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Abstract. In this paper we present a distinguisher targeting towards
irregularly clocked filter generators. The attack is applied on the irregu-
larly clocked stream cipher called LILI-II. LILI-II is the successor of the
cipher LILI-128 and its design was published in [1]. There have been no
known attacks better than exhaustive key search on LILI-II. Our attack
is the first of this kind that distinguishes the cipher output from a ran-
dom source using 2103 bits of keystream using computational complexity
of approximately 2103 operations.

1 Introduction

Stream ciphers are a part of the symmetric family of encryption schemes. Stream
ciphers are divided into two classes, synchronous and self-synchronous. In this
paper we will consider a special class of the synchronous stream ciphers, namely
irregularly clocked binary stream ciphers. The considered class of irregularly
clocked stream ciphers include a filter generator from which the output is dec-
imated in some way. A filter generator consists of a linear part and a boolean
function (typically a nonlinear boolean function). To create the keystream some
positions are taken from the internal state of the linear part and fed into the
boolean function. The output of the boolean function is then combined with the
message by an output function, typically the XOR operation.

Although there exist standardized block ciphers like AES [2], many people
believe that the use of stream ciphers can offer advantages in some cases, e.g.,
in situations when low power consumption is required, low hardware complexity
or when we need extreme software efficiency. To reinforce the trust in stream
ciphers it is imperative that the security of stream ciphers are carefully studied.

Several different kinds of attacks can be considered on stream ciphers. We
usually consider the plaintext to be known, i.e. the keystream is known and we
try to recover the key. In 1984 Siegenthaler [3] introduced the idea of exploiting
the correlations in the keystream. As a consequence of this attack, nonlinear
functions must have high nonlinearity.

This attack was later followed by the fast correlation attack by Meier and
Staffelbach [4]. In a fast correlation attack one first tries to find a low weight
parity check polynomial of the LFSR and then applies some iterative decoding
procedure. Many improvements have been introduced on this topic, see [5–10].



Algebraic attacks have received much interest lately. These attacks try to
reduce the key recovery problem to the problem of solving a large system of
algebraic equations [11, 12].

In this paper we will consider a distinguishing attack. A distinguishing at-
tack is a known keystream attack, i.e., we have access to some amount of the
keystream and from this data we try to decide whether this data origins from the
cipher we consider, or if the data appears to be random data, see e.g., [13–17].

One of the submissions to the NESSIE project [18] was the irregularly clocked
stream cipher LILI-128 [19]. Several attacks such as [20, 7, 11, 12, 17] on LILI-128
motivated a larger internal state. The improved design that became the successor
of LILI-128 is called LILI-II [1], and it was first published in ACISP 2002. LILI-II
was designed by Clark, Dawson, Fuller, Golić, Lee, Millan, Moon and Simpson,
and uses a 128 bit key which is expanded and used with a much larger internal
state, namely 255 bits instead of 128 in LILI-128.

So far no attacks on LILI-II have been published. In this paper we present
a distinguishing attack on LILI-II. The attack uses a low weight multiple of one
of the linear feedback shift registers (LFSR), i.e., it belongs to the class of linear
distinguishers, see [21, 22]. It collects statistics from sliding windows around the
positions of the keystream, where the members of this recursion are likely to
appear. The strength of the attack is the updating procedure used when moving
the windows, this procedure allows us to receive many new samples with very
few operations. To distinguish the cipher from a random source we need 2103

bits of keystream and the complexity is around 2103 operations. This is the first
attack on LILI-II faster than exhaustive key search.

The paper is organized as follows, in Section 2 we explain some theory needed
for the attack. Section 3 describes the idea and the different steps in the attack.
In Section 4 we describe the stream cipher LILI-II, and how the attack can be
applied to this cipher step by step. To verify the correctness of the attack some
simulations are presented in Section 5. The results of the attack is assembled in
Section 6, and finally we conclude the paper in Section 7.

