
How to Enhance the Security of the 3GPP

Confidentiality and Integrity Algorithms

Tetsu Iwata and Kaoru Kurosawa

Dept. of Computer and Information Sciences,
Ibaraki University

4–12–1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
{iwata, kurosawa}@cis.ibaraki.ac.jp

Abstract. We consider the 3GPP confidentiality and integrity schemes
that were adopted by Universal Mobile Telecommunication System, an
emerging standard for third generation wireless communications. The
schemes, known as f8 and f9, are based on the block cipher KASUMI.
Although previous works claim security proofs for f8 and f9′, where
f9′ is a generalized version of f9, it was shown that these proofs are
incorrect; it is impossible to prove f8 and f9′ secure under the standard
PRP assumption on the underlying block cipher. Following the results,
it was shown that it is possible to prove f8′ and f9′ secure if we make
the assumption that the underlying block cipher is a secure PRP-RKA
against a certain class of related-key attacks; here f8′ is a generalized
version of f8. Needless to say, the assumptions here are stronger than
the standard PRP assumptions, and it is natural to seek a practical way
to modify f8′ and f9′ to establish security proofs under the standard
PRP assumption. In this paper, we propose f8+ and f9+, slightly mod-
ified versions of f8′ and f9′, but they allow proofs of security under the
standard PRP assumption. Our results are practical in the sense that we
insist on the minimal modifications; f8+ is obtained from f8′ by setting
the key modifier to all-zero, and f9+ is obtained from f9′ by setting the
key modifier to all-zero, and using the encryptions of two constants in
the CBC MAC computation.

1 Introduction

Background. Within the security architecture of the 3rd Generation Partnership
Project (3GPP) system there are two standardized constructions: A confidential-
ity scheme f8, and an integrity scheme f9 [1]. 3GPP is the body standardizing
the next generation of mobile telephony. Both f8 and f9 are modes of operations
based on the block cipher KASUMI [2]. f8 is a symmetric encryption scheme
which is a variant of the Output Feedback (OFB) mode with full feedback, and
f9 is a Message Authentication Code (MAC) which is a variant of the CBC
MAC.

Provable Security. Provable security is a standard security goal for block cipher
modes of operations. Indeed, many of the block cipher modes of operations are

provably secure assuming that the underlying block cipher is a secure pseudo-
random permutation, or a super-pseudorandom permutation [25]. For example,
we have CTR mode [3] and CBC encryption mode [3] for symmetric encryption
schemes, PMAC [9], XCBC [8] and OMAC [16] for message authentication codes,
and IAPM [20], OCB mode [26], CCM mode [27, 19], EAX mode [6], CWC mode
[23] and GCM mode [24] for authenticated encryption schemes.

Therefore, it is natural to ask whether f8 and f9 are provably secure if
the underlying block cipher is a secure pseudorandom permutation. Making this
assumption, it was claimed that f8 is a secure symmetric encryption scheme
in the sense of left-or-right indistinguishability [21] and that f9′ is a secure
MAC [13], where f9′ is a generalized version of f9. However, these claims were
disproven [17]. One of the remarkable aspects of f8 and f9 is the use of a
non-zero constant called a “key modifier,” or KM. In the f8 and f9 schemes,
KASUMI is keyed with K and K ⊕ KM. The paper [17] constructs a secure
pseudorandom permutation F with the following property: For any key K, the
encryption function with key K is the decryption function with K ⊕KM. That
is, FK(·) = F−1

K⊕KM(·). Then it was shown that f8 and f9′ are insecure if F is
used as the underlying block cipher. This result shows that it is impossible to
prove the security of f8 and f9′ even if the underlying block cipher is a secure
pseudorandom permutation.

Generalized Versions of f8 and f9: f8′ and f9′. Given the results in [17], it is
logical to ask if there are assumptions under which f8 and f9 are actually secure
and, if so, what those assumptions are. Because of the constructions’ use of keys
related by fixed xor differences, the natural conjecture is that if the constructions
are actually secure, then the minimum assumption on the block cipher must be
that the block cipher is secure against some class of xor-restricted related-key
attacks, as introduced in [7] and formalized in [5].

The paper [14] proved that the above hypotheses are in fact correct and, in
doing so, [14] clarifies what assumptions are actually necessary in order for the
f8 and f9 modes to be secure. In more detail, [14] first considers a generalized
version of f8, which is called f8′. f8′ is a nonce-based symmetric encryption
scheme, and is the natural nonce-based extension of the original f8. Then it
is shown that f8′ is a secure nonce-based deterministic symmetric encryption
mode in the sense of indistinguishability from random strings if the underlying
block cipher is secure against related-key attacks in which an adversary is able
to obtain chosen-plaintext samples of the underlying block cipher using two keys
related by a fixed known xor difference.

Then [14] next considers a generalized version of f9, which is called f9 ′.
f9′ is a deterministic MAC, and is a natural extension of f9 that gives the
user, or adversary, more liberty in controlling the input to the underlying CBC
MAC core. Then it is shown that f9′ is a secure pseudorandom function, which
provably implies a secure MAC, if the underlying block cipher resists related-key
attacks in which an adversary is able to obtain chosen-plaintext samples of the
underlying block cipher using two keys related by a fixed known xor difference.

Our Contribution. Because the assumptions made for f8′ and f9′ are stronger
than the standard PRP assumptions (as proven necessary in [17]), in this paper,
we consider the following question; What is the minimal modification on f8′ and
f9′ to achieve the provable security results with the standard PRP assumptions
on the underlying block cipher? We view the answer to this question gives us
an important practical result. Namely, f8 and f9 can be easily replaced with
minimal cost, especially to be prepared for the worst case that KASUMI is known
to be vulnerable to related-key attacks.

