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Abstract. We study a recently proposed design approach of Feistel
structure which employs diffusion matrices in a switching way. At ASI-
ACRYPT 2004, Shirai and Preneel have proved that large numbers of
S-boxes are guaranteed to be active if a diffusion matrix used in a round
function is selected among multiple matrices. However the optimality of
matrices required by the proofs sometimes pose restriction to find ma-
trices suitable for actual blockciphers. In this paper, we extend their
theory by replacing the condition of optimal mappings with general-type
mappings, consequently the restriction is eliminated. Moreover, by com-
bining known lower bounds for usual Feistel structure, we establish a
method to estimate the guaranteed number of active S-boxes for arbi-
trary round numbers. We also demonstrate how the generalization en-
ables us to mount wide variety of diffusion mappings by showing concrete
examples.
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1 Introduction

A Feistel structure is one of the most widely used and best studied structures
for the design of blockciphers. It was proposed by H. Feistel in the early 1970s;
subsequently the structure was adopted in the well-known blockcipher DES [6,7].
During the 30-year of modern blockcipher research history, extensive studies
have been made on Feistel structure [10, 13, 16]. Currently, many well-known
blockciphers employ the design of Feistel structures [1, 12, 15, 17].

On the other hand, an optimal diffusion which is a linear function with the
maximum branch number is widely regarded in the recent blockcipher research;
the concept is used in the design of AES/Rijndael and many other cryptographic
primitives [2, 5, 14, 17]. However the effect of an optimal diffusion especially in
Feistel structure is still needed to be studied.

In 2004, Shirai and Shibutani proposed a novel design concept of Feistel
structure which employs plural optimal diffusion matrices in a switching manner.
In their design approach, a diffusion matrix in the round function is switched
among multiple matrices in a predefined order [21]. We call the matrix switching
technique Diffusion Switching Mechanism (DSM for short) in this paper. Then,



Shirai and Preneel has first shown the theoretical explanation of the effects of the
DSM [19]. They proved that the immunity against both differential and linear
cryptanalysis would be strengthened due to the fact that difference and linear
mask cancellation in characteristics caused by a small number of active S-boxes
will never occur.

The theory of the DSM opened a new line of research on the Feistel structure.
However the optimality condition for matrices in their result sometimes pose
restriction to find various matrices suitable for actual blockciphers. For example,
our experimental result showed that there are no 8 × 8 matrices over GF (28)
satisfying both the optimality and certain practically favorable conditions.

In this paper, we generalize the DSM theory by eliminating the conditions
of diffusion mappings. This generalization enables us to estimate the guaranteed
number of active S-boxes for any types of diffusion mappings if we get knowledge
of branch numbers of the mappings. Let a minimum differential branch number
among all diffusion matrices used in the Feistel structure be BD

1 , and let a
smallest differential and a linear branch number of diffusion matrices composed
of two alternate (i.e. i-th and i + 2-th) rounds be BD

2 , B
L
2 , respectively, and

three alternate (i, i + 2, i + 4-th) rounds differential branch number be BD
3 .

Then, we prove novel extended result on the numbers of active S-boxes such that
R(BD1 +BD2 ) differential active S-boxes for 6R-round,R(2BD

1 +BD3 ) for 9R-round
and RBL2 linear active S-boxes for 3R-round are theoretically guaranteed.

In addition, we show how to estimate the lower bound of number of active
S-boxes for arbitrary number of rounds. Kanda has already shown the results
on lower bound of the number of active S-boxes for single matrix based ordinary
Feistel structure [9]. By combining our results and Kanda’s results, lower bounds
for any number of rounds can be calculated in a simple manner. Consequently,
we can make use of the proved lower bounds for designing Feistel ciphers which
hold desirable expected immunity against differential attack and linear attack [4].
We also confirm effects of the generalization by showing concrete example 8× 8
matrices for a 128-bit block Feistel structure.

This paper is organized as follows: in Sect. 2, we introduce some definitions
used in this paper. Previous works including ODM-MR design approach are
shown in Sect. 3. We prove in Sect. 4 the extended theorems regarding Diffusion
Switching Mechanism (DSM for short) as our main contribution. In Sect. 5, we
discuss the new design approach by presenting some examples and numerical
values. Finally Sect. 6 concludes the paper.

2 Preliminaries

In this paper, we treat a typical type of Feistel structure, which is called a
balanced Feistel. It is defined as follows [16].