2 Preliminaries

2.1 Irregularly Clocked Filter Generators

Our attack considers irregularly clocked stream ciphers where the output is taken
from some LFSR sequence in some arbitrary way. Note that many well known
designs are of this form, e.g., the shrinking generator, self-shrinking generator,
alternating step, LILI-128, LILI-II etc. The case we consider in this paper is
illustrated in Figure 1.

The keystream generator is divided into two parts, a clock control part and
a data generation part. The clock control part produces symbols, denoted by ct

at time instant t in Figure 1, in some arbitrary way. This sequence determines
how many times we should clock the LFSR in the data generation part, before
we produce a new output symbol.
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Fig. 1. A general model of an irregularly clocked filter generator.

The data generation part is a filter generator, i.e., an LFSR producing a
linear sequence, denoted by st, st+1, . . ., from this LFSR some symbols are taken
from the internal state and are used as input into a boolean function, denoted
f in Figure 1.

2.2 Finding a Low Weight Multiple

In our attack we need a low weight recursion of weight w for the LFSR sequence
s, i.e, a relation that sums to zero for all time instances t.

st + st+τ1 + . . . + st+τw−1 = 0 mod 2. (1)

One technique to find such relations is to find multiples of the original feed-
back polynomial. Several methods to find such multiples of low weight has been
proposed and they focus on optimizing different aspects, e.g., finding multiple
with as low degree as possible, or accepting a higher degree but reducing the
complexity to find the multiple. In our attack the degree of the multiple is of
high concern.

Assume that we have a feedback polynomial g(x) of degree r and search
for a multiple of weight w, according to [23] the critical degree when these
multiples start to appear is (w − 1)!1/(w−1)2r/(w−1). Golić [23] also describes
an algorithm that focuses on finding multiples of the critical degree. The first
step is to calculate the residues xi mod g(x), then one computes the residues
xi1 + . . . xik mod g(x) for all

(
n
k

)
combinations 1 ≤ i1 ≤ . . . ≤ ik ≤ n, with n

being the maximum degree of the multiples. The last step is to use fast sorting
to find all of the zero and one matches of the residues from the second step. The

complexity of this algorithm is approximately O(S log S) with S = (2k)!1/2

k! 2r/2

for odd multiples of weight w = 2k + 1, and S = (2k−1)!k/(2k−1)

k! 2rk/(2k−1) for
even multiples of weight w = 2k.

Wagner [24] presented a generalization of the birthday problem, i.e., given k
lists of r-bit values, find a way to choose one element from each list, so that these
k values XOR to zero. This algorithm finds a multiple of weight w = k +1 using
lower computational complexity, k · 2r/(1+blog kc), than the method described



above, on the expense of the multiples degree, which is 2r/(1+blog kc). Since the
number of samples is of high concern to us we have chosen to work with the
method described in [23]. From now on we assume that the LFSR sequence is
described by a low weight recursion.

3 Description of the Attack

We consider a stream cipher as given in Figure 1, where s0, s1, s2, . . . denotes the
sequence from the LFSR in the data generation part, and z0, z1, z2, . . . denotes
the keystream sequence. The clock control mechanism ct determines for each
t how many times the LFSR is clocked before zt is produced. After observing
z0, z1, . . . , zT the LFSR has been clocked

∑T
t=0 ct times. Since we are attacking

irregularly clocked ciphers we will not know exactly where symbols from the
LFSR sequence will be located in the output keystream, not even if they appear
at all.

We will fix one position in the recurrence relation, and around the estimated
location of the other symbols we will use sliding windows. When using windows
of adequate size we have a high probability that all the symbols in the relation
(if not removed by the irregular decimation) are included. We will then calculate
how many symbols from the different windows sum to zero. Only one of these
combinations contribute with a bias, the others will appear as random samples.
In the following subsections we will describe the different steps we use in our
attack.

The way we build the distinguisher is influenced by previous work on distin-
guishers, see for example [14, 21, 22, 25, 13].