In this paper, we propose f8+ and f9+, refinements of f8′ and f9′. Unlike
f8′ and f9′, our f8+ and f9+ are provably secure with the standard PRP
assumptions. Furthermore, they require very small modifications to f8 ′ and f9′.
In particular,

– f8+ is obtained from f8′ by setting the key modifier to all-zero, and
– f9+ is obtained from f9′ by setting the key modifier to all-zero, using the

encryption of all-zero as the initial value of the CBC chain, and xoring the
encryption of all-one before the final encryption.

These small modifications increase the security, allowing us to prove the security
of f8+ and f9+ under the standard PRP assumption. Intuitively, this implies
that the security of f8+ and f9+ is irrelevant to the resistance of KASUMI
against related key attacks. f8+ and f9+ are provably secure if KASUMI is
merely secure in the sense of a PRP.

Our results are practical in the sense that we insist on the “minimal mod-
ification,” and therefore we are able to switch the modes easily. Although f8+

and f9+ are not competitive to CTR mode and OMAC in terms of efficiency,
we find that switching to CTR mode and OMAC are costly and expensive, and
it is quite unreasonable to switch to them just because to reduce the security
assumption on the block cipher.

We suggest the following use of our results. (1) If there is a chance to replace
f8 and f9, especially to be prepared for the worst case that KASUMI is known to
be vulnerable to related-key attacks, f8+ and f9+ are reasonable replacements
since they only require small modifications and the costs for switching should
not be too expensive. These modifications may be handled by “patching” f8 and
f9. (2) When the whole system is updated, the future system should support
more conventional modes such as CTR mode and OMAC. In this case, the cost
for replacement should not be a problem.

We prove that f8+ is secure in the sense of indistinguishability from random
strings, and f9+ is a secure pseudorandom function, which provably implies a
secure MAC, if the underlying block cipher is secure in the sense of a PRP. We
note that because of the “key reuse” nature in f8+ and f9+, their security proofs
require much elaborate treatment compared to the cases for f8 ′ and f9′.

Related Works. Initial security evaluation of KASUMI, f8 and f9 can be found
in [12]. Knudsen and Mitchell analyzed the security of f9′ against forgery and
key recovery attacks [22]. Blunden and Escott showed related key attacks on
reduced round KASUMI [10].

2 Preliminaries

Notation. If x is a string then |x| denotes its length in bits. If x and y are two
equal-length strings, then x⊕y denotes the xor of x and y. If x and y are strings,
then x‖y denotes their concatenation. Let x← y denote the assignment of y to
x. If X is a set, let x

R← X denote the process of uniformly selecting at random
an element from X and assigning it to x. If F : {0, 1}k × {0, 1}n → {0, 1}m
is a family of functions from {0, 1}n to {0, 1}m indexed by keys {0, 1}k, then
we use the notation FK(D) as shorthand for F (K, D). We say F is a family
of permutations, i.e., a block cipher, if n = m and FK(·) is a permutation on
{0, 1}n for each K ∈ {0, 1}k. Let Rand(n, m) denote the set of all functions from
{0, 1}n to {0, 1}m. When we refer to the time of an algorithm or experiment in
the provable security sections of this paper, we include the size of the code (in
some fixed encoding). There is also an implicit big-O surrounding all such time
references.

PRPs. The PRP notion was introduced in [25] and later made concrete in [4].
Let Perm(n) denote the set of all permutations on {0, 1}n, and let E :

{0, 1}k × {0, 1}n → {0, 1}n be a family of permutations, i.e., a block cipher.
Let A be an adversary with access to an oracle and returns a bit. Then

Advprp
E (A) def=

∣∣∣ Pr(K R← {0, 1}k : AEK(·) = 1)− Pr(G R← Perm(n) : AG(·) = 1)
∣∣∣

is defined as the PRP-advantage of A on E. Intuitively, we say that E is a secure
PRP if the PRP-advantage of all adversaries using reasonable resources is small.

We briefly remark that modern block ciphers, e.g., AES [11], are designed to
be secure PRP.

3 Specifications of f8, f9, f8� and f9�

3GPP Confidentiality Algorithm f8 [1]. f8 is a symmetric encryption scheme
standardized by 3GPP 1. It uses a block cipher KASUMI : {0, 1}128×{0, 1}64→
{0, 1}64 as the underlying primitive. The f8 key generation algorithm returns a
random 128-bit key K. The f8 encryption algorithm takes a 128-bit key K, a
32-bit counter COUNT, a 5-bit radio bearer identifier BEARER, a 1-bit direc-
tion identifier DIRECTION, and a message M ∈ {0, 1}∗ to return a ciphertext
C, which is the same length as M . Also, it uses a 128-bit constant KM = (01)64

(or 0x55...55 in hexadecimal) called the key modifier. In more detail, the en-
cryption algorithm is defined in Fig. 1. In Fig. 1, [i − 1]64 denotes the 64-bit
binary representation of i− 1. The decryption algorithm, which takes COUNT,
BEARER, DIRECTION, and a ciphertext C as input and returns a plaintext
M , is defined in the natural way.
1 The original specification [1] refers f8 as a symmetric synchronous stream cipher.

The specification presented here is fully compatible with the original one.

Algorithm f8-EncryptK(COUNT, BEARER, DIRECTION, M)
m← �|M |/64�
Y [0] ← 064

A← COUNT‖BEARER‖DIRECTION‖026

A← KASUMIK⊕KM(A)
For i← 1 to m do:

X[i]← A⊕ [i− 1]64 ⊕ Y [i − 1]
Y [i]← KASUMIK(X[i])

C ←M ⊕ (the leftmost |M | bits of Y [1]‖ · · · ‖Y [m])
Return C

Fig. 1. Algorithm f8-EncryptK(COUNT, BEARER, DIRECTION, M).

