
Analysis of Step-Reduced SHA-256?

Florian Mendel??, Norbert Pramstaller,
Christian Rechberger and Vincent Rijmen

Christian.Rechberger@iaik.tugraz.at

Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Austria

www.iaik.tugraz.at/research/krypto

Abstract. This is the first article analyzing the security of SHA-256
against fast collision search which considers the recent attacks by Wang
et al. We show the limits of applying techniques known so far to SHA-256.
Next we introduce a new type of perturbation vector which circumvents
the identified limits. This new technique is then applied to the unmodified
SHA-256. Exploiting the combination of Boolean functions and modular
addition together with the newly developed technique allows us to derive
collision-producing characteristics for step-reduced SHA-256, which was
not possible before. Although our results do not threaten the security of
SHA-256, we show that the low probability of a single local collision may
give rise to a false sense of security.

1 Introduction

After recent cryptanalytic results on MD5 [19], SHA-1 [2, 14, 18] and similar
hash functions, the resistance of members of the SHA-2 family (i.e. SHA-224,
SHA-256, SHA-384 and SHA-512) [12] against recent attacks is an important
issue.

While SHA-1 and MD5 are currently the most commonly used hash functions
worldwide, the direct successor of SHA-1, SHA-256 is in many cases considered
to be an upgrade option. However, SHA-256 did not receive as much cryptana-
lytic scrutiny from the cryptographic community as other hash functions. Even
though the underlying design principle did not change since MD4, SHA-256 needs
to be considered separately. It is expected to be much stronger than SHA-1, but
several questions concerning its collision resistance need to be answered:

– Are the currently known techniques applicable to SHA-256? Which ones and
to what extent?

– What about new techniques which are specifically designed to be applied to
SHA-256?

In this article, we give preliminary answers to these questions. To put our
contribution into perspective, we first survey existing approaches and previous
results.
? The work in this paper has been supported by CRYPTREC.

?? This author is supported by the Austrian Science Fund (FWF) project P18138.



1.1 Outline of existing approaches

The basic approach for efficient collision search of the predecessors of SHA-256,
SHA-0 and SHA-1, can be described as follows:

1. Identify local collisions in the state-update transformation.
2. Search for low-weight perturbation vectors by searching for low-weight ex-

panded messages. In the approach by Chabaud and Joux [4] the perturbation
vectors need to satisfy some additional properties which were dropped later
on by Wang et al. [18] by using more complicated techniques.

3. Build the difference vector by interleaving the local collisions as described by
the perturbation vector. Note that in [14] and [13] an approach is described
which combines the three steps above.

4. The complexity of the collision search attack is related to the probability
with which the characteristic described by these interleaved local collisions
is followed.

5. By adjusting message bits for the chosen characteristic and allowing small
variations in the characteristic, the computational effort for the collision
search is decreased.

1.2 Survey of existing results on SHA-256

Being standardized by NIST in 2000 [12], the first published independent analysis
of members of the SHA-2 family was done by Gilbert and Handschuh [6]. They
show that there exists a 9-step local collision with probability 2−66. Later on,
the result was improved by Hawkes et al. [7]. By considering modular differences,
they give a new maximal probability of 2−39.

In [9] SHA-256 is analyzed in encryption mode. Attacks based on related-key
assumptions for up to 37 steps are presented there. In [21], all modular additions
are replaced by XOR. For this variant, a search for pseudo-collisions which is
faster than brute force search for up to 34 steps faster is described.

In [11] a variant of SHA-256 is analyzed where all Σ and σ are removed. The
conclusion is that collisions can be found much faster than by brute force search
for this variant. Additionally, some low-weight expanded message differences
for a GF(2)-linearized message expansion are given. The work shows that the
approach used by Chabaud and Joux [4] in their analysis of SHA-0 is extensible
to that particular variant of SHA-256.

1.3 Our contribution

So far, nobody described ways to do collision search attacks for the unmodified
SHA-256 or step-reduced variants thereof. After a short description of SHA-256
in Sect. 2, we address this issue in several ways.

First we analyze the message expansion of SHA-256 and show that its prop-
erties prevent the efficient extension of the techniques used by Chabaud and
Joux [4] on SHA-0 or by Wang et al. in the analysis of SHA-1 [18] (see Sect. 3.1).

2



Table 1. Notation

notation description

Ai . . . Hi state variables at step i of the compression function
A⊕B bit-wise XOR of state variable A and B
A + B addition of state variable A and B modulo 232

A′ XOR difference in state variable A
Mt input message word t (32 bits), t ≥ 1
Wt expanded input message word t (32 bits), t ≥ 1

ROTRn(A) bit-rotation of A by n positions to the right
SHRn(A) bit-shift of A by n positions to the right

N number of steps of the compression function

To illustrate our point, we define a variant SHA-256-3R, where the shift
operation in the message expansion is replaced by a rotation. We show how
to use low-weight perturbation vectors in a collision search for this variant in
Sect. 3.2.

Next we focus on the unmodified SHA-256. To overcome the limitations we
identified before, we introduce the idea to drop the requirement of having a
perturbation vector which is a valid expanded message. In Sect. 3.3, we develop
a way to derive this new type of perturbation vector for SHA-256, which can be
used to find collision-producing characteristics with high probability. The price
we have to pay is an increase of the search space for this new type of perturbation
vector.

Some heuristics, which were developed in the case of SHA-1 to reduce the
search space, do not apply to SHA-256. In Sect. 3.4 we describe a new way to
reduce the search space.

