
CWC: A high-performan
e
onventionalauthenti
ated en
ryption modeTadayoshi Kohno1, John Viega2, and Doug Whiting31 UC San Diego, tkohno�
s.u
sd.edu2 Virginia Te
h, viega�se
uresoftware.
om3 Hifn, In
., dwhiting�hifn.
omAbstra
t. We introdu
e CWC, a new blo
k
ipher mode of operationfor prote
ting both the priva
y and the authenti
ity of en
apsulated data.CWC is the �rst su
h mode having all �ve of the following properties:provable se
urity, parallelizability, high performan
e in hardware, highperforman
e in software, and no intelle
tual property
on
erns. We be-lieve that having all �ve of these properties makes CWC a powerful toolfor use in many performan
e-
riti
al
ryptographi
 appli
ations. CWC isalso the �rst appropriate solution for some appli
ations; e.g., standard-ization bodies like the IETF and NIST prefer patent-free modes, andCWC is the �rst su
h mode
apable of pro
essing data at 10Gbps inhardware, whi
h will be important for future IPse
 (and other) networkdevi
es. As part of our design, we also introdu
e a new parallelizableuniversal hash fun
tion optimized for performan
e in both hardware andsoftware.1 Introdu
tionAn authenti
ated en
ryption asso
iated data (AEAD) s
heme is a symmetri
en
ryption s
heme designed to prote
t both the priva
y and the authenti
ityof en
apsulated data. There has re
ently been a strong push toward produ
ingblo
k
ipher-based AEAD s
hemes [13, 10, 12, 24, 28, 23, 5℄. Despite this push,among the previous works there does not exist any AEAD s
heme simultane-ously having all of the following properties: provable se
urity, parallelizability,high performan
e in hardware, high performan
e in software, and free from in-telle
tual property
on
erns. Even though not all appli
ations will require all�ve of the these properties, almost all appli
ations will require at least one ofthe them, and may very likely have to be able to interoperate with an appli
a-tion requiring a di�erent property. We thus view �nding an appropriate s
hemehaving all �ve of these properties as a very important resear
h goal.Finding an appropriate balan
e between all �ve of the aforementioned prop-erties is, however, not easy be
ause the most natural approa
hes to addressingsome of the properties are a
tually disadvantageous with respe
t to other prop-erties. We believe we have over
ome these
hallenges and, in doing so, introdu
ea new mode of operation
alled CWC, or Carter-Wegman Counter mode.

Motivating example. One of the primary motivations for su
h a blo
k
ipher-based AEAD s
heme is IPse
. From a pragmati
 perspe
tive, we note thatmany vendors and standardization bodies prefer patent-free modes over patentedmodes (the elegant OCB mode was apparently reje
ted from the IEEE 802.11working group be
ause of patent
on
erns). And, from a hardware performan
eperspe
tive, we note that be
ause none of the existing patent-free AEAD s
hemesare parallelizable, it to impossible to make existing patent-free AEAD s
hemesrun faster than about 2Gbps using
onventional ASIC te
hnology and a singlepro
essing unit. Nevertheless, future network devi
es will be expe
ted to runat 10Gbps. CWC addresses these issues, being both patent-free and
apable ofpro
essing data at 10Gbps using
onventional ASIC te
hnology.The CWC solution. Our new mode of operation,
alled CWC, has all �ve ofthe properties mentioned above. It is provably se
ure. Moreover, our provablese
urity-based analyses helped guide our resear
h and helped us reje
t others
hemes with similar performan
e properties but with slightly worse provablese
urity bounds. CWC is also parallelizable, whi
h means that we
an makeCWC-AES run at 10Gbps using
onventional ASIC te
hnology. CWC is also fastin software. Our
urrent implementation of CWC-AES runs at about the samespeed as the other patent-free modes on 32-bit ar
hite
tures (Table 1), and weanti
ipate signi�
ant performan
e gains on 32-bit CPUs when using more so-phisti
ated implementation te
hniques (Se
tion 6), and we also see signi�
antlybetter performan
e on 64-bit ar
hite
tures. Of
ourse, we do remark that thepatented modes like OCB are
apable of running even faster in software, whi
hwould make them very attra
tive were they not also en
umbered in intelle
tualproperty issues.Like the other two unpatented blo
k
ipher-based AEAD modes, CCM [28℄and EAX [5℄, CWC avoids patents by using two inter-related but mostly inde-pendent modules: one module to \en
rypt" the data and one module to \authen-ti
ate" the data. Adopting the terminology used in [5℄, it is be
ause of the two-module stru
ture that we
all CWC a \
onventional" blo
k
ipher-based AEADs
heme. Although CWC uses two modules, it
an be implemented eÆ
iently in asingle pass. By using the
onventional approa
h, CCM, EAX, and CWC are verymu
h like
omposition-based AEAD s
heme [4, 15℄, or AEAD s
hemes
omposedfrom existing en
ryption s
hemes and MACs. Unlike
omposition-based AEADs
hemes, however, by designing CWC dire
tly from a blo
k
ipher, we eliminateredundant steps and �ne-tune CWC for eÆ
ien
y, again keeping in mind bothour hardware and software goals. For example, we use only one blo
k
ipher key,whi
h saves expensive memory a

ess in hardware.The en
ryption
ore of CWC is essentially
ounter (CTR) mode en
ryption,whi
h is well-known to be eÆ
ient and parallelizable. Finding an appropriate al-gorithm for the authenti
ation
ore of CWC proved to be more of a
hallenge. Forauthenti
ation, we de
ided to base our design on the Carter-Wegman [27℄ uni-versal hash fun
tion approa
h for message authenti
ation. Part of the diÆ
ultyin the design
ame down to
hoosing the right type of universal hash fun
tion,with the right parameters. Sin
e polynomial evaluation
an be parallelized (if