Since we analyze and prove results about a variant of f8 whose encryption al-
gorithm takes a nonce as input in lieu of COUNT, BEARER, and DIRECTION,
we do not describe the specifics of how COUNT, BEARER, and DIRECTION
are used in real 3GPP applications. We do note that 3GPP applications will never
invoke the f8 encryption algorithm twice with the same (COUNT, BEARER,
DIRECTION) triple, which means that our nonce-based variant is appropriate.

3GPP Integrity Algorithm f9 [1]. f9 is a message authentication code stan-
dardized by 3GPP. It uses KASUMI as the underlying primitive. The f9 key
generation algorithm returns a random 128-bit key K. The f9 tagging algo-
rithm takes a 128-bit key K, a 32-bit counter COUNT, a 32-bit random number
FRESH, a 1-bit direction identifier DIRECTION, and a message M ∈ {0, 1}∗
and returns a 32-bit tag T . It uses a 128-bit constant KM = (10)64 (or 0xAA...AA
in hexadecimal), called the key modifier.

Let M = M [1]‖ · · · ‖M [m] be a message, where each M [i] (1 ≤ i ≤ m −
1) is 64 bits. The last block M [m] may have fewer than 64 bits. We define
pad64(COUNT, FRESH, DIRECTION, M) as follows: It concatenates COUNT,
FRESH, M and DIRECTION, and then appends a single “1” bit, followed by
between 0 and 63 “0” bits so that the total length is a multiple of 64 bits. More
precisely,

pad64(COUNT, FRESH, DIRECTION, M)
= COUNT‖FRESH‖M‖DIRECTION‖1‖063−(|M |+1 mod 64) .

Then the tagging algorithm is defined in Fig. 2. In Fig. 2, “M [1]‖ · · · ‖M [m]←
M” is a shorthand for “break M into 64-bit blocks M [1]‖ · · · ‖M [m].” The f9
verification algorithm is defined in the natural way by tag recomputation.

As with f8, since we analyze and prove the security of a generalized version
of f9, we do not describe how COUNT, FRESH, and DIRECTION are used in
real 3GPP applications.

A Generalized Version of f8: f8′ [17, 14]. f8′ is a nonce-based deterministic
symmetric encryption scheme, which is a generalized (and weakened) version

Algorithm f9-TagK(COUNT, FRESH, DIRECTION, M)
M ← pad64(COUNT, FRESH, DIRECTION, M)
M [1]‖ · · · ‖M [m]←M
Y [0]← 064

For i← 1 to m do:
X[i]←M [i] ⊕ Y [i − 1]
Y [i]← KASUMIK(X[i])

T ← KASUMIK⊕KM(Y [1] ⊕ · · · ⊕ Y [m])
T ← the leftmost 32 bits of T
Return T

Fig. 2. Algorithm f9-TagK(COUNT, FRESH, DIRECTION, M).

of f8. It uses a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n as the underly-
ing primitive. Let f8′[E,∆] be f8′, where E is used as the underlying primi-
tive and ∆ is a non-zero k-bit key modifier. The f8′[E,∆] key generation algo-
rithm returns a random k-bit key K. The f8′[E,∆] encryption algorithm, which
we call f8′-Encrypt, takes an n-bit nonce N instead of COUNT, BEARER and
DIRECTION. That is, the encryption algorithm takes a k-bit key K, an n-bit
nonce N , and a message M ∈ {0, 1}∗ to return a ciphertext C, which is the
same length as M . Then the encryption algorithm is in Fig. 3. In Fig. 3, [i− 1]n
denotes n-bit binary representation of i − 1. Decryption is done in an obvious
way.

Notice that we treat COUNT, BEARER and DIRECTION as a nonce. That
is, we allow the adversary to choose these values. Consequently, f8 ′ can be
considered as a weakened version of f8 since it gives the adversary the ability
to control the entire initial value of A, rather than only a subset of the bits as
would be the case for an adversary attacking f8.

A Generalized Version of f9: f9′ [13, 22, 17, 14]. The message authentication
code f9′ is a generalized (and weakened) version of f9 that gives the user (or
adversary) almost complete control over the input the underlying CBC MAC
core. It uses a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n as the underlying
primitive. Let f9′[E,∆, l] be f9′, where E is used as the underlying block cipher,
∆ is a non-zero k-bit key modifier, and the tag length is l, where 1 ≤ l ≤ n. The
key generation algorithm returns a random k-bit key K. The tagging algorithm,
which we call f9′-Tag, takes a k-bit key K and a message M ∈ {0, 1}∗ as input
and returns an l-bit tag T .

Let M = M [1]‖ · · · ‖M [m] be a message, where each M [i] (1 ≤ i ≤ m − 1)
is n bits. The last block M [m] may have fewer than n bits. In f9′, we use pad′

n

instead of pad64. pad′n(M) works as follows: It simply appends a single “1” bit,
followed by between 0 and n − 1 “0” bits so that the total length is a multiple
of n bits. More precisely,

pad′n(M) = M‖1‖0n−1−(|M | mod n) . (1)

Thus, we simply ignore COUNT, FRESH and DIRECTION. Equivalently, we
consider them as a part of the message. The rest of the tagging algorithm is the
same as f9. The pseudocode is given in Fig. 5. In Fig. 5, “M [1]‖ · · · ‖M [m]←M”
is a shorthand for “break M into n-bit blocks M [1]‖ · · · ‖M [m].”