As an example, a 19-step collision for unmodified SHA-224 is presented in
Sect. 3.5, including a detailed description of the characteristic being used. There
are two lessons to be learned from this example. Firstly, compared to indepen-
dently multiplying probabilities for local collisions, interleaving them dramati-
cally increases their overall probability. This contrasts with observations on older
members of the SHA family. Secondly, techniques that exploit the combination
of Boolean functions and modular addition in the state update are shown to be
applicable in this example of a SHA-224 collision.

Additionally, we briefly survey methods to speed up the collision search for
SHA-256 in Sect. 4. These methods and refinements thereof are subsequently
used in some examples. These examples include the fast generation of 18-step
collisions and 22-step pseudo-collisions with non-zero message difference on a
standard PC.

3



2 Description of SHA-256

In the remainder of this article we use the notation given in Table 1. A complete
description of SHA-256 can be found in [12]. We briefly review parts of the
specification needed subsequently.

SHA-256 is an iterated cryptographic hash function based on a compression
function that updates the eight 32-bit state variables A, . . . , H according to the
values of 16 32-bit words M0, . . . , M15 of the message. The compression function
consists of 64 identical steps as presented in Fig. 1. The step transformation
employs the bitwise Boolean functions fMAJ and fIF , and two GF(2)-linear
functions

Σ0(x) = ROTR2(x)⊕ROTR13(x)⊕ROTR22(x) ,

Σ1(x) = ROTR6(x)⊕ROTR11(x)⊕ROTR25(x) .

The i-th step uses a fixed constant Ki and the i-th word Wi of the expanded
message. The message expansion works as follows. An input message is padded
and split into 512-bit message blocks. Let ME denote the message expansion
function. ME takes as input a vector M with 16 coordinates and outputs a
vector W with N coordinates. The coordinates Wi of the expanded vector are
generated from the initial message M according to the following formula:

Wi =

{
Mi for 0 ≤ i < 16
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 for 16 ≤ i < N

. (1)

Taking a value for N different to 64 results in a step-reduced (or extended)
variant of the hash function. The functions σ0(x) and σ1(x) are defined as fol-
lows: σ0(x) = ROTR7(x)⊕ROTR18(x)⊕SHR3(x) and σ1(x) = ROTR17(x)⊕
ROTR19(x)⊕ SHR10(x).

3 Finding collision producing characteristics for
step-reduced SHA-256

Finding collision-producing characteristics for SHA-256 with a high probability
is difficult. While searching for high probability characteristics, GF (2)-linear
approximations that hold with high probability are useful. In the case of the
addition mod 232, bit-wise XOR of the inputs has probability 1 for the LSB and
probability 0.5 for all other bits. In the case of the Boolean functions fIF and
fMAJ , several approximations are possible which all hold with probability 0.5.
Superficially comparing the results in [7] and [6]1 would lead to the preliminary
conclusion that the notion of modular differences instead of XOR differences
offers a significant advantage. However, we argue that this is not the case. Using
the XOR differences as presented in [6] and looking at possible characteristics

1 Probability of 2−39 vs. 2−66 for a single local collision in SHA-256

4



Ai CiBi Di FiEi HiGi

0

f M
A

J

f I
F

Ai+1 Ci+1Bi+1 Di+1 Fi+1Ei+1 Hi+1Gi+1

1

Ki

Wi

Fig. 1. One step of the state update transformation of SHA-256.

for a local collision, we estimate that the probability of a single local collision
(depending on the bit position of the perturbation) can be higher than 2−39. This
is by assuming unknown state variables at the beginning of the local collision.
Since this compares favorably with the best results known so far, we will stick
to XOR differences..

Compared to SHA-1, where the corresponding probabilities are between 2−2

and 2−5, the probability for a local collision in SHA-256 is still very low. However,
we will show by means of an example, that by interleaving several local collisions
to build a collision-producing characteristic, the combined probability is much
higher than the product of the single probabilities. This effect also occurs in the
case of SHA-1 [18], but with much less impact on the overall complexity of the
attack. However, before we arrive there, we need to discuss how to find suitable
ways for interleaving these local collisions.

3.1 Why existing approaches do not work

In this section we discuss to which extent the methods that are used in the
analysis of SHA-0 and SHA-1 are applicable to SHA-256 as well. A very high-
level description of the so-called perturbation-correction method to find collisions
for SHA-0 and SHA-1 used in [4, 18] could be the following:

1. Find a vector d such that the perturbation vector d′ = ME(d) has a low
Hamming weight.

2. Determine the correction vectors c′u which ensure that the expanded mes-
sage difference e′ = d′ +

∑
u c′u results in a collision for the linearized hash

function. The mapping from d′ to the c′u depends on the properties of the
state update transformation alone.

3. Determine the vectors cu such that c′u = ME(cu). Construct the message
difference as e = d +

∑
u cu.

5



4. Determine M and M∗ such that the differences in the real hash function
follow the characteristic built for the linearized hash functions. We will refer
to this characteristic as L-characteristic.

For all the hash functions of the SHA family, the vectors c′u can be computed
as c′u = Rru

◦ Tu(d′). The map Rru
(x′) rotates every coordinate of the vec-

tor x′ over the constant amount ru. The map Tu(x′) translates the coordinates
of the vector x′ over u positions to the right, dropping the leftmost u coor-
dinates and filling in u zeroes on the left. The values (u, ru) depend on the
state update transformation. For instance, for the case of SHA-1, the values are
(1, 5), (2, 0), (3,−2), (4,−2) and (5,−2).

