For the analysis we
can assume without loss of generality that the sign of the disturbance is positive,
i.e. W ′

i = +2j . If the disturbance is −2j , we get the same results by just flipping
all the other signs. The propagation of the disturbance and corrections is shown
in the left part of Figure 3.

Disturbance in step i. In step i, where the disturbance is introduced, it is
required that the disturbance propagates to state variable Ai+1 without causing
a carry in the difference, i.e. A′i+1 = W ′

i = +2j . This occurs with probability
1/2. If the disturbance is introduced at bit position j = 31, it propagates to
A′i+1 with probability 1.

Correction in step i+1. As shown in Figure 3, the difference in state variable
A is rotated to the left by 5 positions. Therefore, the correction is W ′

i+1 = −2j+5.
It follows from Table 2 that if the sign of the correction is the opposite of the sign
of the disturbance, then the correction occurs with probability 1. We can ensure
the negative sign of the correction with condition CWi+1: Wi+1,j+5 ⊕Wi,j = 1.
This condition is in W only and we can easily fulfill it.

Correction in step i + 2. In this step, we have to consider the modular
addition and the function f . As described in Table 3, fXOR flips the sign of
the input difference with probability 1/2. Therefore, for B′

i+2 = +2j the output
difference of fXOR can be either +2j or −2j depending on Ci+2 and Di+2. Since
we cannot easily influence the values of Ci+2 and Di+2 the probability for the
correction is 1/2.

For fMAJ we get the same probability as for fXOR by defining a condition
in W only. For the input difference B′

i+2 = +2j the possible output difference
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Fig. 3. On the left, a local collision with disturbance in bit position j. No carry occurs
in step i. On the right a local collision with disturbance in bit position j = 0. In
step i a carry occurs. The differences in the dashed rectangles are the possible output
differences of fXOR and fMAJ
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of fMAJ is either +2j or 0. This results in a probability of 1/4. However, if the
sign of the correction is negative, then the correction has a probability of 1/2.
This can be ensured by fulfilling condition CWi+2: Wi+2,j ⊕Wi,j = 1.

Correction in step i + 3 and i + 4. These steps are the same as step i + 2
except that the difference +2j is rotated to the right by 2 positions, i.e. +2j−2.
For fXOR we get a probability of 1/2 in each step. For fMAJ we also get the
probability 1/2 by fulfilling the following easy conditions in W only: CWi+3:
Wi+3,j−2 ⊕Wi,j = 1, and CWi+4: Wi+4,j−2 ⊕Wi,j = 1.

Correction in step i + 5. If all corrections have taken place in the previous
steps the signed bit difference is in state variable E. As it can be seen in Figure 3,
E′

i+5 is the same difference as A′i+1 = +2j rotated by 2 to the right, i.e. E′
i+5 =

+2j−2. We only have to consider the modular addition. As in step i + 1, we
can fulfill condition CWi+5: Wi+5,j−2 ⊕ Wi,j = 1 such that the correction has
negative sign. Hence, the correction in step i + 5 has probability 1.

Local collision with best probability. With the above described probabili-
ties for each step of the local collision we can define a local collision that has the
best probability for fXOR. Assume the disturbance is introduced in bit position
j = 1. In step i we have a probability of 1/2. Since we can easily fulfill condition
CWi+1 we have a probability of 1 in step i + 1. In step i + 2 the probability is
1/2. Now, for steps i+3 to i+5 the disturbance is rotated to bit position j = 31.
Since a carry in the difference can be ignored (addition mod 232), we get a total
probability of 2−2 for a local collision with disturbance in bit position j = 1.