3.1 Finding a Low Weight Multiple

The success of our attack depends on the use of low weight recurrence relations,
hence the first step is to find a low weight multiple of the LFSR in the data
generation part. In the attack we use a multiple of weight three, it is also possible
to mount the attack with multiples of higher weight. Using a multiple of higher
weight lowers the degree of the multiple, but it also lowers the probability that
all symbols in a recurrence are included after the decimation, and in general
also lowers the correlation property of the boolean function. So from now on we
assume that we use a weight three recurrence relation. We will use the methods
described in Section 2.2 to find the multiple.

3.2 Calculating the Correlation Property of f for a Weight Three

Recursion

Assume that we have a weight three relation for the LFSR sequence according
to

st + st+τ1 + st+τ2 = 0 mod 2.



Let St = (st+i1 , st+i2 , . . . , st+id
) denote the input bits to f at time t taken

from positions i1, i2, . . . , id. The correlation property for weight three recurrence
relation of the nonlinear boolean function f , denoted εf , is defined to be

εf =
∣
∣
∣
1

2
− Pr

(

f(St) ⊕ f(St+τ1) ⊕ f(St+τ2) = 0 | st ⊕ st+τ1 ⊕ st+τ2 = 0, ∀t
)∣
∣
∣.

If the LFSR would be regularly clocked (ct = 1, ∀t), the probability above is
equivalent to

|1
2
− Pr(zt + zt+τ1 + zt+τ2 = 0)|.

The correlation property can be calculated by simply trying all possible in-
put combinations into the function. Since we use a weight three recursion some
combinations will not be possible and the distribution will be biased (bias>0),
see [17]. The correlation property of boolean functions has also been discussed
in [20].

3.3 The Positions of the Windows

Consider again the weight three relation, but now with irregular clocking. We
denote the expected value of the clocking sequence ct by E(C). The size of
the windows depends on the distance from the fixed position, hence we will fix
the center position in the recurrence and use windows around the two other
positions. We rewrite the recurrence as

st−τ1 + st + st+τ2−τ1 = 0 mod 2.

The expected distance between the output from f , corresponding to input St−τ1

and St, is τ1/E(C) since the sequence is decimated, similarly the distance be-
tween St and St+τ2−τ1 is τ2−τ1

E(C) . Figure 2 illustrates how we position the windows

of size r in the case of a weight three recursion.
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Fig. 2. Illustration of the window positions in the case with a weight three recurrence
relation.

3.4 Determining the Size of the Windows

The output sequence from the clock-control part, denoted by ct in Figure 1, is
assumed to have a fixed distribution independent of t. By using the central limit
theorem we know that the sum of a large number of random variables approaches



the normal distribution. So Yn = C1 +C2 + . . .+Cn ∈ N(n ·E(C), σc
√

n), where
n denotes the number of observed symbols, E(C) the expected value of the
clocking sequence and σc the standard deviation of the clocking sequence.

If the windows are sufficiently large, the correct position of the symbol will
be located inside the window with a high probability,

P (nE(C) − σc
√

n < Yn < nE(C) + σc
√

n) = 0.682,
P (nE(C) − 2σc

√
n < Yn < nE(C) + 2σc

√
n) = 0.954.

Thus we choose a window size of four standard deviations.

3.5 Estimate the Number of Bits We Need to Observe

The main idea of the distinguishing attack is to create samples of the form

zw1 + zt + zw2 ,

where w1 is any position in the first window and w2 is any position in the
second window. We will run through all such possible combinations. As will be
demonstrated, each sample is drawn according to a biased distribution.

To determine how many bits we need to observe to reliably distinguish the
cipher from a random source, we need to make an estimate of the bias.

First we consider the case of a regularly clocked cipher. We denote the window
sizes by r1, r2. In the following estimations we have to remember that we are
calculating samples, and that for every time instant we get r1 · r2 new samples.
For each time instant one relation contributes with the bias εf , the other r1 ·r2−1
relations are random. The bias can roughly be calculated as

εf · 1

r1
· 1

r2
,

assuming that st−τ1 and st+τ2−τ1 always appear inside the windows. When we
have irregular clocking the output from the LFSR is decimated, i.e., some terms
will not contribute to the output sequence. The probability that the end two
terms of a weight three recurrence relation is included in the keystream and in
the windows is denoted by pdec. In the approximation we neglect the probability
that the result in some cases deviates more than two standard deviations from
the expected position, i.e., the component lies outside the window. This gives an
estimate of the full bias showed in (2), the approximation has been compared
with simulation results and works well, see Section 5.