Linux/g

-3.2.2 Windows 2000/VS6.0Payload lengths (bytes) Payload lengths (bytes)Mode 128 256 512 2048 8192 128 256 512 2048 8192CWC-AES 105.5 88.4 78.9 72.2 70.5 84.7 70.2 62.2 56.5 55.0CCM-AES 97.9 87.1 82.0 78.0 77.1 64.8 56.7 52.5 49.5 48.7EAX-AES 114.1 94.9 86.1 79.1 77.5 75.2 61.8 55.3 50.4 49.1Table 1. Software performan
e (in
lo
ks per byte) for the three patent-free blo
k
ipher-based AEAD modes on a Pentium III. Values are averaged over 50 000 samples.the polynomial is in x, one
an split it into i polynomials in xi), we
hose to use auniversal hash fun
tion
onsisting of evaluating a polynomial modulo the prime2127 � 1. We note the our hash fun
tion is similar to Bernstein's hash127 [6℄ex
ept that Bernstein's hash fun
tion was optimized for software performan
eat the expense of hardware performan
e. To address this issue, we use larger
o-eÆ
ients than Bernstein uses. We believe our hardware- and software-optimizeduniversal hash fun
tion to be of independent interest.Notation. As part of our resear
h, we �rst
reated a general approa
h for
om-bining CTR mode en
ryption with a universal hash fun
tion in order to provideauthenti
ated en
ryption. We shall refer to this general approa
h as CWC (noteno
hange in font), and shall use CWC-BC to refer to a CWC instantiation witha 128-bit blo
k
ipher BC as the underlying blo
k
ipher and with the univer-sal hash fun
tion des
ribed brie
y above. We shall use CWC as shorthand forCWC-BC and use CWC-AES to mean CWC-BC with AES [8℄ as the underlyingblo
k
ipher. Other instantiations of the general CWC approa
h are possible,e.g., for lega
y 64-bit blo
k
iphers. Sin
e we are primarily targeting new appli-
ations, and sin
e a mode using a 128-bit blo
k
ipher will never be asked tointeroperate with a mode using a 64-bit blo
k
ipher, we fo
us this paper onlyon our 128-bit CWC instantiation.When we say that an AEAD s
heme's en
ryption algorithm takes a pair(A;M) as input and produ
es a
iphertext as output, we mean that the AEADs
heme is designed to prote
t the priva
y of M and the authenti
ity of both Aand M . This will be made more formal in the body.Performan
e. Let (A;M) be some input to the CWC en
ryption algorithm.The CWC en
ryption algorithm derives a universal hash subkey from the blo
k
ipher key. Assuming that the universal hash subkey is maintained a
ross in-vo
ations, en
rypting (A;M) takes djM j=128e + 2 blo
k
ipher invo
ations.The polynomial used in CWC's universal hashing step will have degree d =djAj=96e+djM j=96e. There are several ways to evaluate this polynomial (detailsin Se
tion 6). As noted above, we
ould evaluate it in parallel. Serially, assumingno pre
omputation, we
ould evaluate this polynomial using d 127x127-bit multi-plies. As another example, assuming n pre
omputed powers of the hash subkey,whi
h are
heap to maintain in software for reasonable n, we
ould evaluate

the polynomial using d�m 96x127-bit multiplies and m 127x127-bit multiplies,where m = d(d+ 1)=ne � 1.In hardware using
onventional ASIC te
hnology at 0.13 mi
ron, it takesapproximately 300 Kgates to rea
h 10 Gbps throughput for CWC-AES. This isaround twi
e as mu
h as OCB, but avoids IP negotiation overhead and roy-alty payments to three parties. Table 1 relates the software performan
e, ona Pentium III, of CWC-AES to the two other patent-free AEAD modes CCMand EAX; the patented modes su
h as OCB are not in
luded in this table,but are about twi
e as fast as the times given for the patent-free modes. Theimplementations used to
ompute Table 1 were written in C by Brian Glad-man [9℄ and all use 128-bit AES keys; the
urrent CWC-AES implementationdoes not use the above-mentioned pre
omputation approa
h for evaluating thepolynomial. Table 1 shows that the
urrent implementations of the three modeshave
omparable performan
e in software, the relative \best" depending on theOS/
ompiler and the length of the message. Using the above-mentioned pre
om-putation approa
h and swit
hing to assembly, we anti
ipate redu
ing the
ost ofCWC's universal hashing step to around 8
pb, thereby signi�
antly improvingthe performan
e of CWC-AES in software
ompared to CCM-AES and EAX-AES (sin
e the authenti
ation portions of CCM-AES and EAX-AES are limitedby the speed of AES but the authenti
ation portion of CWC-AES is limited bythe speed of the universal hash fun
tion). For
omparison, Bernstein's relatedhash127, whi
h also evaluates a polynomial modulo 2127 � 1 but whose spe
i�
stru
ture makes it less attra
tive in hardware, runs around 4
pb on a PentiumIII when written in assembly and using the pre
omputation approa
h. On 64-bitG5s, our initial implementation of the hash fun
tion runs at around 6
pb, thusshowing that CWC-AES is very attra
tive on 64-bit ar
hite
tures (when runningthe G5 in 32-bit mode, our implementation runs at around 15
pb).We do not
laim that CWC-AES will be parti
ularly eÆ
ient on low-endCPUs su
h as 8-bit smart
ards. However, our goal was not to develop an AEADs
heme for su
h low-end pro
essors.The patent issue. The patent issue is a very pe
uliar one. While it may ini-tially sound odd to let patents in
uen
e resear
h, we note that it is also notun
ommon, espe
ially in other s
ien
es. Indeed, we view this line of resear
h asdis
overing the most appropriate solution given real-world
onstraints. And, justlike performan
e
onstraints, intelle
tual property
onstraints are very real.Ba
kground and related work. The notion of an authenti
ated en
ryp-tion (AE) s
heme was formalized by Katz and Yung [13℄ and by Bellare andNamprempre [4℄ and the notion of an authenti
ated en
ryption with asso
iateddata (AEAD) s
heme was formalized by Rogaway [23℄. Bellare and Namprem-pre [4℄ and Kraw
zyk [15℄ explored ways to
ombine standard en
ryption s
hemeswith MACs to a
hieve authenti
ated en
ryption. A number of dedi
ated AE andAEAD s
hemes also exist, in
luding RPC [13℄, XECB [10℄, IAPM [12℄, OCB [24℄,CCM [28℄, and EAX [5℄. CWC is similar to the
ombination of M
Grew's UST [20℄and TMMH [19℄, where one of the main advantages of CWC over UST+TMMHis CWC's small key size, whi
h, as the author of UST and TMMH noted,
an be