Note that the adversary is allowed to choose COUNT, FRESH, and DIREC-
TION since f9′ treats them as a part of the message. In this sense, f9′ can be
considered as a weakened version of f9.

4 Proposed Schemes: Specifications of f8+ and f9+

4.1 Proposed Refinement of f8′: f8+

f8+ is a nonce-based deterministic symmetric encryption scheme, which is a
refinement of f8′. Definening f8+ is simple: we set ∆← 0n in f8′.

For full specification, f8+ uses a block cipher E : {0, 1}k×{0, 1}n → {0, 1}n
as the underlying primitive. Let f8+[E] be f8+, where E is used as the under-
lying primitive. The f8+[E] key generation algorithm returns a random k-bit
key K. The f8+[E] encryption algorithm, which we call f8+-Encrypt, takes an
n-bit nonce N . That is, the encryption algorithm takes a k-bit key K, an n-bit
nonce N , and a message M ∈ {0, 1}∗ to return a ciphertext C, which is the same
length as M . Then the encryption algorithm is given in Fig. 4.

Algorithm f8′-EncryptK(N, M)
m← �|M |/n�
Y [0] ← 0n

A← N
A← EK⊕∆(A)
For i← 1 to m do:

X[i]← A⊕ [i − 1]n ⊕ Y [i− 1]
Y [i]← EK(X[i])

C ←M ⊕ (the leftmost |M | bits
of Y [1]‖ · · · ‖Y [m])

Return C

Fig. 3. Algorithm f8′-EncryptK(N, M).

Algorithm f8+-EncryptK(N, M)
m← �|M |/n�
Y [0] ← 0n

A← N
A← EK(A)
For i← 1 to m do:

X[i]← A⊕ [i − 1]n ⊕ Y [i− 1]
Y [i]← EK(X[i])

C ←M ⊕ (the leftmost |M | bits
of Y [1]‖ · · · ‖Y [m])

Return C

Fig. 4. Algorithm f8+-EncryptK(N, M).

Decryption is done in an obvious way.
Note that the only difference between f8+-EncryptK(·, ·) and f8′-EncryptK(·, ·)

is in the 4-th line. With this small modification, as we will show shortly, f8+

has much higher security assurance than that of f8′.

4.2 Proposed Refinement of f9′: f9+

f9+ is a message authentication code, which is a refinement of f9′. As with f8+,
definening f9+ is simple:

– We set ∆← 0n in f9′,
– We set the initial value of the CBC chain to be EK(0n) instead of 0n, and
– We xor EK(1n) before the last encryption.

For full specification, f9+ uses a block cipher E : {0, 1}k×{0, 1}n → {0, 1}n
as the underlying primitive. Let f9+[E, l] be f9+, where E is used as the under-
lying block cipher, and the tag length is l, where 1 ≤ l ≤ n. The key generation
algorithm returns a random k-bit key K. The tagging algorithm, which we call
f9+-Tag, takes a k-bit key K and a message M ∈ {0, 1}∗ as input and returns an
l-bit tag T . f9+ uses pad′

n(·) defined in (1). The pseudocode is given in Fig. 6. In
Fig. 6, “M [1]‖ · · · ‖M [m] ← M” is a shorthand for “break M into n-bit blocks
M [1]‖ · · · ‖M [m].”

Algorithm f9′-TagK(M)
M ← pad′

n(M)
M [1]‖ · · · ‖M [m]←M
Y [0] ← 0n

For i← 1 to m do:
X[i]←M [i] ⊕ Y [i− 1]
Y [i]← EK(X[i])

T ← EK⊕∆(Y [1] ⊕ · · · ⊕ Y [m])
T ← the leftmost l bits of T
Return T

Fig. 5. Algorithm f9′-TagK(M).

Algorithm f9+-TagK(M)
M ← pad′

n(M)
M [1]‖ · · · ‖M [m]←M
Y [0]← EK(0n)
For i← 1 to m do:

X[i]←M [i] ⊕ Y [i − 1]
Y [i]← EK(X[i])

T ← EK(Y [1] ⊕ · · · ⊕ Y [m]⊕ EK(1n))
T ← the leftmost l bits of T
Return T

Fig. 6. Algorithm f9+-TagK(M).

The verification algorithm is defined in the natural way.
Notice that the only difference between f9+-TagK(·) and f9′-TagK(·) is in the

3-rd and 7-th lines. With these small modifications, as we will show shortly, f9+

has much higher security assurance than that of f9′.

4.3 Design Rational on f9+

One might try to set ∆← 0n in f9′ (which eliminates the needs of related keys),
and preserve the rest of f9′. Unlike the case for f8+, this does not work. In fact,
the above mentioned MAC is easily forgeable. The attack proceeds as follows.

1. The adversary A first queries a message M1 such that 1 ≤ |M1| < n, to
obtain the tag T1 = EK(EK(pad′n(M1))).

2. Then A queries a message M2 ← pad′n(M1)‖0n‖M ′
2, where M ′

2 is a string
such that |M ′

2| < n and pad′n(M ′
2) = T1 ⊕ pad′n(M1), to obtain the tag T2.

By a simple calculation, one can verify that T2 = EK(T1).
3. Next A queries a message M3 ← T1‖M ′

3, where M ′
3 is a string such that

|M ′
3| < n and pad′

n(M ′
3) = T1 ⊕ T2, to obtain the tag T3. By a simple

calculation, one can verify that T3 = EK(0n).

4. Finally, A outputs a forgery attempt (M ∗, T ∗), where M∗ ← 0n‖T ′
3, T ′

3 is a
string such that |T ′

3| < n and pad′n(T ′
3) = T3, and T ∗ ← T3.