Definition 1. (Balanced Feistel structure)
Let b be a block size, r be a number of rounds, and k be a size of round key.
Let ki ∈ {0, 1}k (1 ≤ i ≤ r) be round keys provided by a certain key schedul-
ing algorithm and xi ∈ {0, 1}b/2 be intermediate data, and let Fi : {0, 1}b/2 ×



{0, 1}k → {0, 1}b/2 be an F-function at the i-th round. The algorithm of a bal-
anced Feistel structure is defined as : (1) Input x0, x1 ∈ {0, 1}b/2, (2) Calculate
xi+1 = Fi(xi, ki)⊕ xi−1 (1 ≤ i ≤ r), (3) Output xr, xr+1 ∈ {0, 1}b/2.

Then we define SP-type F-functions which are special constructions of a F-
function [9, 18].

Definition 2. (SP-type F-functions)
Let a length of a round key k = b/2. Let m be the number of S-boxes in a round,
and n be the size of the S-boxes, with mn = b/2. Let si,j : {0, 1}n → {0, 1}n
be the j-th S-box in the i-th round, and let Si : {0, 1}b/2 → {0, 1}b/2 be the
function generated by concatenating m S-boxes in parallel in the i-th round.
Let Pi : {0, 1}b/2 → {0, 1}b/2 be the linear Boolean function. Then SP-type F-
functions are defined as Fi(xi, ki) = Pi(Si(xi ⊕ ki)).

Note that we denote the intermediate variables zi = Si(xi ⊕ ki) in this paper.

Definition 3. ((m,n,r)-SPFS)
An (m,n, r)-SPFS is defined as an r-round Feistel structure with SP-type round
function using m n-bit S-boxes, and for which all si,j , Pi are bijective. An mn×
mn matrix Mi (1 ≤ i ≤ r) over GF (2) denotes a matrix representation of a
linear Boolean function Pi where Pi(x) = Mix.

Remark 1. Because of the bijectivity of S-boxes and linear function P in (m,n, r)-
SPFS, all F-functions are bijective.

We also give definitions of bundle weight and branch number [5].

Definition 4. (bundle weight)
Let x ∈ {0, 1}pn represented as x = [x0x1 . . . xp−1] where xi ∈ {0, 1}n, then the
bundle weight wn(x) is defined as

wn(x) = ]{xi|xi 6= 0} .

Definition 5. (Branch Number)
Let P : {0, 1}pn → {0, 1}qn. The branch number of P is defined as

Brn(P ) = min
a6=0
{wn(a) + wn(P (a))} .

Remark 2. The maximum branch number is Brn(P ) = q+1. If a linear function
has a maximum branch number, it is called an optimal diffusion mapping [2].
It is known that an optimal diffusion mapping can be obtained from maximum
distance separable (MDS) codes [5].



3 Previous Work

The precise estimation of the lower bound of the number of active S-boxes of
blockciphers has been known as one of the practical means to evaluate strength of
ciphers, because the lower bound can be used to estimate weight distributions of
differential and linear characteristics [1,3,5,9,11,18]. It is shown that the weight
distribution is connected with the bound of the expected differential probability
or the linear hull probability by Daemen and Rijmen [4].

Recently, Shirai and Preneel proved the following corollary which can be used
to estimate the lower number of active S-boxes of a specially designed Feistel
structure [19, 21].

Definition 6. Let p be a positive integer, and A,B be p × p square matrices.
Then [A|B] denotes a p× 2p matrix obtained by concatenating A and B. Simi-
larly, the three matrices case is defined for [A|B|C].

Corollary 1. Let E be an (m,n,r)-SPFS blockcipher where r ≥ 6.
If [Mi|Mi+2|Mi+4] and [tM−1

j |tM−1
j+2] are optimal diffusion mappings for any i, j

(1 ≤ i ≤ r − 4, 1 ≤ j ≤ r − 2), respectively, any 3R consecutive rounds (R ≥ 2)
in E guarantee at least R(m+ 1) differential and linear active S-boxes.

The design approach is called ODM-MR (Optimal Diffusion Mappings across
Multiple Rounds) design approach. To apply the corollary to practical Feistel
structures, we need to use at least three different matrices [19]. For example, let
A0, A1, A2 be the matrices which satisfy the following conditions.

1. Choose nm × nm matrices A0, A1, A2 over GF (2) satisfying the following
optimal diffusion conditions:
(a) Brn([A0|A1|A2]) = m+ 1 ,
(b) Brn([tA−1

0 |tA−1
1 ]) = Brn([tA−1

1 |tA−1
2 ]) = Brn([tA−1

2 |tA−1
0 ]) = m+ 1 .

2. Set these three matrices as M2i+1 = M2r−2i = A i mod 3, for 0 ≤ i < r in an
2r-round Feistel structure (m,n, 2r)-SPFS (Fig.1).