a bottlene
k for UST+TMMH in hardware at high speeds. The integrity por-tion of CWC builds on top of the Carter-Wegman universal hashing approa
h tomessage authenti
ation [27℄. The spe
i�
 hash fun
tion CWC uses is similar toBernstein's hash127 [6℄, but is better suited for hardware. Shoup [26℄ and Nevel-steen and Preneel [22℄ also worked on software optimizations for universal hashfun
tions. Rogaway and Wagner released a
ritique of CCM [25℄. For ea
h issueraised in [25℄, we �nd that we have addressed the issue (e.g., we designed CWC tobe on-line) or we disagree with the issue (e.g., we feel that it is suÆ
ient for newmodes of operation to handle arbitrary o
tet-length, as opposed to arbitrary bit-length, messages; we stress, however, that, if desired, it is easy to modify CWC tohandle arbitrary bit-length messages, see Se
tion 5). CWC re
ently served as thestarting point for GCM [21℄, another promising new
onventional authenti
ateden
ryption mode.2 PreliminariesNotation. If x is a string then jxj denotes its length in bits. Let " denote theempty string. If x and y are two equal-length strings, then x�y denotes the xorof x and y. If x and y are strings, then xky denotes their
on
atenation. If N isa non-negative integer and l is an integer su
h that 0 � N < 2l, then tostr(N; l)denotes the en
oding of N as an l-bit string in big-endian format. If x is astring, then toint(x) denotes the integer
orresponding to string x in big-endianformat (the most signi�
ant bit is not interpreted as a sign bit). For example,toint(10000010) = 27 + 2 = 130. If b is a bit and n a non-negative integer, thenbn denote b
on
atenated with itself n times; e.g., 107 is the string 10000000.Let x y denote the assignment of y to x. If X is a set, let x $ X denote thepro
ess of uniformly sele
ting at random an element from X and assigning it tox. If f is a randomized algorithm, let x $ f(y) denote the pro
ess of running fwith input y and a uniformly sele
ted random tape. When we refer to the timeof an algorithm or experiment, we in
lude the size of the
ode (in some �xeden
oding). There is also an impli
it big-O surrounding all su
h time referen
es.Authenti
ated en
ryption s
hemes with asso
iated data. We use Ro-gaway's notion of an authenti
ated en
ryption with asso
iated data (AEAD)s
heme or mode [23℄. An AEAD s
heme SE = (Ke; E ;D)
onsists of threealgorithms and is de�ned over some key spa
e KeySpSE , some non
e spa
eNon
eSpSE = f0; 1gn, n a positive integer, some asso
iated data (header) spa
eAdSpSE � f0; 1g�, and some payload message spa
e MsgSpSE � f0; 1g�. Werequire that membership in MsgSpSE and AdSpSE
an be eÆ
iently tested andthat if M;M 0 are two strings su
h that M 2 MsgSpSE and jM 0j = jM j, thenM 0 2 MsgSpSE .The randomized key generation algorithm Ke returns a keyK 2 KeySpSE ; wedenote this pro
ess as K $ Ke. The deterministi
 en
ryption algorithm E takesas input a key K 2 KeySpSE , a non
e N 2 Non
eSpSE , a header (or asso
iateddata) A 2 AdSpSE , and a payload message M 2 MsgSpSE , and returns a
ipher-text C 2 f0; 1g�; we denote this pro
ess as C EN;AK (M) or C EK(N;A;M).