There are several cases where this attack fails. These cases are T1⊕pad′
n(M1) =

0n (since M ′
2 does not exist), T1 ⊕ T2 = 0n (since M ′

3 does not exist), and
M∗ = M3 (since M∗ should be a new massage). Assuming that the underlying
block cipher is a random permutation, these cases occur with only negligible
probabilities. Therefore, the above attack succeeds in forgery with overwhelming
probability even if the underlying block cipher is a random permutation 2.

Therefore, merely setting ∆← 0n does not work. This motivates us to “mask”
the input to the first block cipher invocation, as well as the final invocation. We
used Y [0]← EK(0n) and EK(1n) as masks, however, any other constant is fine.

5 Security of f8+

Definitions. Before proving the security of f8+, we first formally define what
we mean by a nonce-based encryption scheme, and what it means for such an
encryption scheme to be secure.

A nonce-based symmetric encryption scheme SE = (K, E ,D) consists of three
algorithms and is defined for some nonce length n. The randomized key genera-
tion algorithm K takes no input and returns a random key K. The stateless and
deterministic encryption algorithm takes a key K, a nonce N ∈ {0, 1}n, and a
message M ∈ {0, 1}∗ as input and returns a ciphertext C such that |C| = |M |;
we write C ← EK(N, M). The stateless and deterministic decryption algorithm
takes a key K, a nonce N ∈ {0, 1}n, and a ciphertext C ∈ {0, 1}∗ as input
and returns a message M such that |M | = |C|; we write M ← DK(N, C).
For consistency, we require that for all keys K, nonces N , and messages M ,
DK(N, EK(N, M)) = M .

We adopt the strong notion of privacy for nonce-based encryption schemes
from [26]. This notion, which we call indistinguishability from random strings,
provably implies the more standard notions given in [3]. Let $(·, ·) denote an
oracle that on input a pair of strings (N, M) returns a random string of length
|M |. If A is an adversary with access to an oracle, then

Advpriv
SE (A) def=

∣∣∣Pr(K R← K : AEK(·,·) = 1)− Pr(A$(·,·) = 1)
∣∣∣

is defined as the PRIV-advantage of A in distinguishing the outputs of the
encryption algorithm with a randomly selected key from random strings. We
say that A is nonce-respecting if it never queries its oracle twice with the same
nonce value. Intuitively, we say that an encryption scheme preserves privacy
under chosen-plaintext attacks if the PRIV-advantage of all nonce-respecting
adversaries A using reasonable resources is small.
2 We note that [13, p. 157, Section 2.2] shows similar attack. But the attack in [13]

cannot be applied here since padding is not considered.

Provable Security Results. Let p8+[n] be a variant of f8+ that uses a random
function on n bits instead of EK . Specifically, the key generation algorithm for
p8+[n] returns a randomly selected function R from Rand(n, n). The encryption
algorithm for p8+[n], p8+-Encrypt, takes R as a “key” and uses it instead of EK .
The decryption algorithm is defined in the natural way.

We first upper-bound the advantage of an adversary in breaking the privacy
of p8+[n]. Let (Ni, Mi) denote a privacy adversary’s i-th oracle query. If the
adversary makes exactly q oracle queries, then we define the total number of
blocks for the adversary’s queries as σ =

∑
1≤i≤q�|Mi|/n�.

Lemma 5.1. Let p8+[n] be as described above and let A be a nonce-respecting
privacy adversary which asks at most q queries totaling at most σ blocks. Then

Advpriv
p8+[n](A) ≤ 2σ2

2n
. (2)

A proof sketch is given in Appendix A, and a proof is given in the full version
of this paper [18].

We now present our main result for f8+ (Theorem 5.1 below). At a high
level, our theorem shows that if a block cipher E is a secure PRP, then the
construction f8+[E] based on E will be a provably secure encryption scheme. In
more detail, our theorem states that given any adversaryA attacking the privacy
of f8+[E] and making at most q oracle queries totaling at most σ blocks, we
can construct a PRP adversary B attacking E such that B uses similar resources
as A and B has advantage Advprp

E (B) ≥ Advpriv
f8+[E](A)− 4σ2/2n. If we assume

that E is a secure PRP and that A (and therefore B) uses reasonable resources,
then Advprp

E (B) must be small by definition, and thus Advpriv
f8+[E](A) must also

be small. This means that under the assumptions on E being a secure PRP,
f8+[E] is provably secure.

Since many block ciphers, including AES and KASUMI, are believed to be a
secure PRP, this theorem means that f8+ constructions built from these block
ciphers will be provably secure.

Our main theorem statement for f8+ is given below.

Theorem 5.1 (Main Theorem for f8+). Let E : {0, 1}k×{0, 1}n → {0, 1}n
be a block cipher. Let f8+[E] be as described in Section 4.1. If A is a nonce-
respecting privacy adversary which asks at most q queries totaling at most σ
blocks, then we can construct a PRP adversary B against E such that

Advpriv
f8+[E](A) ≤ 4σ2

2n
+ Advprp

E (B) . (3)

Furthermore, B makes at most σ+q oracle queries and uses the same time as A.

A proof is done by applying a well known PRF/PRP switching lemma (see [4,
Proposition 2.5]), and we add (q + σ)2/2n+1 ≤ 2σ2/2n to the bound in Lemma
5.1, and the rest of the proof of Theorem 5.1 is completely standard.