A0 A2 A1 A1 A2 A0 A0 A2 A1 A1 A2 A0

Fig. 1. Example Allocation of Matrices A0, A1, A2

The corollary states that the (m,n, 2r)-SPFS with the above settings guar-
antees 2(m+ 1), 3(m+ 1) and 4(m+ 1) differential and linear active S-boxes in
6, 9 and 12 consecutive rounds, respectively. Fig. 2 illustrates the statement.

In this way, using multiple diffusion matrices in a switching way for round
functions makes Feistel structure stronger against differential attack and linear
attack. In this paper, we call the new design concept a Diffusion Switching
Mechanism (DSM) in general. From now on, we will extend the DSM to treat
not only optimal diffusion matrices but also any general type matrices.



6-round: 2(m + 1) active S-boxes are guaranteed

6-round: 2(m + 1) active S-boxes are guaranteed

9-round: 3(m + 1) active S-boxes are guaranteed

12-round: 4(m + 1) active S-boxes are guaranteed
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Fig. 2. Guaranteed Active S-boxes by ODM-MR design

4 DSM for General Matrices

In this section, we show the extended theory of the DSM theoretically1. The
following two subsections are devoted to proving three theorems. To ease the
proofs, we first introduce an additional definition.

Definition 7. Consider differential characteristics or linear characteristics. Let
Di and Li denote the number of differential and linear active S-boxes in the i-th
round, respectively. These values are determined by the differences ∆xi, ∆zi or
by the linear masks Γxi, Γ zi. Since all S-boxes are bijective, we have the following
relations,

Di = wn(∆xi) = wn(∆zi) , Li = wn(Γxi) = wn(Γzi) ,

where wn(·) is the bundle weight as defined in Definition 4.

Remark 3. If we have a nonzero input difference for an (m,n, r)-SPFS, we obtain
the following conditions:

(d0) Di = 0⇒ Di−2 6= 0, Di−1 6= 0, Di+1 6= 0, Di+2 6= 0 ,
(d1) Di = 0⇒ Di−1 = Di+1 .

Similarly, if a nonzero input mask is given, we have

(l0) Li = 0⇒ Li−2 6= 0, Li−1 6= 0, Li+1 6= 0, Li+2 6= 0 ,
(l1) Li = 0⇒ Li−1 = Li+1 .

4.1 Proofs for the Lower Bound of Differential Active S-boxes

In this section we prove Theorem 1 and Theorem 2; the proof is based on three
lemmata. Firstly we define a concept of minimum branch numbers for three
types of matrices.

1 The composition of the extended version of proofs almost follows that of proofs for
ODM-MR [19].



Definition 8. For an (m,n, r)-SPFS, minimum branch numbers BD
1 , B

D
2 and

BD3 are defined as follows.

BD1 = min
1≤i≤r

(Brn(Mi)) ,

BD2 = min
1≤i≤r−2

(Brn([Mi|Mi+2])) ,

BD3 = min
1≤i≤r−4

(Brn([Mi|Mi+2|Mi+4])) .

Obviously, the following inequality holds.

BD1 ≥ BD2 ≥ BD3 . (1)

Note that these values can be derived from any given set of diffusion mappings
Mi (1 ≤ i ≤ r). Introducing these values into the proofs means that the con-
straint of optimal diffusion mappings will disappear. This is an essence of our
generalization.

Firstly, Lemma 1 shows relations between Di of (m,n, r)-SPFS and BD1 .

Lemma 1. Let E be an (m,n, r)-SPFS blockcipher, then E has the following
condition (d2).

(d2) Di+1 6= 0⇒ Di +Di+1 +Di+2 ≥ BD1 .

Proof. From the relation between the differences ∆zi+1,∆xi and ∆xi+2 in a 3
consecutive rounds, we obtain the following equation.

Mi+1∆zi+1 = ∆xi ⊕∆xi+2 .

Since Mi has a branch number at least BD1 we have

wn(∆zi+1) 6= 0⇒ wn(∆zi+1) + wn(∆xi ⊕∆xi+2) ≥ BD1 . (2)

Eq. (2) and the inequality wn(∆xi)+wn(∆xi+2) ≥ wn(∆xi⊕∆xi+2) yield (d2).
ut

Remark 4. By combining Remark 3 and (d2), we obtain additional underlying
conditions (d3) and (d4).

(d3) Di = 0⇒ Di+1 +Di+2 ≥ BD1 ,
(d4) Di+2 = 0⇒ Di +Di+1 ≥ BD1 .