εfull = εf · 1

r1
· 1

r2
· pdec. (2)

In the approximation we have estimated that the probability for the position
of the taps inside the windows is uniform, the purpose is to make the updating
procedure when moving the windows as efficient as possible, this is in fact the
strength of the attack. A better approximation would be to weight the positions



inside the window according to the normal distribution. This might decrease
the number of needed symbols but would make an efficient updating procedure
much more difficult.

We can now estimate how many keystream bits we need to observe, in order
to make a correct decision. In [25] the statistical distance is used.

Definition 1 The statistical distance, denoted ε, between two distributions P0, P1

defined over a finite alphabet X , is defined as

ε = |P0 − P1| =
1

2

∑

x∈X

|P0(x) − P1(x)|, (3)

where x is an element of X .

If the distributions are smooth, the number of variables N we need to observe is
N ≈ 1/ε2, see [25]. Note that the error probabilities are decreasing exponentially
with N . Thus the number of samples we need to observe can be estimated as

r2
1 · r2

2

ε2
f · p2

dec

. (4)

At each time instant we receive r1 · r2 new samples, and hence the total number
of bits we need for the distinguisher can be estimated by (5).

N ≈ r1 · r2

ε2
f · p2

dec

. (5)

The above Equations (2-5) assume independent samples, this is not true
in our case, but the equation is still good approximation on the number of
samples needed in the attack. A similar expression can be derived in a another
independent way, in Appendix A it is stated that the standard deviation for the
total sum of samples is

√
N r1r2

4 . The bias of the samples is denoted by εtot, for

a successful attack Nεtot > 2
√

N r1r2

4 should hold, solving this equation for N
gives N > r1r2

ε2
tot

.

3.6 Complexity of Calculating the Samples

The strength of the distinguisher is that the calculation of the number of ones
and zeros in the windows can be performed very efficiently, when we move the
first position from zt to zt+1 we also move the windows one step to the right.

We denote the number of zeros in window one at time instant t by Xt,
similarly we denote the number of zeros in windows two by Yt, the number of
samples that fulfill zw1 + zt + zw2 = 0 is denoted Wt, where w1, w2 are some
positions in window one respectively window two . Hence when moving the
windows we get the new number of zeros Xt+1 and Yt+1 by subtracting the first
bit in the old window and adding the new bit included in the window, e.g., for
window one,

Xt+1 = Xt − zt−
τ1

E(C)−
r1
2

+ zt−
τ1

E(C) +
r1
2 +1,



and similarly for window two. From the Xt+1 and Yt+1 we can, with few basic
computations calculate Wt+1.

We define one operation as the computations required to calculate Wt+1 from
Xt and Yt.

Theorem 1. The proposed distinguisher requires N = r1·r2

ε2
f ·p

2
dec

bits of keystream

and uses a computational complexity of approximately N operations.

Although the number of zeros in the windows Xt+1, Yt+1 are dependent of
the previous number of zeros in the window Xt, Yt, the covariance between the
number of samples received at time instant t and t+1 is zero, Cov(Wt+1, Wt) = 0,
see Appendix A.

3.7 Hypothesis Testing

The last step in the attack is to determine whether the collected data really is
biased. A rough method for the hypothesis test is to check whether the result
deviates more than two standard deviations from the expected result in the
case when the bits are truly random. The standard deviation for a sum of these
samples, can be estimated by σ =

√
N r1r2

4 , see Appendix A, where r1 and r2 are
the sizes of the windows and N is the number of bits of keystream we observe.

3.8 Summary of the Attack

In Figure 3 we summarize the attack, where Xt denotes the number of zeros in
window one, Yt the number of zeros in window two, W denotes the total sum of
the samples and r1, r2 the sizes of window one respectively window two.