Notice the difference between Theorem 5.1 and the result for f8′ in [14,
p. 435, Theorem 4.1]. Advpriv

f8′[E,∆](A) is upper bounded by (3σ2 + q2)/2n+1 +

Advprp-rka
Φ,E (B). Intuitively, f8′ preserves privacy under chosen-plaintext attacks

if the pair (EK(·), EK⊕∆(·)) and a pair of two independent random permutations
are indistinguishable, while f8+ achieves the same security goal if EK(·) is a
secure PRP.

6 Security of f9+

Definitions. Before proving the security of f9+, we formally define what we
mean by a MAC, and what it means for a MAC to be secure.

A message authentication scheme or MACMA = (K, T ,V) consists of three
algorithms and is defined for some tag length l. The randomized key generation
algorithmK takes no input and returns a random key K. The stateless and deter-
ministic tagging algorithm takes a key K and a message M ∈ {0, 1}∗ as input and
returns a tag T ∈ {0, 1}l; we write T ← TK(M). The stateless and deterministic
verification algorithm takes a key K, a message M ∈ {0, 1}∗, and a candidate tag
T ∈ {0, 1}l as input and returns a bit b; we write b← VK(M, T). For consistency,
we require that for all keys K and messages M , VK(M, TK(M)) = 1.

For security, we adopt a strong notion of security for MACs, namely pseudo-
randomness (PRF). In [4] it was proven that if a MAC is secure PRF, then it is
also unforgeable. If A is an adversary with access to an oracle, then

Advprf
MA(A) def=

∣∣∣Pr(K R← K : ATK(·) = 1)− Pr(g R← Rand(∗, l) : Ag(·) = 1)
∣∣∣

is defined as the PRF-advantage of A in distinguishing the outputs of the tagging
algorithm with a randomly selected key from the outputs of a random function
with the same domain and range. Intuitively, we say that a message authentica-
tion code is pseudorandom or secure if the PRF-advantage of all adversaries A
using reasonable resources is small.

Provable Security Results. Let p9+[n] be a variant of f9+ that always out-
puts a full n-bit tag and that uses a random function on n bits instead of EK .
Specifically, the key generation algorithm for p9+[n] returns a randomly selected
functions R from Rand(n, n). The tagging algorithm for p9+[n], p9+-Tag, takes
R as a “key” and uses it instead of EK . The verification algorithm is defined in
the natural way.

We first upper-bound the advantage of an adversary in attacking the pseu-
dorandomness of p9+[n]. Let Mi denote an adversary’s i-th oracle query. If an
adversary makes exactly q oracle queries, then we define the total number of
blocks for the adversary’s queries as σ =

∑
1≤i≤q |pad′n(Mi)|/n.

Lemma 6.1. Let p9+[n] be as described above and let A be an adversary which
asks at most q queries totaling at most σ blocks. Then

Advprf
p9+[n](A) ≤ 5σ2

2n
. (4)

A proof sketch is given in Appendix B, and a proof is given in the full version
of this paper [18].

We now present our main result for f9+ (Theorem 6.1), which we interpret
as follows: our theorem shows that if a block cipher E is a secure PRP, then
the construction f9+[E, l] based on E will be a provably secure message authen-
tication code. In more detail, we show that given any adversary A attacking
f9+[E, l] and making at most q oracle queries totaling at most σ blocks, we can
construct a PRP adversary B against E such that B uses similar resources as
A and B has advantage Advprp

E (B) ≥ Advprf
f9+[E,l](A) − 10σ2/2n. If we assume

that E is a secure PRP and that A (and therefore B) uses reasonable resources,
then Advprp

E (B) must be small by definition. Therefore Advprf
f9+[E,l](A) must

be small as well, proving that under the assumption on E being a secure PRP,
f9+[E, l] is provably secure.

Since many block ciphers, including AES and KASUMI, are believed to be a
secure PRP, this theorem means that f9+ constructions built from these block
ciphers will be provably secure.

The precise theorem statement is as follows:

Theorem 6.1 (Main Theorem for f9+). Let E : {0, 1}k×{0, 1}n → {0, 1}n
be a block cipher, and let l, 1 ≤ l ≤ n, be a constant. Let f9+[E, l] be as described
in Section 4.2. If A is a PRF adversary which asks at most q queries totaling at
most σ blocks, then we can construct a PRP adversary B against E such that

Advprf
f9+[E,l](A) ≤ 10σ2

2n
+ Advprp

E (B) . (5)

Furthermore, B makes at most σ + q + 2 oracle queries and uses the same time
as A.

As is the case in Theorem 5.1, a proof is done by applying the PRF/PRP
switching lemma, and (q + σ + 2)2/2n+1 ≤ 9σ2/2n+1 is added to the bound in
Lemma 6.1, and the rest of the proof is standard.

Notice the difference between Theorem 6.1 and the result for f9′ in [14, p. 438,
Theorem 5.1]. Advprf

f9′[E,∆,l](A) is upper bounded by (3q2 + 2σ2 + 2σq)/2n+1 +

Advprp-rka
Φ,E (B). Intuitively, f9′ is pseudorandom if the pair (EK(·), EK⊕∆(·))

and a pair of two independent random permutations are indistinguishable, while
f9+ is pseudorandom if EK(·) is a secure PRP.

7 Conclusion

In this paper, we proposed f8+ and f9+, which are refinements of the original
f8′ and f9′. f8+ and f9+ are designed with two goals; (1) minimal modifica-
tions to f8′ and f9′, and (2) provable security results with the standard PRP
assumption on the underlying block cipher. Since we make only “small” modi-
fications, these modes can be practical candidates for future replacement of f8
and f9. Especially, we believe that f8+ is simple enough to be replaced easily.

References

1. 3GPP TS 35.201 v 3.1.1. Specification of the 3GPP confidentiality and integrity
algorithms, Document 1: f8 and f9 specification. Available at http://www.3gpp.
org/tb/other/algorithms.htm.