Eq. (d3) and (d4) mean that if a k-th round has no active S-boxes, any 2 con-
secutive rounds next to the k-th round always contain more than BD

1 active
S-boxes.

Next, we show the property of (m,n, r)-SPFS for two matrices case.



Lemma 2. Let E be an (m,n, r)-SPFS blockcipher, E has the following condi-
tions (d5), (d6).

(d5) Di+4 = 0⇒ Di +Di+1 +Di+3 ≥ BD2 ,
(d6) Di = 0⇒ Di+1 +Di+3 +Di+4 ≥ BD2 .

Proof. From the relation between 5-round differences,

Mi+1∆zi+1 ⊕Mi+3∆zi+3 = ∆xi ⊕∆xi+4 .

Then,

[Mi+1|Mi+3]

(
∆zi+1

∆zi+3

)
= ∆xi ⊕∆xi+4 .

Since [Mi+1|Mi+3] has a branch number at least BD2 , and from Remark 3, we
see that wn(∆zi+1) = 0 and wn(∆zi+3) = 0 will never occur simultaneously, we
obtain

wn(∆zi+1) + wn(∆zi+3) + wn(∆xi ⊕∆xi+4) ≥ BD2 .

Assuming the cases ∆xi = 0 or ∆xi+4 = 0, we directly obtain (d5) and (d6). ut
By using the previously obtained conditions (d0)−(d6), we show the following

theorem for differential active S-boxes.

Theorem 1. Let E be an (m,n, r)-SPFS blockcipher, any 6 consecutive rounds
in E guarantee at least BD1 + BD2 differential active S-boxes.

Proof. Consider the total number of active S-boxes in 6 consecutive rounds from
the i-th round,

i+5∑

k=i

Dk = Di +Di+1 +Di+2 +Di+3 +Di+4 +Di+5 .

If Di+1 6= 0 and Di+4 6= 0, the condition (d2) guarantees that Di+Di+1+Di+2 ≥
BD1 and Di+3 +Di+4 +Di+5 ≥ BD1 . Therefore we obtain

∑i+5
k=iDk ≥ 2BD1 .

If Di+1 = 0,
i+5∑

k=i

Dk = Di +Di+2 +Di+3 +Di+4 +Di+5 .

From (d1),
i+5∑

k=i

Dk = 2 ·Di+2 +Di+3 +Di+4 +Di+5

= (Di+2 +Di+3) + (Di+2 +Di+4 +Di+5) .

From (d3) and (d6),
i+5∑

k=i

Dk ≥ BD1 +BD2 .

The case of Di+4 = 0 is proved similarly from (d1), (d4) and (d5). Combining
with (1), we have shown that any 6 consecutive rounds in E guarantee at least
BD1 +BD2 differential active S-boxes. ut



Immediately, we obtain the following corollary.

Corollary 2. Let E be an (m,n, r)-SPFS blockcipher. Any 6R consecutive rounds
in E guarantee at least R(BD1 +BD2 ) differential active S-boxes.

The result is compatible with ODM-MR by substituting m+ 1 for BD
1 and BD2 .

Next, we show the property of (m,n, r)-SPFS for three matrices case.

Lemma 3. Let E be an (m,n, r)-SPFS blockcipher. E satisfies the following
condition (d7).

(d7) Di = Di+6 = 0⇒ Di+1 +Di+3 +Di+5 ≥ BD3 .

Proof. First, from the difference relation in 7 consecutive rounds, we obtain

Mi+1∆zi+1 ⊕Mi+3∆zi+3 ⊕Mi+5∆zi+5 = ∆xi ⊕∆xi+6 .

Then,

[Mi+1|Mi+3|Mi+5]



∆zi+1

∆zi+3

∆zi+5


 = ∆xi ⊕∆xi+6 .

Since [Mi+1|Mi+3|Mi+5] has a branch number at least BD3 , and from Re-
mark 3, wn(∆zi+1), wn(∆zi+3), and wn(∆zi+5) cannot be simultaneously 0, we
get that

wn(∆zi+1) + wn(∆zi+3) + wn(∆zi+5) + wn(∆xi ⊕∆xi+6) ≥ BD3 .

By assuming ∆xi = 0 and ∆xi+6 = 0, we derive the condition (d7). ut

From the additional condition (d7), we derive the following theorem.

Theorem 2. Let E be an (m,n, r)-SPFS blockcipher. Any 9 consecutive rounds
in E guarantee at least 2BD1 +BD3 differential active S-boxes.