The message expansion of a hash function is not surjective. We call x′ a valid
expanded message if there exists a value x such that x′ = ME(x). Additional
conditions can be imposed on d in order to ensure that the vectors c′u are valid
expanded messages. In particular, we need the two following conditions.

Condition 1: Rru
(ME(d)) needs to be a valid expanded message, for all values

ru that occur.
Condition 2: Tu(ME(d)) needs to be a valid expanded message, for all values

u that occur.

It can easily be verified that for the message expansion of SHA-1, Condition 1
is satisfied for all d and for all ru. Condition 2 can be satisfied by ensuring that
“the backwards expanded difference equals zero in the first 5 steps” [4].

For the case of SHA-256 with linearized message expansion (all modular
additions are replaced by XOR), Condition 2 can easily be satisfied by requiring
that the backwards expanded difference equals zero in the first 8 steps. Contrary
to SHA-1, satisfying Condition 1 imposes severe restrictions on d.

It has been observed before [13, 14] that the perturbation-correction method
imposes overly strict requirements. Indeed, instead of requiring that d′ and each
of the c′u are valid expanded messages, it suffices to demand that the sum e′ =
d′+

∑
u c′u is a valid expanded message. For SHA-1, this observation doesn’t lead

to improved results. However, for SHA-256, it does as we will show in Sect. 3.3.
We show that for SHA-256, Condition 1 cannot always be met by proving

the following Theorem.

Theorem 1. For SHA-256, not all perturbation vectors d satisfying Condition
1 lead to a perturbation-correction vector e′ which is a valid expanded message.

The proof is given in Appendix A and shows first that this holds for a variant
of SHA-256 with linearized message expansion and then extends this result to
unmodified SHA-256.

The implication of this result is as follows: when we try to extend the standard
perturbation-correction method, which is at the core of every analysis of SHA-
0 and SHA-1 including those of Wang et al., to analyze SHA-256, we cannot
prevent the fact that there will be unwanted differences due to the message
expansion. For later reference, we term them “ghost differences of type 2”.

6



Theorem 1 also shows that the additional degrees of freedom we have due
to the GF (2) non-linearity of the message expansion are not sufficient to al-
ways correct this undesired behavior. In other words, by applying the standard
perturbation-correction method, we are facing impossible differentials in the mes-
sage expansion.

Implications of Theorem 1 on the collision search complexity. The
major improvement of Wang et al., which eventually lead to the break of SHA-1,
was the ability to deal with a different kind of ghost-difference. By dropping
Condition 2, unwanted differences appear in the first 5 steps of SHA-1. We term
them “ghost differences of type 1”. In the following, we expand on that.

In the case of SHA-1 [18], the (near-)collision-producing characteristic is ac-
tually a concatenation of a low-probability general characteristic with a high
probability L-characteristic. By means of the general characteristic in the first
steps, these “ghost differences of type 1” are incorporated. This general char-
acteristic has a very low probability, but this fact is compensated by message
modification, which “bypasses” the probability of the chosen characteristic for
more than 20 steps.

What would happen if we drop Condition 2 in the case of SHA-256? The
“ghost differences of type 1” as described above will now appear up to step 8.
However, starting from step 17 until step N, there will also be “ghost differences
of type 2”. Even if it would be possible to incorporate them in an even more
complex general characteristic covering all N steps, the impact of this approach
on the attack complexity would be severe.

The attack complexity is determined by the probability with which the part
of the characteristic is followed that is not covered by message modification
techniques. Since the low-probability general characteristic needs to be followed
for all steps now, message modification cannot prevent its influence on the attack
complexity anymore. It is by no means clear that such a general characteristic
for all N steps of SHA-256 is even possible. Even if it is, the probability to
follow this general characteristic up to step N is likely to be prohibitively low.
Therefore, an other approach will be needed.

3.2 A short detour: SHA-256-3R

We show that by making a small change in SHA-256, the basic perturbation-
correction approach can be applied again. We name this variant SHA-256-3R and
change the message expansion of SHA-256 in the following way: The functions
σ0(x) and σ1(x) are replaced by the following:

σ0(x) = ROTR7(x)⊕ROTR18(x)⊕ROTR3(x)
σ1(x) = ROTR17(x)⊕ROTR19(x)⊕ROTR10(x)

SHR is replaced by ROTR which has the effect that Condition 1 imposes
no restrictions anymore. Table 2 gives us the starting point for our analysis. It
shows a remarkably low-weight perturbation vector which satisfies the following

7



requirements. Firstly, the last 8 perturbation words are all-zero, which means
that we can finish all the needed corrections. Secondly, the backwards expansion
is all-zero for the first 8 steps which prevents “ghost differences of type 1” in
our perturbation-correction vector. These requirements are enough to build a

Table 2. Low-weight expanded message for the XOR-linearized 31-step message ex-
pansion of SHA-256 which can be used as a perturbation vector for SHA-256-3R

d′i
i = 1 80000000 i = 11 0
i = 2 11002000 i = 12 0
i = 3 80000000 i = 13 0
i = 4 14044aa8 i = 14 0
i = 5 00205000 i = 15 0
i = 6 0 i = 16 0
i = 7 0 i = 17 0a020000
i = 9 0 i = 18 0
i = 9 11002000 i = 19 80000000
i = 10 80000000 i = 20 . . . 31 0

collision-producing characteristic which is constructed by interleaved local colli-
sions as described by the perturbation vector. It is given in Appendix B. Note
that this characteristic is an L-characteristic.

Most of the local collisions will be completed within the first 16 steps. The
last local collision will be completed at step 27. Due to the small change in the
message expansion, we do not have any “ghost differences of type 2”. Showing
this fulfills the purpose of this detour, hence we stop the analysis of this L-
characteristic of SHA-256-3R here.