The deterministi
 de
ryption algorithm D takes as input a key K 2 KeySpSE ,a non
e N 2 Non
eSpSE , a header A 2 AdSpSE , and a string C 2 f0; 1g� andoutputs a message M 2 MsgSpSE or the spe
ial symbol INVALID on error; wedenote this pro
ess as M DN;AK (C). We require that DN;AK (EN;AK (M)) = Mfor all K 2 KeySpSE , N 2 Non
eSpSE , A 2 AdSpSE , and M 2 MsgSpSE . Let l(�)denote the length fun
tion of SE ; i.e., for all keys K, non
es N , headers A, andmessages M , jEN;AK (M)j = l(jM j).Under the
orre
t usage of an AEAD s
heme, after a random key is sele
ted,the appli
ation should never invoke the en
ryption algorithm twi
e with the samenon
e value until a new key is randomly sele
ted. In order to ensure that a non
edoes not repeat, implementations typi
ally use non
es that
ontain
ounters. Weuse the notion of a non
e, rather than simply a
ounter, be
ause the notion ofa non
e is more general and allows the developer the freedom to stru
ture thenon
e as he or she desires.Blo
k
iphers. A blo
k
ipher E : f0; 1gk � f0; 1gL ! f0; 1gL is a fun
tionfrom k-bit keys and L-bit blo
ks to L-bit blo
ks. We use EK(�), K 2 f0; 1gk,to denote the fun
tion E(K; �) and we use f $ E as short hand for K $ f0; 1gk ; f EK . Blo
k
iphers are families of permutations; namely, for ea
hkey K 2 f0; 1gk, EK is a permutation on f0; 1gL. We
all k the key length of Eand we
all L the blo
k length.We adopt the notion of se
urity for blo
k
iphers introdu
ed in [17℄ andadopted for the
on
rete setting in [2℄. Let E : f0; 1gk � f0; 1gL ! f0; 1gL be ablo
k
ipher and let Perm(L) denote the set of all permutations on f0; 1gL. LetA be an adversary with a

ess to an ora
le and that returns a bit. ThenAdvprpF (A) = Pr h f $ E : Af(�) = 1 i� Pr h g $ Perm(L) : Ag(�) = 1 idenotes the prp-advantage of A in distinguishing a random instan
e of E froma random permutation. Intuitively, we say that E is a se
ure prp, or a se
ureblo
k
ipher, if the prp-advantages of all adversaries using reasonable resour
esis small. Modern blo
k
iphers, su
h as AES [8℄, are believed to be se
ure prps.3 The CWC mode of operationWe now des
ribe our new AEAD s
heme. Let BC : f0; 1gkl � f0; 1g128 !f0; 1g128 be a 128-bit blo
k
ipher. Let tl � 128 is the desired tag length in bits.Then the CWC mode of operation using BC with tag length tl, CWC-BC-tl =(K;CWC-ENC;CWC-DEC), is de�ned as follows. The message spa
es are:MsgSpCWC-BC-tl = f x 2 (f0; 1g8)� : jxj � MaxMsgLen gAdSpCWC-BC-tl = f x 2 (f0; 1g8)� : jxj � MaxAdLen gKeySpCWC-BC-tl = f0; 1gklNon
eSpCWC-BC-tl = f0; 1g88

where MaxMsgLen and MaxAdLen are both 128 � (232 � 1). That is, the payloadand asso
iated data spa
es for CWC-BC-tl
onsist of all strings of o
tets that areat most 232 � 1 blo
ks long.The CWC-BC-tl key generation, en
ryption, and de
ryption algorithms arede�ned as follows:Algorithm KK $ f0; 1gklReturn KAlgorithm CWC-ENCK(N;A;M)� CWC-CTRK(N;M)� CWC-MACK(N;A; �)Return �k�
Algorithm CWC-DECK(N;A;C)If jCj < tl then return INVALIDParse C as �k� where j� j = tlIf A 62 AdSpCWC-BC-tl or � 62 MsgSpCWC-BC-tl thenreturn INVALIDIf � 6= CWC-MACK(N;A; �) thenreturn INVALIDM CWC-CTRK(N; �)Return MThe remaining algorithms (CWC-CTR, CWC-MAC, CWC-HASH) are de�ned be-low. The CWC-CTR algorithm handles generating the en
ryption and de
ryptionkeystreams, CWC-MAC handles the generation of an authenti
ation tag, and usesCWC-HASH as the underlying universal hash fun
tion.Algorithm CWC-CTRK(N;M)� djM j=128eFor i = 1 to � dosi BCK(107kNktostr(i; 32))x �rst jM j bits of s1ks2k � � � ks�� x�MReturn �Algorithm CWC-MACK(N;A; �)R BCK(CWC-HASHK(A; �))� BCK(107kNk032)�RReturn �rst tl bits of �

Algorithm CWC-HASHK(A; �)Z last 127 bits of BCK(110126)Kh toint(Z)l min int su
h that 96 divides jAk0ljl0 min int su
h that 96 divides j�k0l0 jX Ak0lk�k0l0 ; � jXj=96Break X into
hunks X1; X2; : : : ; X�For i = 1 to � doYi toint(Xi)l� j�j=8 ; lA jAj=8Y�+1 264 � lA + l�R Y1K�h + � � �+ Y�Kh + Y�+1mod2127 � 1Return tostr(R; 128)4 Theorem statementsThe CWC s
heme is a provably se
ure AEAD s
heme assuming that the under-lying blo
k
ipher, e.g., AES, is a se
ure pseudorandom permutation. This is aquite reasonable assumption sin
e most modern blo
k
iphers, in
luding AES,are believed to be pseudorandom. Furthermore, all provably-se
ure blo
k
iphermodes of operation that we are aware of make at least the same assumptionswe make, and some modes, su
h as OCB [24℄, require the stronger, albeit stillreasonable, assumption of super-pseudorandomness.The spe
i�
 results for CWC appear as Theorem 1 and Theorem 2 below, andare proven in the full version of this paper [14℄. In [14℄ we also present resultsfor the general CWC
onstru
tion, from whi
h Theorems 1 and 2 follow.