Proof. Consider the total number of active S-boxes in 9 consecutive rounds,

i+8∑

k=i

Dk = Di +Di+1 +Di+2 +Di+3 +Di+4 +Di+5 +Di+6 +Di+7 +Di+8 .

If Di+1 6= 0 then Di +Di+1 +Di+2 ≥ BD1 from (d2), and Lemma 1 guarantees

that the sum of the remaining 6 consecutive rounds
∑i+8

k=i+3 Dk ≥ BD1 + BD2 .

Consequently
∑i+8

k=iDk ≥ 2BD1 +BD2 . Similarly, if Di+7 6= 0, at least 2BD1 +BD2
active S-boxes are guaranteed.

If Di+1 = Di+7 = 0, we obtain

i+8∑

k=i

Dk = Di +Di+2 +Di+3 +Di+4 +Di+5 +Di+6 +Di+8 .



From (d1),

i+8∑

k=i

Dk = 2 ·Di+2 +Di+3 +Di+4 +Di+5 + 2 ·Di+6

= (Di+2 +Di+3) + (Di+2 +Di+4 +Di+6) + (Di+5 +Di+6) .

From (d3), (d7) and (d4),

i+8∑

k=i

Dk ≥ BD1 +BD3 +BD1 = 2BD1 +BD3 .

Combining with (1), we have shown that any 9 consecutive rounds in E guarantee
at least 2BD1 +BD3 differential active S-boxes. ut

Immediately, we obtain the following corollary.

Corollary 3. Let E be an (m,n, r)-SPFS blockcipher. Any 9R consecutive rounds
in E guarantee at least R(2BD1 +BD3 ) differential active S-boxes.

The result is compatible with ODM-MR by substituting m+ 1 for BD
1 and BD3 .

4.2 Proofs for the Lower Bound of Linear Active S-boxes

In this subsection, we will show the proof of the guaranteed number of linear
active S-boxes of (m,n, r)-SPFS.

Definition 9. For an (m,n, r)-SPFS, minimum branch number BL
2 is defined

as follows.
BL2 = min

1≤i≤r−2
(Brn([tM−1

i |tM−1
i+2])) .

Theorem 3. Let E be an (m,n, r)-SPFS blockcipher. Any 3 consecutive rounds
in E has at least BL2 linear active S-boxes.

Proof. From the 3-round linear mask relation,

Γxi+1 = tM−1
i Γzi ⊕ tM−1

i+2Γzi+2 .

Then,

Γxi+1 = [tM−1
i |tM−1

i+2]

(
Γzi
Γzi+2

)
.

Since [tM−1
i |tM−1

i+2] has a branch number at least BL2 , and from Remark 3,
wn(Γzi) and wn(Γzi+2) cannot be simultaneously 0, we obtain

wn(Γzi) + wn(Γxi+1) + wn(Γzi+2) ≥ BL2 .

By using the notion of Li, this implies,

(l1) Li + Li+1 + Li+2 ≥ BL2 .

ut



As a result, we obtain the following corollary.

Corollary 4. Let E be an (m,n, r)-SPFS blockcipher. Any 3R consecutive rounds
in E guarantee at least RBL2 linear active S-boxes.

The result is compatible with ODM-MR by substituting m + 1 for BL
2 in the

corollary 1.

5 Discussion

5.1 Comparison of the Results

The statement of the corollaries 2 and 3 are independently applicable. Therefore,
it is possible that the both of these corollaries may produce different lowrbounds
for the same round numbers.

For example, consider an (m,n, 18R)-SPFS, 3R(BD
1 + BD2 ) and 2R(2BD1 +

BD3 ) differential active S-boxes are lower bounded by the corollary 2 and 3,
respectively. Letting two parameters of diffusion matrices α = BD

1 − BD2 and
β = BD2 −BD3 , we obtain the gap of these lower bounds as,

3R(BD1 + BD2 )− 2R(2BD1 +BD3 ) = R(2(BD2 −BD3 )− (BD1 −BD2 ))
= R(2β − α)

If α = 2β, these lower bounds always coincide. If α 6= 2β, different lower
bounds are produced at the 18R-th rounds. In such a case, we had better choose
a larger lower bound and use it to adjust lower bounds for the rounds after the
18-th rounds to get more precise estimation.

5.2 Interpolation for Skipped Rounds

The corollaries 2, 3 and 4 are not able to provide lower bounds for any num-
ber of rounds, because they are valid for only multiples of 3, 6, or 9 rounds.
Besides these corollaries, we use known results for Feistel structure to interpo-
late guaranteed lower bounds of the rounds which are not indicated by these
corollaries.

Firstly the following trivial conditions are described explicitly.