Summary of probabilities of local collisions. Table 5 summarizes the prob-
abilities for all possible local collisions with a single-bit disturbance and lists the
easy conditions in W that have to be fulfilled. For the discussion so far we only
considered probabilities and easy conditions. However, the probabilities for the
modular addition and the functions fMAJ and fXOR can also be described in
terms of so-called hard conditions. Each single condition is fulfilled with prob-
ability 1/2. Consider for instance fMAJ . The input difference B′

i = +2j leads
to the output difference +2j(Ci ⊕ Di) (see Table 3). In order to ensure that
the difference propagates, we require that Ci ⊕Di = 1. Since we cannot easily
influence the values of Ci and Di, the condition is fulfilled with probability 1/2.
The same can be done for the other cases. For a local collision with disturbance
in bit position j = 1, we have a probability of 2−4. In other words there are 4
hard conditions that we cannot easily fulfill.

With the probabilities listed in Table 5 the complexity of the attack on
SHA-1 can be determined. For the description we follow the work of Wang et
al. [19]. For the disturbance vector [19, Table 5] we compute the product of all
probabilities for each disturbance bit to determine the overall probability and
hence the attack complexity.
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Table 5. Probabilities for local collisions in SHA-1

probability easy conditions on W

disturbance fXOR fMAJ fXOR fMAJ

j = 1 2−2 2−4 CWi+1 CWi+1, CWi+2

j = 26 2−4 2−4 CWi+5 CWi+2, CWi+3, CWi+4, CWi+5

j = 31 2−3 2−3 CWi+1, CWi+5 CWi+1, CWi+3, CWi+4, CWi+5

j = 0, 2, . . . , 25
j = 27, . . . , 30

2−4 2−4 CWi+1, CWi+5 CWi+1, CWi+2, CWi+3, CWi+4, CWi+5

3.3 Accurate Probability Computation

In Section 3.2, we determined the probabilities of local collisions with distur-
bances introduced at different bit positions. For the analysis we did not allow
carries in step i where the disturbance is introduced. This restriction can actu-
ally be relaxed. In the following we will analyze the impact of carries in step
i on the probability of local collisions. We will show that the probabilities are
actually higher for most bit positions of the disturbance.

Single bit disturbance. We start with a disturbance in bit position j = 0. As
shown in Table 5 this results in a probability of 2−4. Now consider that a carry
occurs in the difference in step i, i.e. the disturbance W ′

i = +20 propagates to
A′i+1 = +21 − 20. This case is shown on the right hand side in Figure 3.

The carry in step i occurs with probability 1/4. The difference in bit position
j = 1 can be seen as a new disturbance that leads to a second local collision with
a certain probability. To cancel out the difference A′i+1 = +21 we require that
the corrections in the consecutive steps also produce a carry in the difference. As
described in Section 3.2, we fulfill condition CWi+1 to ensure that W ′

i+1 = −25.
Therefore, the differences cancel out with probability 1 since (+26−25)+(−25) =
0 (as shown in Table 2, −25+(−25) = −26 and hence 26−26 = 0). For steps i+2
to i+4 we first consider fXOR. In step i+2 we have a probability of 1/4 because
fXOR flips the sign of a bit difference with probability 1/2. Since we have two
bit differences this results in a probability of 1/4. The same holds for steps i + 3
and i+4. However, since the disturbance is introduced in bit position j = 0, the
second difference caused by the carry is rotated to bit position j = 31 in step
i+2. We can ignore carries in this bit position and hence the sign in bit position
j = 31 has no impact. Therefore, we get a probability of 1/2 for each step. We
can do the same analysis for fMAJ . As already mentioned, fMAJ preserves the
sign of the input difference but the difference propagates only with probability
1/2. Therefore, we cannot exploit bit position j = 31—the probability for steps
i + 3 and i + 4 is 1/4 each. For step i + 2 the probability is 1/4 since CWi+2

is fulfilled. In step i + 5 we have a probability of 1 for fXOR and fMAJ based
on the same reasoning as for step i + 1. With the results of this analysis we can
update the probability of Section 3.2. The best probability for fXOR and fMAJ
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with a disturbance in bit position j = 0 is:

p(fXOR, j = 0) = 2−4 + 2−6 = 2−3.6781 , (6)
p(fMAJ , j = 0) = 2−4 + 2−8 = 2−3.9125 . (7)