4.1 Priva
yWe �rst show that if BC is a se
ure blo
k
ipher, then CWC-BC-tl will preservepriva
y under
hosen-plaintext atta
ks. For our notion of priva
y for AEADs
hemes, we use the strong de�nition of indistinguishability from [23℄. Let SE =(Ke; E ;D) be an AEAD s
heme with length fun
tion l(�). Let $(�; �; �) be an ora
lethat, on input (N;A;M) 2 Non
eSpSE � AdSpSE �MsgSpSE , returns a randomstring of length l(jM j). Let B be an adversary with a

ess to an ora
le and thatreturns a bit. ThenAdvprivSE (B) = Pr hK $ Ke : BEK(�;�;�) = 1 i� Pr h B$(�;�;�) = 1 iis the ind$-
pa-advantage of B in breaking the priva
y of SE under
hosen-plaintext atta
ks; i.e., AdvprivSE (B) is the advantage of B in distinguishing be-tween
iphertexts from EK(�; �; �) and random strings. An adversary B is non
e-respe
ting if it never queries its ora
le with the same non
e twi
e. Intuitively,a s
heme SE preserves priva
y under
hosen plaintext atta
ks if the ind$-
pa-advantage of all non
e-respe
ting adversaries using reasonable resour
es is small.Theorem 1. [Priva
y of CWC.℄ Let CWC-BC-tl be as in Se
tion 3. Thengiven a non
e-respe
ting ind$-
pa adversary A against CWC-BC-tl one
an
on-stru
t a prp adversary CA against BC su
h that if A makes at most q ora
lequeries totaling at most � bits of payload message data, thenAdvprivCWC-BC-tl(A) � AdvprpBC (CA) + (�=128 + 3q + 1)22129 : (1)Furthermore, the experiment for CA takes the same time as the experiment forA and CA makes at most �=128 + 3q + 1 ora
le queries.Let us elaborate on why Theorem 1 implies that CWC-BC will preserve priva
yunder
hosen-plaintext atta
ks. Assume BC is a se
ure blo
k
ipher. This meansthat AdvprpBC (C) must be small for all adversaries C using reasonable resour
esand, in parti
ular, this means that, for CA as des
ribed in the theorem state-ment, AdvprpBC (CA) must be small assuming that A uses reasonable resour
es.And if AdvprpBC (CA) is small and �; q are small, then, be
ause of the above equa-tions, AdvprivCWC-BC-tl(A) must also be small as well. I.e., any adversary A usingreasonable resour
es will only be able to break the priva
y of CWC-BC-tl withsome small probability.As a
on
rete example, let us
onsider limiting the number of appli
ations ofCWC-BC-tl between rekeyings to some reasonable value su
h as q = 232, and letus limit the total number of payload bits between rekeyings to � = 250. ThenEquation 1 be
omesAdvprivCWC-BC-tl(A) � AdvprpBC (CA) + 1242whi
h means that, assuming that the underlying blo
k
ipher is a se
ure prp,an atta
ker will not be able to break the priva
y of CWC-BC-tl with advantagemu
h greater than 2�42.

4.2 Integrity/authenti
ityWe now present our results showing that if BC is a se
ure blo
k
ipher, thenCWC-BC-tl will prote
t the authenti
ity of en
apsulated data. We use the strongnotion of authenti
ity for AEAD s
hemes from [23℄. Let SE = (Ke; E ;D) bean AEAD s
heme. Let F be a forging adversary and
onsider an experimentin whi
h we �rst pi
k a random key K $ Ke and then run F with ora
lea

ess to EK(�; �; �). We say that F forges if F returns a pair (N;A;C) su
h thatDN;AK (C) 6= INVALID but F did not make a query (N;A;M) to EK(�; �; �) thatresulted in a response C. ThenAdvauthSE (F) = Pr hK $ Ke : F EK(�;�;�) forges iis the auth-advantage of F in breaking the integrity/authenti
ity of SE . Intu-itively, the s
heme SE preserves integrity/authenti
ity if the auth-advantage ofall non
e-respe
ting adversaries using reasonable resour
es is small.Theorem 2. [Integrity/authenti
ity of CWC.℄ Let CWC-BC-tl be as spe
i-�ed in Se
tion 3. (Re
all that BC is a 128-bit blo
k
ipher and that the tag lengthtl is � 128.) Consider a non
e-respe
ting auth adversary A against CWC-BC-tl.Assume the exe
ution environment allows A to query its ora
le with asso
iateddata that are at most n � MaxAdLen bits long and with messages that are atmost m � MaxMsgLen bits long. Assume A makes at most q � 1 ora
le queriesand the total length of all the payload data (both in these q � 1 ora
le queriesand the forgery attempt) is at most �. Then given A we
an
onstru
t a prpadversary CA against BC su
h thatAdvauthCWC-BC-tl(A) � AdvprpBC (CA)+ (�=128 + 3q + 1)22129 + n+m2133 + 12125+ 12tl : (2)Furthermore, the experiment for CA takes the same time as the experiment forA and CA makes at most �=128 + 3q + 1 ora
le queries.Let us elaborate on why Theorem 2 implies that CWC-BC will preserve authen-ti
ity. Assume BC is a se
ure blo
k
ipher. This means that AdvprpBC (C) mustbe small for all adversaries C using reasonable resour
es and, in parti
ular, thismeans that, for CA as des
ribed in the theorem statement, AdvprpBC (CA) must besmall assuming that A uses reasonable resour
es. And ifAdvprpBC (CA) is small and�; q;m and n are small, then, be
ause of the above equations, AdvauthCWC-BC-tl(A)must also be small as well. I.e., any adversary A using reasonable resour
es willonly be able to break the authenti
ity of CWC-BC-tl with some small probability.Let us
onsider some
on
rete examples. Let n = MaxAdLen and m =MaxMsgLen, whi
h is the maximum possible allowed by the CWC-BC
onstru
-tion. Then Equation 2 be
omesAdvauthCWC-BC-tl(A) � AdvprpBC (CA) + (�=128 + 3q + 1)22129 + 1293 + 12tl :