3.3 Extending the Rijmen-Oswald approach to unmodified SHA-256

In the next two subsections, we show that despite the findings in the previous
Sect. it is still possible to find perturbation vectors of low-weight which lead
to collision-producing characteristics. It will turn out that these perturbation
vectors are no longer valid expanded messages by themselves. Thus we will have
a new type of perturbation vector for SHA-256.

The approach to find such a new type of perturbation vector for SHA-256
is outlined below. The underlying idea is originally proposed in [14] and ex-
tended in [13]. Basically, it works as follows. First, we build a linearized version
of the message expansion and the state update transformation. Then, we con-
struct a generator matrix G which describes all possible state variables that
result in a collision for this linearized version. By searching for low-weight code-
words(see [3, 10, 15]) in the linear code described by G, we are actually searching
for L-characteristics with high probability.

In the case of SHA-256, the dimension of G is 512 × (9 ∗ 32 ∗ N) where N
denotes the number of steps. Note that we can cut the parts representing the
state variables B,C, D, F, G,H and thus reducing the length of the code without

8



loosing information. However, without a way to reduce the size of the code and
not excluding low-weight codewords, a search for L-characteristics with high
probability is not feasible.

3.4 Reducing the search space to find useful L-characteristics

In the analysis of SHA-1 [2, 8, 14, 18], it was possible to reduce the search space
for perturbation vectors or general collision producing characteristics by apply-
ing the following observation. Low-weight expanded messages for SHA-1 have
the property that non-zero bits occur in bands, i.e. the non-zero values are con-
centrated on a few bit positions in every word. This can be explained by the
weak avalanche effect of the SHA-1 message expansion. This heuristic does not
apply to SHA-256. The functions Σ0, Σ1, σ0 and σ1 effectively prevent such a
structure in L-characteristics. Therefore, the search space and hence the size of
the code needs to be reduced by other means.

Another way of looking at the search for low-weight codewords in the code
describing L-characteristics is as follows. Searching for low-weight codewords
maps to searching for low-weight solutions in a homogeneous system of equations
in GF(2). Actually, the corresponding check matrix H of the code described by
G is a representation of the coefficients of this system. The variables refer to
all message bits and state variable bits in the linearized variant. The system of
equations described by H is under-defined, i.e. there are more variables than
equations.

Forcing bits to zero or one can also be seen as adding new equations, where we
simply set this bit to that particular value. The generator matrix G as described
in 3.3 gives us 512 degrees of freedom, which means we can add up to 511
equations to H. By forcing those bits to zero which we expect to be zero in an
L-characteristic, we eventually arrive at a system of equations where it is feasible
to search for low-weight solutions. Note that this is a rather rough way to reduce
the search space which does not work for larger number of steps N .

3.5 Example of a collision-producing L-characteristic for 19-step
SHA-224

In Table 3, we give an L-characteristic of a 1-near-collision for 19 steps of
SHA-256 which is a 19-step collision for SHA-224 at the same time. Note that the
only difference between SHA-224 and SHA-256 is that at the output, the right-
most 32 bits are discarded. By applying the techniques described in Sect.3.4, we
reduced the size of the code to 64, which led to our results.

The perturbation vector which is used as a building block for this character-
istic is the vector A′ in Table 3. The perturbation vector is not a valid expanded
message. Note that this perturbation vector can be word-wise rotated without
loosing its property of leading to a perturbation-correction vector which is al-
ways a valid difference between expanded message. Thus, we can rotate our
L-characteristic to maximize the number of MSBs involved such that the proba-
bility of this L-characteristic is maximized. The first perturbations start at step

9



Table 3. Example of a 19-step SHA-224 collision. All-zero differences are denoted by
a single 0 to improve readability

Step W’ A’ B’ C’ D’ E’ F’ G’ H’

1-4 0 0 0 0 0 0 0 0 0
05 85009008 85009008 0 0 0 85009008 0 0 0
06 a14cae12 a1442610 85009008 0 0 02000802 85009008 0 0
07 0 0 a1442610 85009008 0 084c4120 02000802 85009008 0
08 8200a8a8 00000020 0 a1442610 85009008 00000020 084c4120 02000802 85009008
09 85009008 85009008 00000020 0 a1442610 01008008 00000020 084c4120 02000802
10 0 0 85009008 00000020 0 02000802 01008008 00000020 084c4120
11 0 0 0 85009008 00000020 0 02000802 01008008 00000020
12 0 00000020 0 0 85009008 0 0 02000802 01008008
13 0 0 00000020 0 0 84001000 0 0 02000802
14 00088802 0 0 00000020 0 0 84001000 0 0
15 0 0 0 0 00000020 0 0 84001000 0
16 0 0 0 0 0 00000020 0 0 84001000
17 0 0 0 0 0 0 00000020 0 0
18 0 0 0 0 0 0 0 00000020 0
19 0 0 0 0 0 0 0 0 00000020

5, and there are 23 of them in total. The local collision for SHA-256 as originally
described in [6] needs 24 single-bit differences in the message. Using this as an
upper bound, we would expect up to 552 single-bit differences in the expanded
messages. Note that the actual value 37, the weight of the message difference, is
far below this upper bound.

In this particular example, more than 200 conditions on the state variables
need to be met to follow the given L-characteristic. Assuming random inde-
pendent trials, each perturbation would on average contribute a factor of 2−10

instead of about 2−40 to the overall probability. Hence, the fact that a single
local collision in SHA-256 has a comparatively low probability may give a false
feeling of security. Note that the actual collision search complexity can be further
reduced by techniques mentioned in Sect. 4.