1. Find a weight three multiple of theLFSR.

2. Calculate the bias εf .

3. Determine the positions of the windows.
4. Calculate the sizes r1, r2 of the windows.
5. Estimate the number of bits N we need to observe.
6. for t from 0 to N

if zt = 0
W + = Xt · Yt + (r1 − Xt)(r2 − Yt)

else if zt = 1
W + = Xt(r2 − Yt) + (r1 − Xt)Yt

end if
Move window and update Xt, Yt

end for
7. if |W − N · r1·r2

2
| >

√
N · r1 · r2

output “cipher” otherwise “random”.

Fig. 3. Summary of the proposed distinguishing attack.



4 LILI-II

4.1 Description of LILI-II

LILI-II [1] is the successor of the NESSIE candidate stream cipher LILI-128
[19]. Attacks such as [20, 7, 11, 12, 17] on LILI-128 motivated a larger internal
state, which is the biggest difference between the two ciphers, LILI-II also use a
nonlinear boolean function fd with 12 input bits instead of 10 as in LILI-128.

Both the members of the LILI family are binary stream cipher that use
irregular clocking. They consists of an LFSRc, that via a nonlinear function
clocks a second LFSR, called LFSRd, irregularly. The structured can be viewed
in Figure 4. LILI-II use a key length of 128 bits, the key is expanded and
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Fig. 4. Overview of LILI keystream generator.

used to initialize the two LFSRs. The first shift register, LFSRc is a primitive
polynomial of length 128, and hence has a period of 2128 − 1. The feedback
polynomial for LFSRc is given by

x128 + x126 + x125 + x124 + x123 + x122 + x119 + x117 + x115 + x111 + x108 +
x106 + x105 + x104 + x103 + x102 + x96 + x94 + x90 + x87 + x82 + x81 +
x80 + x79 + x77 + x74 + x73 + x72 + x71 + x70 + x67 + x66 + x65 +
x61 + x60 + x58 + x57 + x56 + x55 + x53 + x52 + x51 + x50 + x49 +
x47 + x44 + x43 + x40 + x39 + x36 + x35 + x30 + x29 + x25 + x23 +
x18 + x17 + x16 + x15 + x14 + x11 + x9 + x8 + x7 + x6 + x1 + 1.

The Boolean function fc takes two input bits from LFSRc, it is chosen as

fc(x0, x126) = 2 · x0 + x126 + 1 . (6)

The output of this function is used to clock LFSRd irregularly. The output
sequence from fc is denoted ct and ct ∈ {1, 2, 3, 4}, i.e., LFSRd is clocked at
least once and at most four times between consecutive outputs. On average,
LFSRd is clocked c̄ = 2.5 times.

LFSRd is chosen to have a primitive polynomial of length 127 which pro-
duces a maximal-length sequence with a period of Pd = 2127 − 1. The original



polynomial was found not to be primitive, see [26], and has hence been changed
into

x127 + x121 + x120 + x114 + x107 + x106 + x103 + x101 + x97 + x96 + x94 + x92 +
x89 + x87 + x84 + x83 + x81 + x76 + x75 + x74 + x72 + x69 + x68 + x65 +
x64 + x62 + x59 + x57 + x56 + x54 + x52 + x50 + x48 + x46 + x45 + x43 +
x40 + x39 + x37 + x36 + x35 + x30 + x29 + x28 + x27 + x25 + x23 + x22 +
x21 + x20 + x19 + x18 + x14 + x10 + x8 + x7 + x6 + x4 + x3 + x2 + 1

Twelve bits are taken from LFSRd as input to the function fd, these bits
are taken from the positions (0,1,2,7,12,20,30,44,65,80,96,122) of the LFSR. The
function fd is given as a truth table, note that also the boolean function described
in the original proposal was weak and has been replaced, see [26].

4.2 Attack Applied on LILI-II

Low Weight Multiple: According to [23] weight three multiples will start to
appear at the degree 264, since the original shift register has degree 127. The
complexity to find the multiple is O(270).

If we instead would mount the attack with a weight four multiple the expected
degree of the polynomial would be 243.19, the complexity to find a weight four
multiple is O(291.81).