If we set q = 232 and � = 250 as before, and if we take tl � 43, then the aboveequation be
omes AdvauthCWC-BC-tl(A) � AdvprpBC (CA) + 1241whi
h means that, assuming that the underlying blo
k
ipher is a se
ure prp,an atta
ker will not be able to break the unforgeability of CWC-BC-tl with prob-ability mu
h greater than 2�41.Remark 1. [Chosen-
iphertext priva
y.℄ Sin
e CWC-BC-tl preserves priva
yunder
hosen-plaintext atta
ks (Theorem 1) and provides integrity (Theorem 2)assuming that BC is a se
ure pseudorandom permutation, it also provides priva
yunder
hosen-
iphertext atta
ks under the same assumption about BC. See [4, 23℄for a dis
ussion of the relationship between
hosen-plaintext priva
y, integrity,and
hosen-
iphertext priva
y; this relationship was also used, for example, bythe designers of OCB [24℄.5 Design de
isionsFinding an appropriate balan
e between provable se
urity, hardware eÆ
ien
y,and software eÆ
ien
y, while simultaneously avoiding existing intelle
tual prop-erty issues, proved to be one the the biggest
hallenges of this resear
h proje
t. Inthis se
tion we dis
uss how our diverse set of goals a�e
ted our design de
isions.The CWC-HASH universal hash fun
tion. We found that the best wayto simultaneously a
hieve our parallelizability, hardware, and software goals wasto base the authenti
ation portion of CWC on the Carter-Wegman [27℄ universalhash fun
tion approa
h to message authenti
ation. This is be
ause universalhash fun
tions, and espe
ially the one we
reated for CWC,
an be implementedin a multitude of ways, thus allowing di�erent platforms and appli
ations toimplement CWC-HASH in the way most appropriate for them. For example,hardware implementations will like parallelize the
omputation of CWC-HASHby splitting it into multiple polynomials in Kih for some i. In more detail, if thepolynomial isY1K�h + Y2K��1h + Y3K��2h + Y4K��3h + � � �+ Y�Kh + Y�+1 mod 2127 � 1 :then, setting i = 2, and y = K2h mod 2127 � 1, and assuming � is odd for illus-tration purposes, we
an rewrite the above polynomial as�Y1ym + Y3ym�1 + � � �+ Y��x+ �Y2ym + Y4ym�1 + � � �+ Y�+1� mod 2127 � 1 ;After splitting the polynomial, hardware implementations will then likely
om-pute ea
h polynomial using Horner's rule (e.g., the polynomial aK2ih + bKih +
would be evaluated as (((a)Kih+b)Kih)+
). Software implementations on modernCPUs, for whi
h memory is
heap, will likely pre
ompute a number of powers ofKh and evaluate the CWC-HASH polynomial dire
tly, or almost dire
tly, usinga hybrid between a pre
omputation approa
h and Horner's rule. We
onsider anumber of possible implementation strategies in more detail in Se
tion 6.

CWC-HASH is an instantiation of the
lassi
 polynomial universal hash ap-proa
h to message authenti
ation [27℄, and is
losely related to Bernstein'shash127 [6℄, whi
h also evaluates a polynomial modulo 2127�1. Although hash127is very fast in software, its stru
ture makes it less suitable for use on high-speedhardware. In parti
ular, Bernstein's
hoi
e of 32-bit
oeÆ
ients, while great forsoftware implementations with pre
omputed powers of Kh, means that hard-ware implementations using Horner's rule will be \wasting work." Spe
i�
ally,even with 32-bit
oeÆ
ients, in
orporating ea
h new
oeÆ
ient using Horner'srule will require a 127x127-bit multiply be
ause the a

umulated value will be127 bits long. By de�ning the CWC-HASH
oeÆ
ients to be 96-bits long, wein
rease the performan
e of Horner's rule implementations by a fa
tor of three.(Of
ourse, we
ould have gone even further and made the
oeÆ
ients 126 bitslong, but doing so would have required
onsiderable additional
omplexity toperform bit and byte shifting within the
oeÆ
ients.) An alternative approa
hfor in
reasing the performan
e of a serial implementation of Horner's rule wouldbe to redu
e the size of the CWC-HASH subkey Kh to 96 bits. We dis
uss whywe reje
ted this option in more detail later, but remark here that there are al-ready more eÆ
ient strategies than Horner's rule for implementing CWC-HASHin software, and that in a parallelized approa
h the values Kih, i � 2, will mostoften be full 127-bit values even if Kh is only 96-bits long.On using a single key. From a se
urity perspe
tive, it would have been per-fe
tly a