(1-round cond.) Di ≥ 0, Li ≥ 0 .

(2-round cond.) Di +Di+1 ≥ 1 , Li + Li+1 ≥ 1 .

Kanda has proved inequalities for 3 and 4-round for the single matrix based
normal Feistel structure, which can be converted into our settings as follows [9].

(3-round cond.) Di +Di+1 +Di+2 ≥ 2 .

(4-round cond.) Di +Di+1 +Di+2 +Di+3 ≥ BD1 .



Additionally, we use the following 5-round condition. The proof will be appeared
in the appendix A.

(5-round cond.) Di +Di+1 +Di+2 +Di+3 +Di+4 ≥ BD1 + 1 .

We make use of these lower bounds for less than 5 consecutive rounds for
differential active S-boxes and less than 2 consecutive rounds for linear active
S-boxes to obtain the lower bounds for arbitrary round numbers.

5.3 Example Choice of Matrices

Here, we will demonstrate how to apply the generalized DSM theory to concrete
Feistel structure to enhance the immunity against differential attack and linear
attack by illustrating example matrices.

Let A0, A1 and A2 be 8× 8 matrices overGF (28) with irreducible polynomial
x8 + x4 + x3 + x2 + 1 = 0 as follows:

A0 =




1 9 2 5 8 1 4 1

1 1 9 2 5 8 1 4

4 1 1 9 2 5 8 1

1 4 1 1 9 2 5 8

8 1 4 1 1 9 2 5

5 8 1 4 1 1 9 2

2 5 8 1 4 1 1 9

9 2 5 8 1 4 1 1




, A1 =




1 6 8 9 6 9 5 1

1 1 6 8 9 6 9 5

5 1 1 6 8 9 6 9

9 5 1 1 6 8 9 6

6 9 5 1 1 6 8 9

9 6 9 5 1 1 6 8

8 9 6 9 5 1 1 6

6 8 9 6 9 5 1 1




, A2 =




1 6 4 8 4 5 8 9

9 1 6 4 8 4 5 8

8 9 1 6 4 8 4 5

5 8 9 1 6 4 8 4

4 5 8 9 1 6 4 8

8 4 5 8 9 1 6 4

4 8 4 5 8 9 1 6

6 4 8 4 5 8 9 1




.

Note that we chose the matrix A0 from Whirlpool hashing function’s diffusion
matrix for reference 2 [8].

Let A′0, A
′
1 and A′2 be 64× 64 matrices over GF (2) which are equivalent to

A0, A1 and A2, respectively. These matrices have the following properties 3.

1. Br8(A′0) = Br8(A′1) = Br8(A′2) = 9 ,
2. Br8([A′0|A′1]) = Br8([A′1|A′2]) = Br8([A′2|A′0]) = 8 ,
3. Br8([A′0|A′1|A′2]) = 8 ,
4. Br8([tA′−1

0 |tA′−1
1 ]) = Br8([tA′−1

1 |tA′−1
2 ]) = Br8([tA′−1

2 |tA′−1
0 ]) = 8 .

Property 1 indicates that each matrix is an optimal diffusion mapping itself
since the branch number is column number plus 1, but the properties 2-4 in-
dicate the combined matrices made from these matrices are not optimal. Our
experiment shows that there are no set of matrices satisfying the optimality of
property 2-4 within the following searching space.

– Irreducible polynomial is x8 + x4 + x3 + x2 + 1 = 0,
– Each element of matrices is in hex values {1,2,3,..,e,f} ∈ GF (28). They

can be represented as at most 4-bit value.

2 The matrix is transposed so as to adjust our form y = Mx not y = xM
3 The notion Br8 is defined in section 2.



Note that the searching space applied in finding the Whirlpool’s diffusion matrix
by the designers is subset of our searching space, and the smallness of the matrix
elements is considered to contribute efficient implementations [2, 20].

Since we could not prepare optimal matrices in this setting, now we can make
use of the previously obtained generalized theorems for Feistel structures using
the above non-optimal matrices.

5.4 Feistel Structures Using 2 or 3 Matrices in DSM

We consider two types of Feistel structures which belong to (8, 8, 2r)-SPFS. One
is using two matrices, the other is using three matrices. These both structures
can be used for 128-bit blockciphers due to m = n = 8. In appendix B, we will
show the cases for 64-bit block Feistel structure as well.

Let F128A be an (8, 8, 2r)-SPFS which employs matrices A0 and A1 as
M2i+1 = M2r−2i = A i mod 2 for 0 ≤ i < r (see Fig 3 when r = 6).