Correlation property of fd: In Table 1 some examples are presented from
two clock controlled ciphers, these results are based on a weight three and a
weight four recursion. In the case of LILI-128 and LILI-II the correlation property

Generator Number of input bits Bias

w = 3 w = 4

LILI-128 10 2−9.00 2−9.07

LILI-II 12 2−13.22 2−12.36

Table 1. The correlation property of boolean functions of some clock controlled gen-
erators, using weight three and weight four recursions.

of fd are approximately the same for a weight three relation as for a weight
four relation. When using multiples of higher weight than four the correlation
property of the functions decreases significantly.

Position of the Windows: When trying to find a multiple of weight three
for LFSRd in LILI-II, we expect the degree of the recurrence to be 264, i.e.,
τ1 ≈ 263 and τ2 ≈ 264, and hence τ2 − τ1 ≈ 263. The output sequence from



the clock-control part denoted by ct in Figure 4 takes the values ct ∈ {1, 2, 3, 4}
with equal probability, i.e., a geometric distribution. Thus in the case of LILI-II
we know that E(C) = 2.5 and σc =

√
7.5. The center positions of the windows

will be positioned approximately at t− 261.68 and t+261.68, where t denotes the
position of the center symbol in the recurrence.

Determine the Size of the Windows: As stated in Section 4.2 we know
that E(C) = 2.5 and σc =

√
7.5 for LILI-II. We will use a window size of four

standard deviations, i.e., r = 4
√

7.5 · n.

Using the expected positions of the windows for LILI-II from previous section
the expected window sizes for a weight three relation are r = 4

√
7.5 · 261.68 =

234.29.

Estimate the Number of Bits We Need to Observe: If we use the esti-
mated numbers from the previous section and Equation (5) we get the following
estimate on the number of bits we need to observe to distinguish LILI-II from a
random source. For w = 3,

N ≈ 234.29·2

2(−13.22)·2 · 2(−4)·2
≈ 2103.02.

5 Simulations on a scaled down version of LILI-II

To verify the correctness of the attack we performed the attack on a scaled down
versions of LILI-II. In the scaled down version we kept the original clock control
part unchanged, but used a weaker data generation part. Instead of the original
LFSRd we used the primitive trinomial,

x
3660 + x

1637 + 1.

We fix the center member of the feedback polynomial, and the center position
for window one will be positioned at t− τ1/E(C) = t− 3660−1637

2.5 = t− 809, and
at t + τ2−τ1

E(C) = t − 1637
2.5 = t + 655 for window two. We use window sizes of four

standard deviations, i.e., r1 = 4
√

7.5 · 809 = 312 and r2 = 4
√

7.5 · 655 = 280.
The boolean function fd was replaced with the 3-resilient 7-input plateaued

function also used in [27],

fd(x) = 1 + x1 + x2 + x3 + x4 + x5 + x6 + x1x7 + x2(x3 + x7) + x1x2(x3 + x6 + x7).

The bias of this boolean function for a weight three relation is εfd
= 2−4. For a

weight three relation the probability that all bits are included in the keystream
is pdec = 2−4. The number of bits we need to observe can now be estimated as

N ≈ r1 · r2

ε2
fd

· p2
dec

= 233.



We used N = 236.8054 in our simulated attack. The number of combinations
fulfilling the recurrence equation, when simulating the attack was

W = 252.2201 − 229.2829,

where 252.2201 is half of the total number of collected samples. This gives a
deviation of 229.2829 from the expected value of a random sequence and hence a
simulated value of εtot = 2−23.9372. This can be compared with the theoretically
derived value which is εtot = 2−24.4147. The standard deviation can be calculated
as σ =

√
N r1r2

4 = 225.6101. We reliably distinguish the cipher from a random
source.

To verify the expression on the variance (Appendix A) we also performed the
attack on a random sequence of bits. The results matched the theory well.