Uncorrectable carries. Let us now consider the case where two carries in step
i occur, i.e. W ′

i = +20 propagates to A′i+1 = +22 − 21 − 20. Two carries occur
with probability 1/8. If we work with the difference in bit position j = 2, we
encounter the following problem, which we refer to as uncorrectable carries. In
step i+2 the difference is rotated by two positions to the right, i.e. −231−230+20.
It is not possible to correct the difference +20 in step i + 3 anymore since the
correction takes place in bit position j = 30. For fMAJ , uncorrectable carries
for this example take place only in step i + 5. This is due to the fact that the
difference +20 is blocked by fMAJ with probability 1/2 in steps i + 2 to i + 4.
However, in step i + 5 we cannot correct the difference +20 since the correction
takes place in j = 30. Therefore, the probabilities given in (6) and (7) are the
best probabilities for both functions with a disturbance in j = 0.

If we perform the carry analysis for bit position j = 1, we also encounter
uncorrectable carries as for the disturbance in j = 0. Namely, a carry in step i
cannot be corrected anymore in step i + 3 (step i + 5 for fMAJ , respectively)
and therefore, a carry does not increase the probability for a local collision with
disturbance in j = 1 for both fXOR and fMAJ . Uncorrectable carries can also
occur due to the left rotation by 5 in step i + 1. A disturbance in j = 26 that
leads to a carry in step i cannot be corrected anymore in step i + 1 since the
correction W ′

i+1 takes place in bit position j = 31 but the carry is rotated to
j = 0.

Carries that improve the probability of local collisions. After determin-
ing the probabilities for j = 0 and j = 1, we describe now the impact of carry
effects for disturbances in bit position j = 2, . . . , 31. Due to uncorrectable carries
after bit position j = 26 we have to analyze the probability for j = 2, . . . , 26 and
j = 27, . . . , 31 separately. We start the explanation for fXOR. For 2 ≤ j ≤ 26 we
have the same probability in steps i, i+2, i+3, and i+4, namely the probability
that no carry occurs and the probabilities for all possible carries. Note that the
probability in steps i+1 and i+5 is 1 since we fulfill the easy conditions CWi+1

and CWi+5 (see Section 3.2). For 27 ≤ j ≤ 31 we have the same except that the
probability in step i+2 is increased by a factor of 2 if the carry in step i reaches
bit position j = 31. For fMAJ we also assume that the easy conditions in W are
fulfilled. Then we get the same probabilities as for fXOR with the difference that
for 27 ≤ j ≤ 31 we cannot exploit bit position j = 31. In (8) and (9) we give the
formulae to compute the accurate probability for a local collision including all
carry effects. Probability bounds for (8) and (9) are given in Appendix A. For
a disturbance in bit position j = 3 the probability for both fXOR and fMAJ is
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2−3.9068 instead of 2−4 which is the probability derived by counting conditions.

p(fXOR, j) =





2−2 for j = 1
2−4 + 2−6 for j = 0∑27−j

k=1 2−4k for j = 2, . . . , 26
2 · 2−4·(32−j) +

∑31−j
k=1 2−4k for j = 27, . . . , 31

(8)

p(fMAJ , j) =





2−4 for j = 1
2−3 for j = 31
2−4 + 2−8 for j = 0∑27−j

k=1 2−4k for j = 2, . . . , 26∑32−j
k=1 2−4k for j = 27, . . . , 30

(9)