2. 3GPP TS 35.202 v 3.1.1. Specification of the 3GPP confidentiality and integrity
algorithms, Document 2: KASUMI specification. Available at http://www.3gpp.

org/tb/other/algorithms.htm.
3. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of

symmetric encryption. Proceedings of The 38th Annual Symposium on Foundations
of Computer Science, FOCS ’97, pages 394–405, IEEE, 1997.

4. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining
message authentication code. JCSS, vol. 61, no. 3, pages 362–399, 2000. Earlier
version in Y. Desmedt, editor, Advances in Cryptology – CRYPTO ’94, volume
839 of Lecture Notes in Computer Science, pages 341–358. Springer-Verlag, Berlin
Germany, 1994.

5. M. Bellare, and T. Kohno. A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and applications. In E. Biham, editor, Advances in Cryptology
– EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages
491–506. Springer-Verlag, Berlin Germany, 2003.

6. M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. In B. Roy
and W. Meier, editors, Fast Software Encryption, FSE 2004, volume 3017 of Lecture
Notes in Computer Science, pages 389–407. Springer-Verlag, Berlin Germany, 2004.

7. E. Biham. New types of cryptanalytic attacks using related keys. In T. Helleseth,
editor, Advances in Cryptology – EUROCRYPT ’93, volume 765 of Lecture Notes
in Computer Science, pages 398–409. Springer-Verlag, Berlin Germany, 1993.

8. J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: The three
key constructions. In M. Bellare, editor, Advances in Cryptology – CRYPTO 2000,
volume 1880 of Lecture Notes in Computer Science, pages 197–215. Springer-Ver-
lag, Berlin Germany, 2000.

9. J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable mes-
sage authentication. In L.R. Knudsen, editor, Advances in Cryptology – EURO-
CRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 384–397.
Springer-Verlag, Berlin Germany, 2002.

10. M. Blunden and A. Escott. Related key attacks on reduced round KASUMI. In
M. Matsui, editor, Fast Software Encryption, FSE 2001, volume 2355 of Lecture
Notes in Computer Science, pages 277–285. Springer-Verlag, Berlin Germany, 2002.

11. J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag, Berlin Ger-
many, 2002.

12. Evaluation report (version 2.0). Specification of the 3GPP confidentiality and in-
tegrity algorithms, Report on the evaluation of 3GPP confidentiality and integrity
algorithms. Available at http://www.3gpp.org/tb/other/algorithms.htm.

13. D. Hong, J-S. Kang, B. Preneel and H. Ryu. A concrete security analysis for
3GPP-MAC. In T. Johansson, editor, Fast Software Encryption, FSE 2003, volume
2887 of Lecture Notes in Computer Science, pages 154–169. Springer-Verlag, Berlin
Germany, 2003.

14. T. Iwata and T. Kohno. New security proofs for the 3GPP confidentiality and
integrity algorithms. In B. Roy and W. Meier, editors, Fast Software Encryption,
FSE 2004, volume 3017 of Lecture Notes in Computer Science, pages 427–445.
Springer-Verlag, Berlin Germany, 2004.

15. T. Iwata and T. Kohno. New security proofs for the 3GPP confidentiality and
integrity algorithms. Full version of [14], available at IACR Cryptology ePrint
Archive, Report 2004/019, http://eprint.iacr.org/, 2004.

16. T. Iwata and K. Kurosawa. OMAC: One-Key CBC MAC. In T. Johansson, editor,
Fast Software Encryption, FSE 2003, volume 2887 of Lecture Notes in Computer
Science, pages 129–153. Springer-Verlag, Berlin Germany, 2003.

17. T. Iwata and K. Kurosawa. On the correctness of security proofs for the 3GPP
confidentiality and integrity algorithms. In K.G. Paterson, editor, Cryptography
and Coding, Ninth IMA International Conference, volume 2898 of Lecture Notes
in Computer Science, pages 306–318. Springer-Verlag, Berlin Germany, 2003.

18. T. Iwata and K. Kurosawa. How to enhance the security of the 3GPP confidential-
ity and integrity algorithms. Full version of this paper, available from the authors,
2005.

19. J. Jonsson. On the Security of CTR + CBC-MAC. In K. Nyberg and H.M. Heys,
editors, Selected Areas in Cryptography, 9th Annual Workshop (SAC 2002), volume
2595 of Lecture Notes in Computer Science, pages 76–93. Springer-Verlag, Berlin
Germany, 2002.

20. C.S. Jutla. Encryption modes with almost free message integrity. In B. Pfitz-
mann, editor, Advances in Cryptology – EUROCRYPT 2001, volume 2045 of Lec-
ture Notes in Computer Science, pages 529–544. Springer-Verlag, Berlin Germany,
2001.

21. J-S. Kang, S-U. Shin, D. Hong and O. Yi. Provable security of KASUMI and 3GPP
encryption mode f8. In C. Boyd, editor, Advances in Cryptology – ASIACRYPT
2001, volume 2248 of Lecture Notes in Computer Science, pages 255–271. Spring-
er-Verlag, Berlin Germany, 2001.

22. L.R. Knudsen and C.J. Mitchell. Analysis of 3gpp-MAC and two-key 3gpp-MAC.
Discrete Applied Mathematics, vol. 128, no. 1, pages 181–191, 2003.

23. T. Kohno, J. Viega, and D. Whiting. CWC: A high-performance conventional
authenticated encryption mode. In B. Roy and W. Meier, editors, Fast Software
Encryption, FSE 2004, volume 3017 of Lecture Notes in Computer Science, pages
408–426. Springer-Verlag, Berlin Germany, 2004.