3.6 Adjustments to circumvent impossible characteristics

In this section we take a closer look at the presented L-characteristic. The best
probabilities for local collisions are achieved by approximating the differential
behavior of the functions fMAJ and fIF by 0. On average, both approximations
hold with probability 0.5. However, in certain cases, the probability for this
approximation is 0.

Translating these properties into the sequence of states of the SHA-256 com-
pression function gives rise to the following observations.

Observation 1 Whenever we have 3 non-zero differences in consecutive vari-
ables of the state (A′r, A

′
r+1, A

′
r+2) at the same bit position, the chosen linear

approximation fails to predict any subsequent difference.

Observation 2 Whenever we have 2 non-zero differences followed by one zero
differences in consecutive variables of the state (E′

r, E
′
r+1, E

′
r+2) at the same bit

10



position, the chosen linear approximation fails to predict any subsequent differ-
ence.

In order to prevent these cases, we would need to exclude all of them from our
search space. However by doing this, low-weight solutions might be excluded. By
using the degrees of freedom we have in our characteristic, i.e. various ways in
which differences can propagate through the Boolean functions and the modular
addition, we observe the following. It turns out to be possible to circumvent
these impossible characteristics by choosing a slightly different characteristic for
the same differential. Note that a similar strategy was used in the analysis of
SHA-1 [2, 18].

This suggests that the additional complexity of the SHA-256 state update
transformation does not prevent us from using a similar approach. To illustrate
this property, we take the 19-step L-characteristic presented in the previous
subsection. Indeed, we have a single case of two consecutive words which have a
difference at the same bit position. This happens in E7 and E8 at bit position 5.
Thus Observation 2 applies. The result is that the function fIF accepts (0, 1, 1)
as input difference at bit position 5 in step 9. Hence the output of fIF will flip
with probability 1.

The easiest way to cancel out this additional difference is by using other
differences in the same step. At the output of Σ1, we have a difference in bit
4. By a simple carry extension we can produce a change in the carry caused by
this difference. The result will be that in contrast to the prediction of our L-
characteristic, the difference in bit 4 will cause bit 5 to flip as well. However, this
additional difference due to the carry extension will now cancel the additional
difference at the output of fIF in this step. Eventually, the path described by
the L-characteristic can be followed without the need to circumvent additional
impossible characteristics.

4 Increasing the performance of collision search for
SHA-256

In this section we briefly cover ways to speed up the collision search for members
of the SHA-2 family once a suitable characteristic is found. For their predecessors
SHA-1 and MD5, two competing approaches can be found in the literature. One
approach has been termed message modification. It was first introduced in [16,
19]. A variant of the technique was also used in the most recent analysis of
SHA-0 [20] and SHA-1 [17, 18].

The second approach was introduced in [1] and later on applied in [2]. It
extends the idea of [5] to the hash function SHA-0. So-called neutral bits in the
input message are used to circumvent the probabilistic behavior of the first steps
of SHA-0. Within certain limits, both approaches can be extended to the case
of SHA-256. Subsequently, we briefly discuss to which extent this is possible.

In the first 16 steps of SHA-256, the conditions on the state variables can
be directly rewritten to conditions on the message words. The procedure can be

11



described as follows:

AN+1 = f1(AN , . . . , HN ) + KN + WN

EN+1 = f2(AN , . . . , HN ) + KN + WN

(2)

Next, adjust AN+1 and EN+1 accordingly to meet the conditions derived for the
characteristic. Then calculate

WN = AN+1 − f1(AN , . . . , HN )−KN

WN = EN+1 − f2(AN , . . . , HN )−KN

(3)

Note that by applying these formulas, each new message word is calculated twice.
Hence it is possible that changes in the message bits contradict each other. In
these cases, adjusting message words which are input in the steps before the
contradiction occurs is necessary. A high-level algorithm to deal with this issue
is given below.

Algorithm 1 Way to fulfill contradicting conditions in SHA-256
Require: Contradicting Conditions in Ai and Ei

Ensure: Condition in Ai and Ei are fulfilled
Fulfill Condition in Ei by adjusting Wi as described in Equation (3).
while Condition in Ai is not fulfilled or any previously fulfilled conditions are affected
do

Go back to step x ∈ {0 . . . i − 1} and check if Wx can be adjusted such that the
condition in Ai is fulfilled

end while

Note that such methods were not needed in any of the predecessors of the
SHA-2 family, because there can be no contradictions in fulfilling conditions in
the first 16 steps.

In order to illustrate the technique, let’s assume that by applying the simple
message modification rules described by (2) we are getting a contradiction in
bit 4 of W6. We set this bit such that the condition on state variable E6 is met
(Step 1). In order to fulfill the condition on state variable A6 (i.e. bit 4 should
have opposite value) we simply go back one step and flip bit 4 in W5 (Step 3).
That way, bit 4 in A5 is flipped. However A5 is not directly influencing A6, but
via Σ0 and the fMAJ -function. The effect is twofold.

– Firstly, depending on the other inputs of the fMAJ -function, the output
might not change. In this case, B5 or C5 need to be updated by going back
and adjusting the input word at the respective step. In general, every message
word before the step where the contradiction occurred might be a candidate
for message modification. However, the risk that other conditions are affected
by these adjustments increases with the number of backward-steps.