eptable, and in fa
t more traditional, to make the CWC-CTR blo
k
ipher key and the two CWC-MAC blo
k
ipher keys independent. Like oth-ers [28, 5℄, however, we a
knowledge that there are several important reasons forsharing keys between the en
ryption and authenti
ation portions of modes su
has CWC. One of the most important reasons is simpli
ity of key management.Indeed, fet
hing key material
an be a major bottlene
k in high-speed hardware,and minimizing key material is thus important. This fa
t is also why we de-rive the hash subkey from the blo
k
ipher key rather than use an independenthash subkey. We
ould, of
ourse, have de�ned a mode that derived a numberof essentially independent blo
k
ipher and hash keys from a single blo
k
ipherkey, but doing so would either have required more memory or more
omputa-tion and, be
ause we have proofs that our
onstru
tion works, would have beenunne
essary.Sharing the blo
k
ipher key in the way des
ribed above and deriving thehash subkey from the blo
k
ipher key did, however, mean that we had to bevery
areful with our proofs of se
urity. To fa
ilitate our proofs, we took extra
are in our design to ensure that there would never be a
ollision in the plaintextinputs to the blo
k
ipher between the di�erent usages of the blo
k
ipher. Forexample, by de�ning CWC-HASH to produ
e a 127-bit value as output, we knowthat the �rst appli
ation of BC to CWC-HASHK(A; �) in CWC-MAC will alwayshave its �rst bit set to 0. To avoid a
ollision with the input to the keystreamgenerator, the blo
k
ipher inputs in CWC-CTR always have the �rst two bitsset to 10. When using the blo
k
ipher to
reate the hash subkey Kh, the �rsttwo bits of the input are set to 11.

On the
hoi
e of parameters. Part of this e�ort involved spe
ifying theappropriate parameters for the CWC en
ryption mode. Example parameters in-
lude the non
e length and the way the non
e is en
oded in the input to theblo
k
ipher. We
hose to �x these parameters for interoperability purposes, butnote that our general approa
h in [14℄ does not have theses parameters �xed.We
hose to set the non
e length to 88 bits in order to handle future IPse
sequen
e numbers. And we
hose to set the blo
k
ounter length to 32 bits inorder to allow CWC to be used with IPse
 jumbograms and other large pa
kets.We also
hose to use big-endian byte ordering for
onsisten
y purposes and tomaintain
ompatibility with M
Grew's ICM Internet-Draft [18℄ and the IETF,whi
h strongly favors big-endian byte-ordering.Handling arbitrary bit-length messages. Sin
e we do not believe thatmany appli
ations will a
tually require the ability to en
rypt arbitrary bit-lengthmessages, we do not de�ne CWC to take arbitrary bit-length messages as input.That said, we did design CWC in su
h a way that it will be easy to modify thespe
i�
ation to take arbitrary bit-length messages without a�e
ting interoper-ability with existing implementations when o
tet-strings are
ommuni
ated. Forexample, one
ould augment the
omputation of Y�+1 in CWC-HASH as follows:rA jAj mod 8 ; r� j�j mod 8 ; Y�+1 2120 � rA + 2112 � r� + 264 � lA + l� :Of
ourse, a
leaner approa
h for handling arbitrary bit-length messages wouldbe to
ompute lA jAj and l� j�j in CWC-HASH. We do not de�ne CWCthis way be
ause we do not
onsider it a good trade-o� to de�ne a mode forarbitrary bit-length messages at the expense of o
tet-oriented systems.64-bit blo
k
iphers. We did not de�ne CWC for use with 64-bit blo
k
i-phers be
ause we are targeting future high-speed
ryptographi
 appli
ations.Nevertheless, the general CWC approa
h in [14℄
an be instantiated with 64-bitblo
k
iphers. A 64-bit instantiation may, however, require several un
omfortabletradeo�s; e.g., in the length of the non
e.Some possible alternatives. Here we dis
uss some other possible alterna-tives to CWC and why we reje
ted these alternatives. First, as noted earlier,it is possible to improve the performan
e in some situations by using shorterhash subkeys Kh, say of length 96 bits. Su
h an alternative will not in
reasethe performan
e in high-speed hardware implementations that will parallelizethe
omputation of CWC-HASH by evaluating a polynomial in (at least) K2h. A96-bit hash subkey would have in
reased Horner's rule performan
e in software,but would still be
omparable in speed to a software-based approa
h using pre-
omputed powers of Kh (see Se
tion 6), so redu
ing the size of Kh to 96 bitswould not provide a signi�
ant advantage in software either. In [14℄ we also
on-sider what happens to our provable se
urity bounds when the length of the hashsubkey is redu
ed to less than 96 bits.There are a number of possible approa
hes for redu
ing the number of blo
k
ipher appli
ations in the CWC-MAC algorithm by one. For example, one
oulduse BCK(h0K(N;A; �)) as the tag, where h0 is a modi�ed version of CWC-HASHdesigned to hash 3-tuples instead of pairs of strings. One
ould also use something