24. D.A. McGrew, and J. Viega. The security and performance of the Galois/Counter
Mode of operation. In IACR Cryptology ePrint Archive, Report 2004/193, http:
//eprint.iacr.org/, 2004.

25. M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM J. Comput., vol. 17, no. 2, pages 373–386, April
1988.

26. P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: a block-cipher mode of
operation for efficient authenticated encryption. Proceedings of ACM Conference
on Computer and Communications Security, ACM CCS 2001, ACM, 2001.

27. D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). Sub-
mission to NIST. Available at http://csrc.nist.gov/CryptoToolkit/modes/.

A Proof Sketch of Lemma 5.1

We sketch the proof of Lemma 5.1 here, leaving the details to [18]. The adversary
has an oracle which is either p8+-EncryptR(·, ·) or $(·, ·). We fix some notation.
For q and σ in Lemma 5.1, let m1, . . . , mq be integers such that mi ≥ 1 and
σ ≥ m1 + · · · + mq. Let N1, . . . , Nq be fixed and distinct bit strings such that

|Ni| = n. Let M1, . . . , Mq be arbitrarily fixed bit strings such that |Mi| = min,
and let Mi = Mi[1]‖ · · · ‖Mi[mi], where Mi[j] ∈ {0, 1}n. Also, let C1, . . . , Cq be
fixed bit strings such that |Ci| = min and, let Ci = Ci[1]‖ · · · ‖Ci[mi], where
Ci[j] ∈ {0, 1}n. Assume C1, . . . , Cq satisfy the following condition:

For any i (1 ≤ i ≤ q), the multiset
{0n, Mi[1]⊕ Ci[1]⊕ [1]n, . . . , Mi[mi − 1]⊕ Ci[mi − 1]⊕ [mi − 1]n}

has mi distinct points
(6)

(there is no condition on C1[m1], . . . , Cq[mq]).
For (Ni, Mi) and the function R, let Ai = R(Ni), and Mi[0]⊕Ci[0] = 0n. For

1 ≤ j ≤ mi, let Xi[j] = Ai⊕Mi[j−1]⊕Ci[j−1]⊕ [j−1]n and Yi[j] = R(Xi[j]).
Further, for 1 ≤ i ≤ q, let Xi

def= {Xi[j] | 1 ≤ j ≤ mi}, and N
def= {Ni | 1 ≤ i ≤

q}.
Then for randomly chosen At (this will fix Xt), define the following (t−1)+

1 = t conditions: Cond. A-s (1 ≤ s ≤ t− 1) and Cond. B.

Cond. A-s (1 ≤ s ≤ t− 1): Xs ∩Xt �= ∅.
Cond. B: N ∩Xt �= ∅.

We say that BAD[t] occurs if at least one of the above t events occurs.
Intuitively, we show that if all the query-answer pairs satisfy (6) and BAD[t]

does not occur, then the adversary cannot distinguish between p8+-EncryptR(·, ·)
and $(·, ·). The proof is completed by upper bounding the probability that some
query-answer pair fails to satisfy (6), or some BAD[t] occurs.

B Proof Sketch of Lemma 6.1

To prove Lemma 6.1, we define p9+-E[n], a variant of p9+[n]. The tagging al-
gorithm for p9+-E[n] takes only messages of length multiple of n. That is, we
consider that messages have already padded. Also, it does not perform the final
encryption and it does not mask with R(1n). Specifically, the key generation
algorithm for p9+-E[n] returns a randomly selected function R from Rand(n, n).
The tagging algorithm for p9+-E[n], p9+-E-Tag, takes R as a “key” and a mes-
sage M such that |M | = mn for some m ≥ 1. The pseudocode is given in
Fig. 7. “M [1]‖ · · · ‖M [m] ← M” is a shorthand for “break M into n-bit blocks
M [1]‖ · · · ‖M [m].” The verification algorithm is defined in the natural way.

We next fix some notation. For q and σ in Lemma 6.1, let m1, . . . , mq be
integers such that mi ≥ 1 and σ ≥ m1 + · · ·+ mq. Let M1, . . . , Mq be fixed and
distinct bit strings such that |Mi| = min.

Then we have the following lemma.

Lemma B.1. Let q, m1, . . . , mq, σ, M1, . . . , Mq be as described above. Then the
probablity of

– 1 ≤ ∃i < ∃j ≤ q, p9+-E-TagR(Mi) = p9+-E-TagR(Mj), or
– 1 ≤ ∃i ≤ q, R(1n) is used in the computation of p9+-E-TagR(Mi)

Algorithm p9+-E-TagR(M)
M [1]‖ · · · ‖M [m]←M
Y [0]← R(0n)
For i← 1 to m do:

X[i]←M [i] ⊕ Y [i − 1]
Y [i]← R(X[i])

Return Y [1] ⊕ · · · ⊕ Y [m]

Fig. 7. Algorithm p9+-E-TagR(M).

is at most 3σ2/2n where the probability is taken over the random choice of R
R←

Rand(n, n).

Given the above Lemma B.1, it is easy to prove the following lemma.

Lemma B.2. Let q and σ be as in Lemma 6.1. Also, let M1, . . . , Mq be arbi-
trarily fixed and distinct bit strings, and let T1, . . . , Tq be arbitrarily fixed n-bit
strings. Then

Pr(R R← Rand(n, n) : 1 ≤ ∀i ≤ q, p9+-TagR(Mi) = Ti) ≥
1

2qn

(
1− 5σ2

2n

)
.

Given the above lemma, the proof of Lemma 6.1 is standard.