– Secondly, due to Σ0, three other bit positions are also affected with every
message word adjustment. These might in turn affect other conditions and

12



Table 4. Summary of examples

function steps type local collisions probability

SHA-256-3R 31 collision 25 -
SHA-256 18 collision 1 ∼ 1 using neutral bits

SHA-224 19 collision 23 < 2−200 before message modification

SHA-256 19 1-near-collision 23 < 2−200 before message modification
SHA-256 22 pseudo-collision - ∼ 1 using neutral bits

might even cancel out the desired effect of the flipped bit at the input via
carry propagation.

If it turns out that it cannot be prevented that other conditions are affected with
these adjustments, another choice in step 2 needs to be made.

To sum up, compared to SHA-1 or MD4/MD5, message modification is more
complex due to the fact that two state variables are updated at the same time.
After step 16, chances that existing conditions are affected by message modi-
fication increase. In the Appendices C and D we show simple examples of the
application of these techniques. Table 4 summarizes them.

5 Conclusions and future work

When the attack techniques that were used successfully against SHA-1, are ap-
plied to SHA-256, several problems arise. Firstly, the shift operations in the
message expansion of SHA-256 severely limit the usefulness of the perturbation-
correction approach. To circumvent this obstacle, we introduced a new type of
perturbation vector. We showed that it is still possible to find low-weight dif-
ference vectors that may result in a collision, but the search space increases
dramatically. In order to find collisions for versions with more than 20 steps, we
need new heuristics to reduce the search space.

Secondly, the increased Hamming weight of the difference and the presence
of two nonlinear Boolean functions in each step make it very difficult to avoid
consecutive ones in the inputs of the Boolean functions. Hence we have to deal
with the fact that the linear approximations for these functions often won’t hold.
We have presented some ideas on how to deal with this problem.

Thirdly, the very low probability for one local collision in SHA-256 may
give rise to a false feeling of security. We have shown with examples that the
interleaving of local collisions results in many canceled differences. Hence the
probability of n interleaved local collisions is typically significantly larger than
the probability of one local collision, raised to the power n. We need to develop
better ways of estimating this probability.

Acknowledgements

We would like to thank Christophe De Cannière and Krystian Matusiewicz for
helpful comments.

13



References

1. Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Matthew K. Franklin, edi-
tor, Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings,
volume 3152 of LNCS, pages 290–305. Springer, 2004.

2. Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and
William Jalby. Collisions of SHA-0 and Reduced SHA-1. In Ronald Cramer, editor,
Advances in Cryptology - EUROCRYPT 2005: 24th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Aarhus, Den-
mark, May 22-26, 2005. Proceedings, volume 3494 of LNCS, pages 36–57. Springer,
2005.

3. Anne Canteaut and Florent Chabaud. A New Algorithm for Finding Minimum-
Weight Words in a Linear Code: Application to McEliece’s Cryptosystem and
to Narrow-Sense BCH Codes of Length 511. IEEE Transactions on Information
Theory, 44(1):367–378, 1998.

4. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo
Krawczyk, editor, Advances in Cryptology - CRYPTO ’98, 18th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 23-27,
1998, Proceedings, volume 1462, pages 56–71. Springer, 1998.

5. David Chaum and Jan-Hendrik Evertse. Crytanalysis of DES with a Reduced
Number of Rounds: Sequences of Linear Factors in Block Ciphers. In Hugh C.
Williams, editor, Advances in Cryptology - CRYPTO ’85, Santa Barbara, Cali-
fornia, USA, August 18-22, 1985, Proceedings, volume 218 of LNCS, pages 1–16.
Springer, 1986.

6. Henri Gilbert and Helena Handschuh. Security analysis of SHA-256 and sisters. In
Mitsuru Matsui and Robert Zuccherato, editors, Selected Areas in Cryptography,
10th Annual International Workshop, SAC 2003, Ottawa, Canada, August 14-15,
2003, Revised Papers, volume 3006 of Lecture Notes in Computer Science, pages
175–193. Springer, 2003.

7. Philip Hawkes, Michael Paddon, and Gregory G. Rose. On corrective patterns
for the SHA-2 family. Cryptology ePrint Archive, Report 2004/207, August 2004.
http://eprint.iacr.org/.

8. Charanjit S. Jutla and Anindya C. Patthak. A Matching Lower Bound on the
Minimum Weight of SHA-1 Expansion Code. Cryptology ePrint Archive, Report
2005/266, 2005. http://eprint.iacr.org/.

9. Jongsung Kim, Guil Kim, Sangjin Lee, Jongin Lim, and Jung Hwan Song. Related-
Key Attacks on Reduced Rounds of SHACAL-2. In Anne Canteaut and Kapalee
Viswanathan, editors, Progress in Cryptology - INDOCRYPT 2004, 5th Interna-
tional Conference on Cryptology in India, Chennai, India, December 20-22, 2004,
Proceedings, volume 3348 of LNCS, pages 175–190. Springer, 2004.

10. Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory, 34(5):1354–
1359, 1988.

11. Krystian Matusiewicz, Josef Pieprzyk, Norbert Pramstaller, Christian Rechberger,
and Vincent Rijmen. Analysis of simplified variants of SHA-256. In Proceedings of
WEWoRC 2005, LNI P-74, pages 123–134, 2005.

12. National Institute of Standards and Technology (NIST). FIPS-180-2: Secure
Hash Standard, August 2002. Available online at http://www.itl.nist.gov/

fipspubs/.

14



13. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Exploiting Cod-
ing Theory for Collision Attacks on SHA-1. In Nigel P. Smart, editor, Cryptography
and Coding, 10th IMA International Conference, Cirencester, UK, December 19-
21, 2005, Proceedings, volume 3796 of LNCS, pages 78–95. Springer, 2005.

14. Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. In Alfred Menezes, ed-
itor, Topics in Cryptology - CT-RSA 2005, The Cryptographers’ Track at the RSA
Conference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceedings,
volume 3376 of LNCS, pages 58–71. Springer, 2005.

15. Jacques Stern. A method for finding codewords of small weight. In G. Cohen and
J. Wolfmann, editors, Coding Theory and Applications, 3rd International Collo-
quium, Toulon, France, November, 1988, Proceedings, volume 388 of LNCS, pages
106–113. Springer, 1989.

16. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the Hash Functions MD4 and RIPEMD. In Ronald Cramer, editor, Ad-
vances in Cryptology - EUROCRYPT 2005: 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark,
May 22-26, 2005. Proceedings, volume 3494 of LNCS, pages 1–18. Springer, 2005.

17. Xiaoyun Wang, Andrew Yao, and Frances Yao. New Collision Search for SHA-1,
August 2005. Presented at rump session of CRYPTO 2005.

18. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, 25th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 14-18, 2005, Proceedings, volume 3621 of LNCS, pages 17–36. Springer, 2005.

19. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In
Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005: 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005. Proceedings, volume 3494 of LNCS,
pages 19–35. Springer, 2005.

20. Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision Search At-
tacks on SHA-0. In Victor Shoup, editor, Advances in Cryptology - CRYPTO
2005, 25th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 14-18, 2005, Proceedings, volume 3621 of LNCS, pages 1–16.
Springer, 2005.

21. Hirotaka Yoshida and Alex Biryukov. Analysis of a SHA-256 variant. In Bart
Preneel and Stafford Tavares, editors, Selected Areas in Cryptography (SAC 2005),
Kingston, Ontario, Canada, August 11-12, 2005, Proceedings to appear, LNCS.
Springer, 2005.

A Proof of Theorem 1

Before proofing Theorem 1, we need the following Observation.

Observation 3 Let (V’,X’,Y’,Z’) be the XOR-difference of 4 inputs of an ad-
dition mod 2n. Let R’ denote the XOR-difference of the result of this addition.
∀j: 32 > j > i where the following situation occurs:

V ′
i = X ′

i = Y ′
i = Z ′i = R′i

the following relation must hold:

V ′
i+1 ⊕X ′

i+1 ⊕ Y ′
i+1 ⊕ Z ′i+1 ⊕R′i+1 = R′i

15



Now we can give a constructive proof for Theorem 1.

Proof. Let’s first consider the case of a GF(2)-linearized variant of ME, MElin.
In order to proof Theorem 1 for this variant, it suffices to show that for a
particular d, the vector e′ is not a valid expanded message.

We choose d to be the perturbation vector shown in Table 2. Note that
A′ contains the perturbation vector in this table. Vector 17 of e’ (the sum of
the perturbations and corrections for W17) is 1b022000. However, applying the
recurrence relation for the SHA-256 message expansion, W17 turns out to be
8b022000. For the GF(2)-linearized variant of the SHA-256 message expansion
in Equation 1, the proof would already be finished. Let’s now consider unmodified
SHA-256.

We can build up on the previously proved part on the linearized variant, but
need to consider the additional degrees of freedom we have due to carries. Here
we need to show that no two expansions of messages m and m∗ can exist such
that W17 ⊕W ∗

17 = 1b022000.
W ′

17 can be rewritten as (V +X +Y +Z)⊕ (V ∗+X∗+Y ∗+Z∗) Considering
the recurrence relation given in Equation 1 and inserting the value from Table 2
we get V ′ = σ1(W15) = 81609048, X ′ = W10 = 04f61081, Y ′ = σ0(W2) =
8e94a0c9, Z ′ = W1 = 80000000.

Now we apply Observation 3 and see that we get the following contradiction
at bit-position 32(MSB). We have V ′

31 = X ′
31 = Y ′

31 = Z ′31 = R′31 = 0, thus
we require V ′

32 ⊕ X ′
32 ⊕ Y ′

32 ⊕ Z ′32 ⊕ R′32 = 0′ which is not the case. Thus we
have shown that even by using the additional degrees of freedom in the message
expansion(i.e. the carry effect), we can never arrive at the desired difference
1b022000 in W17. ut

B L-characteristic for a 31-step collision of SHA-256-3R

The L-characteristic for 31-step SHA-256-3R including the message difference
used in Sect. 3.2 is given in Table 5.

C Example of an 18-step collision for SHA-256

In Table 7 we give an example of an 18-step collision for SHA-256. We used a
combination of the message modification technique described in Sect. 4 and the
search for neutral bits to
– find the first 18-step collision in much less than a minute
– generate millions of them by using a large set of 2-neutral bits

The L-characteristic for this 18-step collision in SHA-256 including the mes-
sage difference is given in Table 6. Since there are no conditions on the IVs,
every IV including the standard-IV can be used. By adding more steps to this
characteristic, near-collisions for more than 18-step can be derived in a straight-
forward manner. Note however that the weight of the difference at the output
will be higher than one, thus a 1-near-collision as presented in Sect. 3.5 cannot
be derived that way.