3.4 Disturbances in consecutive bit position.

If we have a look at the disturbance vector in [19, Table 5] or [13, Table 7] there
occur disturbances in consecutive bit positions, i.e. W ′

i = +2j+1 + 2j for fXOR.
For the explanation we take the concrete case with disturbance W ′

i = −21 + 20,
and the five corrections W ′

i+1 = +26−25, W ′
i+2 = +21−20, W ′

i+3 = +231 +230,
W ′

i+4 = +231 + 230, and W ′
i+5 = +231 − 230. In a straightforward way we can

just treat them as separate disturbances and compute the probability based on
(8). This results in a probability of

p(fXOR,−21 + 20) = 2−2︸︷︷︸
j=1

·(2−4 + 2−6

︸ ︷︷ ︸
j=0

) = 2−5.678 . (10)

However, by performing a detailed analysis we show that the probability
for this case can be improved to p(fXOR,−21 + 20) = 2−3.678 by defining two
additional conditions in W only, referred to as CWi and CW1i+2. We assume
that the easy conditions described in Section 3.2 are fulfilled. If no carry occurs
in step i, both disturbances are corrected with probability 2−6. This follows from
Section 3.2. Now consider the case that a carry occurs in step i. Assume that
in step i the disturbances have opposite signs, e.g. W ′

i = −21 + 20. This can be
ensured by fulfilling the new condition CWi: Wi,1 ⊕Wi,0 = 1. If a carry occurs
in bit position j = 0 the difference that propagates to A′i+1 is −20 since the
positive sign of the carry (see Table 2) cancels the negative difference in j = 1.
This occurs with probability 1/2. In step i + 1 the probability is 1 since CWi+1

is fulfilled. In step i + 2 we can increase the probability to 1/2 if the additional
condition CW1i+2: Wi+2,1 ⊕Wi+2,0 = 1 is fulfilled. This is based on the same
reasoning as for step i. For the remaining steps i+3 to i+4 we get a probability
of 1/2 for each step. Again, in step i+5 we have a probability of 1. Hence we have
a total probability of 2−4 for the case that a carry occurs in step i. Therefore,
the total probability for the disturbance +21 − 20 or −21 + 20 is

p(fXOR,−21 + 20) = 2−4︸︷︷︸
carry in j=0

+ 2−6︸︷︷︸
no carry in step i

= 2−3.6781 . (11)
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Table 6. Update on complexity for collision attack on SHA-1

[19, Table 9] our work

disturbance disturbance number of estimated accurate
bit position index conditions probability probability

j = 1 23, 24, 27, 28, 32, 35, 36 2 · 7 = 14 2−14 2−14

j = 0 25, 29, 33 4 · 3 = 12 2−12 2−11.0343

j = 1 39, 43, 45, 47, 49 4 · 5 = 20 2−20 2−20

j = {2, 3, 4, 5, 7} 65, 68, 71, 73, 74 4 · 5 = 20 2−20 2−5·3.9068 = 2−19.534

total 2−66 2−64.5683

Wang et al. use a probability of 2−4 for their estimation. For disturbances in
other consecutive bit positions the same analysis can be performed. For fXOR

the analysis is given in Appendix B.

3.5 Update of Attack Complexity by Wang et al.

With the above analysis we covered all cases of disturbances that occur in the
disturbance vector of [19]. Since they count conditions in the last 60 steps of
SHA-1 the overall probability can be updated based on (8) and (9). Table 6 lists
the comparison with [19, Table 9].

As it can be seen in Table 6 the probability is by a factor of approx. 2.7
higher than estimated in [19]. Note that we did not count the disturbances
in step i = 21 and step i = 77 since some of the conditions are fulfilled due to
message modification or truncation. This means that the path of the disturbance
is fixed and we cannot exploit any carry effects.

In order to determine the overall probability, we assume that the probabil-
ities of local collisions are independent. To confirm this assumption, we have
performed several computer measurements for a few overlapping local collisions.
The measurement results match the computed probabilities.

3.6 Importance of Carry Effects

In the case of SHA-1, the improvement of the attack complexity is rather small.
This is due to the fact that the disturbance vector is very sparse and the distur-
bances are introduced in bit positions where we cannot exploit any carry effects
due to uncorrectable carries, e.g. bit position j = 1.