6 Results

In this section we summarize the results of the attack applied on LILI-II, we
also show the results for the attack if performed on LILI-128. Observe that there
exist many better attacks on LILI-128. These attacks all use the fact that one
of the LFSRs only has degree 39, if this degree would be increased the attacks
would become significantly less effective, the complexity of our attack would not
be affected at all.

In Table 2 we list the sizes on the windows used to attack the generator and
the total number of keystream bits we need to observe to reliably distinguish the
ciphers from a random source. The results in the table is calculated for a weight
three recurrence relation.

Function r1 r2 ] bits needed

LILI-128 225.45 225.45 276.95

LILI-II 234.29 234.29 2103.02

Table 2. The number of bits needed for the distinguisher for two members of the LILI
family.

7 Conclusion

In this paper we have described a distinguisher applicable to irregularly clocked
stream ciphers. The attack has been applied on a member of the LILI family,
namely LILI-II. The attack on LILI-II needed 2103 bits of keystream and a com-
putational complexity of approximately 2103 operations to reliably distinguish
the cipher from random data. This is the best known attack of this kind so far.
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A Variance of the number of combinations

Let Xt denote the number of zeros in window one and similarly Yt denotes the
number of zeros in window two at the time t. r1, r2 denotes the sizes of windows.

E(Xt) = r1

2 E(X2
t ) =

r2
1+r1

4 V (Xt) = r1

4

E(Yt) = r2

2 E(Y 2
t ) =

r2
2+r2

4 V (Yt) = r2

4

Let Zt denote the bit in the center position at time t, and W ′
t the number of

samples fulfilling the recurrence relation at time t. To make the computations a
bit simpler we denote Wt = W ′

t − r1r2

2 , i.e., we subtract the expected value of
W ′

t , hence E(Wt) = 0. We also introduce the symbol At = XtYt +(r1−Xt)(r2−
Yt) − r1r2/2.

Wt =







XtYt + (r1 − Xt)(r2 − Yt) − r1r2/2
︸ ︷︷ ︸

At

if Zt = 0,

−
(
XtYt + (r1 − Xt)(r2 − Yt) − r1r2/2

)

︸ ︷︷ ︸

At

if Zt = 1.

We define W as the sum of Wt for N bits, W =
∑N−1

t=0 Wt. Hence

E(W ) = E(

N−1∑

t=0

Wt) =

N−1∑

t=0

E(Wt) = 0.

We are trying to calculate V (
∑N−1

i=0 W ′
t ) = V (

∑N−1
i=0 Wt+N r1r2

2 ) = V (
∑N−1

i=0 Wt) =
V (W ).

E(W 2) = E
(
(

N−1∑

t1=0

Wt1)(

N−1∑

t2=0

Wt2)
)

=

N−1∑

t1=0

N−1∑

t2=0

E(Wt1 · Wt2)

– For t1 6= t2

E(Wt1Wt2) = 1

4

�
E(Wt1Wt2 |Zt1 = 0, Zt2 = 0) + E(Wt1Wt2 |Zt1 = 0, Zt2 = 1)+

+E(Wt1Wt2 |Zt1 = 1, Zt2 = 0) + E(Wt1Wt2)|Zt1 = 1, Zt2 = 1)� =

= 1

4
E �At1At2 − At1At2 − At1At2 + (−At1)(−At2)� = 0.

– For t1 = t2

E(W 2
t ) = 1

2

(
E(W 2

t |Zt = 0) + E(W 2
t |Zt = 1)

)
= E(A2) =

= 4E(X2)E(Y 2) + 4r1r2E(X)E(Y ) − 4r1E(X)E(Y 2) − 4r2E(X2)E(Y ) +
r2
1r2

2

4 −
−r2

1r2E(Y ) − r1r
2
2E(X) + r2

1E(Y 2) + r2
2E(X) =

= r1r2

4



So

E(W 2) =
N−1∑

t1=0

N−1∑

t2=0

E(Wt1Wt2) =
N−1∑

t=0

E(W 2
t ) =

N−1∑

t=0

r1r2

4
= N · r1r2

4
.

Finally we can give and expression or the variance.

V (W ) = E(W 2) − E(W )2 = N · r1r2

4
.