A0 A1 A1 A0 A0 A1 A1 A0 A0 A1 A1 A0

Fig. 3. Allocation of Matrices A0, A1 in F128A

Let F128B be an (8, 8, 2r)-SPFS which employs matrices A0, A1 and A2 as
M2i+1 = M2r−2i = A i mod 3 for 0 ≤ i < r (see Fig 4 when r = 6).

A0 A2 A1 A1 A2 A0 A0 A2 A1 A1 A2 A0

Fig. 4. Allocation of Matrices A0, A1, A2 in F128B

In the above situation, we know that in F128A, BD
1 = 9, BD2 = 8, BL2 = 8,

and the corollaries 2, 4 and conditions in Sect.5.2 are effective. On the other
hand, in F128B, BD1 = 9, BD2 = 8, BD3 = 8, BL2 = 8, and the corollaries 2, 3, 4
and conditions in Sect.5.2 are effective.

The results of the guaranteed number of active S-boxes for F128A and F128B
with other additional information are shown in the Table 1. Columns labeled
by ’Dif.’ and ’Lin.’ contain lower bounds of differential and linear active S-
boxes, respectively. Additionally, we show the lower bounds for the weights of
the characteristics, which is simply calculated by multiplying the lower bound
and a index number of maximum differential or linear probability of S-boxes [4].



Table 1. Lower Bounds of Number of Active S-boxes and Weights of Characteristics

F128A F128B

Dif. DPmax DPmax Lin. LPmax LPmax speed Dif. Lin. speed
round 2−6 2−5 2−6 2−4.39

(cycles/byte) (cycles/byte)

1 0 0 0 0 0 0 - 0 0 -
2 1 6 5 1 6 4.39 - 1 1 -
3 2 12 10 8 48 35.12 - 2 8 -
4 9 54 45 8 48 35.12 - 9 8 -
5 10 60 50 9 54 39.51 - 10 9 -
6 17 102 85 16 96 70.24 - 17 16 -
7 17 102 85 16 96 70.24 - 17 16 -
8 18 108 90 17 102 74.63 - 18 17 -
9 19 114 95 24 144 105.36 - 26 24 -
10 26 156 130 24 144 105.36 11.38 26 24 11.65
11 27 162 135 25 150 109.75 - 27 25 -
12 34 204 170 32 192 140.48 13.60 34 32 14.11
13 34 204 170 32 192 140.48 - 34 32 -
14 35 210 175 33 198 144.87 15.75 35 33 16.37
15 36 216 180 40 240 175.6 - 36 40 -
16 43 258 215 40 240 175.6 17.93 43 40 18.70
17 44 264 220 41 246 179.99 - 44 41 -
18 51 306 255 48 288 210.72 19.88 52 48 20.64

The considered S-boxes here have the maximum differential probability 2−6 and
2−5, maximal linear probability 2−6 and 2−4.39 for reference4.

These weights of characteristics can be used to practically estimate the
strength of the cipher against differential attack and linear attack [4]. In this
case, the weight value should be larger than 128 with reasonable margin, for
example 10-round F128A and 9-round F128B using 2−6 S-box and 12-round
F128A, F128B using the second S-box seem to hold minimum security. The dif-
ference between F128A and F128B is only the value of lower bound for 9-round
and 18-round of differential active S-boxes. It implies that if 9-rounds immunity
against differential attack is important, usage of 3 matrices should be taken into
consideration.

Additionally, we mention a software implementation aspect. Software per-
formance (in cycles per byte) of a moderately optimized C implementation of
the F128A and F128B are measured on AMD Athlon64 4000+ (2.41GHz) with
Windows XP Professional x64 Edition and Visual Studio .NET 2003. To use the
lookup-table based implementation suitable for a 64-bit CPU, F128A requires a
32KB table (8 × 8-bit input × 64-bit output × 2 matrices) and F128B requires
a 48KB table (3 matrices) [2]. Though they need large tables, we confirm that
they achieve practically enough speed in this environment.

4 The value 2−6 is known best probability, 2−5 and 2−4.39 are experimentally obtained
values that can be achieved by randomly chosen S-boxes in reasonable trials [4].



From the above observation, it is revealed that our novel results can be used
to theoretically estimate the strength of Feistel structures using DSM.