Consider for instance the hash function SHA1-IME [8]. Jutla and Patthak
claim to improve the collision resistance of SHA-1 by modifying the existing
message expansion with the goal to increase the minimum Hamming weight. By
using a computer aided proof they show that the minimum weight in the last
60 steps of the message expansion of SHA1-IME is at least 75. It is clear that
the overall complexity increases with a higher weight in the disturbance vector.
However, due to the higher weight also the impact of carry effects as shown in
this section increases. Therefore, our way of looking at probabilities instead of
conditions gives a more accurate complexity estimation.
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4 Conclusion and Further Work

In this article we analyzed local collisions and corresponding probabilities in
detail. We showed that it is more accurate to consider probabilities instead of
conditions for the estimation of the overall attack complexity for collision attacks
on SHA-1. This is due to the fact that carry effects increase the probability.
Based on the accurate probability computation we updated the complexity of the
collision attack on SHA-1 presented by Wang et al. Currently we are investigating
the impact of our approach on SHA1-IME and local collisions in SHA-256.
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A Probability Bounds for Single-Bit Disturbances

Based on formulae (8) and (9) in Section 3.3, the probability of fXOR and fMAJ

can be bounded as follows. We know that
27−j∑

k=1

2−4k = 2−4 1− 2−4(28−j)

1− 2−4
≤ 2−4

1− 2−4
=

1
24 − 1

,

32−j∑

k=1

2−4k = 2−4 1− 2−4(33−j)

1− 2−4
≤ 2−4

1− 2−4
=

1
24 − 1

, and

2 · 2−4(32−j) +
31−j∑

k=1

2−4k =

2−4(32−j)+1 + 2−4 1− 2−4(32−j)

1− 2−4
≤ 2−3 +

2−4

1− 2−4
=

1
23

+
1

24 − 1
.
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Therefore, we get the following bounds on the probability for fXOR and fMAJ :

1
24
≤ p(fXOR, j) ≤ 1

24 − 1
for j = 2, . . . , 26 , (12)

1
24
≤ p(fXOR, j) ≤ 1

23
+

1
24 − 1

for j = 27, . . . , 31 , (13)

1
24
≤ p(fMAJ , j) ≤ 1

24 − 1
for j = 2, . . . , 26 and j = 27, . . . , 30 , (14)

where the lower bound for the probability 2−4 is derived by counting conditions.
For instance, if we compute the probability for a disturbance in bit position
j = 3 we get for both fXOR and fMAJ a probability of 2−3.9068 instead of 2−4.

B Probabilities for Disturbances in Consecutive Bit
Position

Here we give the probabilities for disturbances in consecutive bit positions for
fXOR. This is the generalization of the case presented in Section 3.4. Again,
we have to consider uncorrectable carries. Uncorrectable carries occur if the
disturbances are in bit position j = 2, 1 and j = 27, 26. In these cases, we
get the probability of both disturbances without carry. If j = 2, 1, we obtain
a probability of 2−42−2 = 2−6 and j = 27, 26 results in 2−42−4 = 2−8. Let us
now consider disturbances in consecutive bit positions from j = 2, . . . 25, i.e.
the tuples j = (3, 2), (4, 3), . . . , (26, 25), and from j = 27, . . . , 30, i.e. the tuples
j = (28, 27), (29, 28), (30, 29), (31, 30). The formulae for all cases are given in
(15), where j refers to the right entry of the tuple.

p(fXOR, (j + 1, j)) =





2−4 + 2−6 for j = 0
2−4 + 2−8 for j = 1 and j = 26∑27−j

k=1 2−4k for j = 2, . . . , 25
2 · 2−4(32−j) +

∑31−j
k=1 2−4k for j = 27, . . . , 30

(15)
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