16



Table 5. L-characteristic for a 31-step collision in SHA-256-3R

Step W’ A’ B’ C’ D’ E’ F’ G’ H’

01 00000001 00000001 0 0 0 00000001 0 0 0
02 66284480 22004000 00000001 0 0 62084400 00000001 0 0
03 8c2760a2 00000001 22004000 00000001 0 0981008b 62084400 00000001 0
04 95c7e0f6 28089550 00000001 22004000 00000001 68009150 0981008b 62084400 00000001
05 e9732fd2 0040a000 28089550 00000001 22004000 829685b1 68009150 0981008b 62084400
06 5be0be03 0 0040a000 28089550 00000001 20906a04 829685b1 68009150 0981008b
07 11b2513e 0 0 0040a000 28089550 00000001 20906a04 829685b1 68009150
08 6c2091d0 0 0 0 0040a000 28089550 00000001 20906a04 829685b1
09 4e794ee2 22004000 0 0 0 2240e000 28089550 00000001 20906a04
10 09ec2102 00000001 22004000 0 0 0981008b 2240e000 28089550 00000001
11 bdcf75a7 0 00000001 22004000 0 40080400 0981008b 2240e000 28089550
12 ad02b460 0 0 00000001 22004000 0 40080400 0981008b 2240e000
13 2240e000 0 0 0 00000001 22004000 0 40080400 0981008b
14 092d4192 0 0 0 0 00000001 22004000 0 40080400
15 44280480 0 0 0 0 0 00000001 22004000 0
16 0 0 0 0 0 0 0 00000001 22004000
17 36044000 14040000 0 0 0 14040000 0 0 00000001
18 175330fb 0 14040000 0 0 1501a070 14040000 0 0
19 4e869ebe 00000001 0 14040000 0 00000001 1501a070 14040000 0
20 44280480 0 00000001 0 14040000 40080400 00000001 1501a070 14040000
21 910e2130 0 0 00000001 0 14040000 40080400 00000001 1501a070
22 175330fa 0 0 0 00000001 0 14040000 40080400 00000001
23 00000001 0 0 0 0 00000001 0 14040000 40080400
24 44280480 0 0 0 0 0 00000001 0 14040000
25 14040000 0 0 0 0 0 0 00000001 0
26 0 0 0 0 0 0 0 0 00000001
27 00000001 0 0 0 0 0 0 0 0

28-31 0 0 0 0 0 0 0 0 0

Table 6. L-characteristic of an 18-step collision in SHA-256

Step W’ A’ B’ C’ D’ E’ F’ G’ H’

01-03 0 0 0 0 0 0 0 0 0
04 80000000 80000000 0 0 0 80000000 0 0 0
05 22140240 0 80000000 0 0 20040200 80000000 0 0
06 42851098 0 0 80000000 0 0 20040200 80000000 0
07 0 0 0 0 80000000 0 0 20040200 80000000
08 80000000 0 0 0 0 80000000 0 0 20040200
09 22140240 0 0 0 0 0 80000000 0 0
10 0 0 0 0 0 0 0 80000000 0
11 0 0 0 0 0 0 0 0 80000000
12 80000000 0 0 0 0 0 0 0 0

13-18 0 0 0 0 0 0 0 0 0

Table 7. Example of an 18-step collision using the standard IV

i Mi

1-8 02679857 0183b9a1 005de4f5 0266ee0c 0d1442f0 06373a71 c445dec2 12542ec1
9-16 0982b61a 205a614c 2495a094 166ae4ac 15917909 1178f05a 0aae5a46 178058c6

17



D Pseudo-collisions for the compression function of
SHA-256

We give an example of a pseudo-collision for the compression function of step-
reduced SHA-256. The attacker has more freedom in such a setting: In addition
to choose different messages M and M∗, he is also allowed to choose different
IVs for the compression function. The goal is to find (M,M∗, IV, IV ∗) such that
compress(M, IV ) = compress(M∗, IV ∗). Note that this type of pseudo-collision
is different from the one described in [21].

The difference to Sect. 3.3 is that we have more degrees of freedom since we
do not require the starting difference to be all-zero. To derive the actual collision,
we used the same techniques as in Appendix C.

Note that this serves as an example. More steps can be achieved by extending
the given characteristic in the backwards direction. In the example of a pseudo-
collision given in Table 9, we need a different IV. IVnew = IVstandard ⊕ IVCorr.
IVCorr is given in Table 10. The corresponding L-characteristic is given in Ta-
ble 8. The required difference in the IV for this pseudo-collision is given in this
table as well. Note that this L-characteristic is similar to the 23-step related-key
characteristic used in [9].

Table 8. L-characteristic for a 22-step pseudo-collision in SHA-256

Step W’ A’ B’ C’ D’ E’ F’ G’ H’

IV’ 0 00000200 0 0 50090088 0 0 20880000 10080080
01 0 0 00000200 0 0 40010008 0 0 20880000
02 0 0 0 00000200 0 0 40010008 0 0
03 0 0 0 0 00000200 0 0 40010008 0
04 0 0 0 0 0 00000200 0 0 40010008
05 0 0 0 0 0 0 00000200 0 0
06 0 0 0 0 0 0 0 00000200 0
07 0 0 0 0 0 0 0 0 00000200
08 00000200 0 0 0 0 0 0 0 0

09-22 0 0 0 0 0 0 0 0 0

Table 9. 22-step Pseudo-Collision with M ′ 6= 0

i Mi

1-8 39b1309b 048a8b67 02e0fc89 1dd4b937 02784cbd 1527473f 0134eb90 023f18aa
9-16 008a6849 063fbdbc 2e06da49 0f2e9e2a 085d407e 1686fa83 03ad81fe 091da09b

Table 10. IV Correction for 22-step Pseudo-Collision with M ′ 6= 0

i IVCorr

1-5 DCBD1A68 00000000 00000000 00000080 60810000

18