6 Conclusion

We provide extended theory for the guaranteed number of active S-boxes of Feis-
tel structure with DSM, which is realized by replacing the condition of optimal
mappings with general mappings. As a result, we established a simple tool to
evaluate any rounds of Feistel structures using DSM which employs arbitrary
types of diffusion matrices. The effects of the novel result are confirmed by eval-
uating certain Feistel structures with concrete example matrices.
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Appendix A

Here, we show the proof for the condition presented in the section 5.
By simply replacing the branch number symbol of the Kanda’s Corollary 1

in [9] with our symbol BD1 , we obtain

Corollary 5. The minimum number of differential active S-boxes in any four
consecutive rounds satisfies

(i) Di +Di+1 +Di+2 +Di+3 ≥ BD1 if and only if Di = Di+3 = 0 ,

(ii) Di +Di+1 +Di+2 +Di+3 ≥ BD1 + 1 in the other cases.

Using the above corollary, we show the following lemma.

Lemma 4. The minimum number of differential active S-boxes in any 5 con-
secutive rounds satisfies

Di +Di+1 +Di+2 +Di+3 +Di+4 ≥ BD1 + 1 .



Proof. If Di 6= 0 or Di+3 6= 0, the inequality (ii) of the corollary 5 directly
implies the above inequality. If Di = Di+3 = 0, (i) implies Di+1 +Di+2 ≥ BD1 .
By combining trivial conditionDi+3+Di+4 ≥ 1, the desired condition is obtained
immediately. ut

Appendix B

Let A0, A1 and A2 be 4 × 4 matrices over GF (28) with irreducible polynomial
x8 + x4 + x3 + x+ 1 = 0 as follows.

A0 =




2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2


 , A1 =




1 6 8 4

4 1 6 8

8 4 1 6

6 8 4 1


 , A2 =




1 9 4 a

a 1 9 4

4 a 1 9

9 4 a 1


 .

Let A′0, A
′
1 and A′2 be 32× 32 matrices over GF (2) which are equivalent to

A0, A1 and A2, respectively. These matrices have the following branch number
properties.

1. Br8(A′0) = Br8(A′1) = Br8(A′2) = 5 ,
2. Br8([A′0|A′1]) = Br8([A′1|A′2]) = Br8([A′2|A′0]) = 5 ,
3. Br8([A′0|A′1|A′2]) = 5 ,
4. Br8([tA′−1

0 |tA′−1
1 ]) = Br8([tA′−1

1 |tA′−1
2 ]) = Br8([tA′−1

2 |tA′−1
0 ]) = 5 .

Contrary to the 8 × 8 matrices cases, all of these conditions indicate that
the branch numbers are optimal. Note that we chose the matrix A0 is from
AES/Rijndael’s diffusion matrix for reference [5].

Let F64A and F64B be a (4, 8, 2r)-SPFS which employs the matrices A0, A1

and A2 same as in F128A and F128B, respectively. F64A and F64B can be used
for 64-bit blockciphers. The lower bounds of active S-boxes indicated by our
theory and weight of the characteristics are shown in Table 2.

We evaluate software performance (in cycles per byte) of a moderately op-
timized C implementation of the F64A and F64B are measured on an AMD
Athlon64 4000+ (2.41GHz) with Windows XP Professional x64 Edition and Vi-
sual Studio .NET 2003 (same as Table 1 environment). We confirmed that they
achieve practically enough speed in this environment. Moreover we expect that
F64A and F64B can be implemented efficiently on 32-bit processors, because
they require smaller tables than F128A and F128B do.



Table 2. Lower Bounds of Number of Active S-boxes and Weights of Characteristics

F64A F64B

Dif. DPmax DPmax Lin. LPmax LPmax speed Dif. Lin. speed
round 2−6 2−5 2−6 2−4.39

(cycles/byte) (cycles/byte)

1 0 0 0 0 0 0 - 0 0 -
2 1 6 5 1 6 4.39 - 1 1 -
3 2 12 10 5 30 21.95 - 2 5 -
4 5 30 25 5 30 21.95 - 5 5 -
5 6 36 30 6 36 26.34 - 6 6 -
6 10 60 50 10 60 43.9 - 10 10 -
7 10 60 50 10 60 43.9 - 10 10 -
8 11 66 55 11 66 48.29 - 11 11 -
9 12 72 60 15 80 65.85 - 15 15 -
10 15 80 75 15 80 65.85 17.52 15 15 17.53
11 16 86 80 16 86 70.24 - 16 16 -
12 20 120 100 20 120 87.8 20.52 20 20 20.52
13 20 120 100 20 120 87.8 - 20 20 -
14 21 126 105 21 126 92.19 23.66 21 21 23.66
15 22 132 110 25 130 109.75 - 25 25 -
16 25 150 125 25 130 109.75 26.17 25 25 26.17
17 26 156 130 26 136 114.14 - 26 26 -
18 30 180 150 30 180 131.7 29.03 30 30 29.03