like BCK(N)+Y1K�+2h + � � �+Y�K3h+ lAK2h+ l�Kh mod 2127 � 1 as the tag. In[14℄ we
onsider these and other alternatives and dis
uss why we
hose to de�neCWC the way that we did instead of using an option with one fewer blo
k
ipherinvo
ation. In the
ase of the two alternatives mentioned in this paragraph, wenote that we reje
ted them be
ause we were able to prove better bounds on these
urity of CWC as
urrently de�ned.Motivated by EAX2 [5℄, one possible alternative to CWC might be to useBCK(11105kN) both as the value to en
rypt R in CWC-MAC and as the initial
ounter to CTR mode-en
rypt M (with the �rst two bits of the
ounter alwaysset to 10). Other EAX2-motivated
onstru
tions also exist. For example, thetag might be set to BCK(h(X0kN)) � BCK(h(X1kA)) � BCK(h(X2k�)), whereX0; X1; X2 are strings, none of whi
h is a pre�x of the other, and h is a paral-lelizable universal hash fun
tion, like CWC-HASH but hashing only single strings(as opposed to pairs of strings). Compared to CWC, these alternatives have theability to take longer non
es as input, and, from a fun
tional perspe
tive,
anbe applied to strings up to 2126 blo
ks long. But we do not view this as a reasonto prefer these alternatives over CWC. From a pra
ti
al perspe
tive, we do notforesee appli
ations needing non
es longer than 11 o
tets, or needing to en
ryptmessages longer than 232�1 blo
ks. Moreover, from a se
urity perspe
tive, appli-
ations should not en
rypt too many pa
kets between rekeyings, implying thateven 11 o
tet non
es are more than suÆ
ient. We do
omment, however, that webelieve the alternatives dis
ussed in this paragraph are still more attra
tive thanEAX be
ause, like CWC but unlike EAX, these alternatives are parallelizable.We
hose not to base the authenti
ation portion of our new mode on XOR-MAC [3℄ or PMAC [7℄ be
ause of patent
on
erns and our software performan
erequirements and we
hose not to base the authenti
ation portion on software-eÆ
ient MACs su
h as HMAC [1℄ be
ause of our hardware parallelizability re-quirement.6 Performan
eHardware. Sin
e one of our main goals was to a
hieve high performan
e inhardware and, in parti
ular, to provide a solution for future 10 Gbps IPse
 (andother) network devi
es, let us fo
us �rst on hardware
osts. As noted in theintrodu
tion, using 0.13 mi
ron CMOS ASIC te
hnology, it should take approxi-mately 300 Kgates to a
hieve 10 Gbps throughput for CWC-AES. This estimate,whi
h is appli
able to AES with all key lengths, in
ludes four AES
ounter-modeen
ryption engines, ea
h running at 200MHz and requiring about 25Kgates ea
h.In addition, there are two 32x128-bit multiply/a

umulate engines, ea
h runningat 200 MHz with a laten
y of four
lo
ks, one ea
h for the even and odd polyno-mial
oeÆ
ients. Of
ourse, simply keeping these engines \fed" may be quite afeat in itself, but that is generally true of any 10 Gbps path. Also, there may wellbe better methods to stru
ture an implementation, depending on the parti
u-lar ASIC vendor library and te
hnology, but, regardless of the implementationstrategy, 10 Gbps is quite a
hievable be
ause of the inherent parallelism of CWC.

Sin
e OCB is CWC's main
ompetitor for high-speed environments, it is worth
omparing CWC with OCB instantiated with AES (we do not
ompare CWC withCCM and EAX here sin
e the latter two are not parallelizable). We �rst note thatCWC-AES saves some gates be
ause we only have to implement AES en
ryptionin hardware. However, at 10 Gbps, OCB still probably requires only about halfthe sili
on area of CWC-AES. The main question for many hardware designers isthus whether the extra sili
on area for CWC-AES
osts more than three royaltypayments, as well as negotiation
osts and overhead. With respe
t to negotiation
osts and royalty payments, we note that despite signi�
ant demands, to date therelevant parties have not all o�ered publi
ly available IP fee s
hedules. Giventhis fa
t, and given today's sili
on
osts, we believe that the extra sili
on forCWC-AES is probably
heaper overall than the negotiation
osts and IP feesrequired for OCB.Software. CWC-AES
an also be implemented eÆ
iently in software. Table 1shows timing information for CWC-AES, as well as CCM-AES and EAX-AES,on a 1.133GHz mobile Pentium III dual-booting RedHat Linux 9 (kernel 2.4.20-8) and Windows 2000 SP2. The numbers in the table are the
lo
ks per bytefor di�erent message lengths averaged over 50 000 runs and in
lude the entiretime for setting up (e.g., expanding the AES key-s
hedule) and en
rypting. Allimplementations were in C and written by Brian Gladman [9℄ and use 128-bitAES keys. The Linux
ompiler was g

 version 3.2.2; the Windows
ompiler wasVisual Studio 6.0. To be fair, we note that OCB does run at about twi
e thespeeds given in Table 1.From Table 1 we
on
lude that the three patent-free modes, as
urrentlyimplemented by Gladman, share similar software performan
es. The \best" per-forming one appears to depend on OS/
ompiler and the length of the messagebeing pro
essed. On Linux, it appears that CWC-AES performs slightly betterthan EAX-AES for all message lengths that we tested, and better than CCM-AES for the longer messages, whereas Gladman's CCM-AES and EAX-AESimplementations slightly outperform his CWC-AES implementation on Windowsfor all the message lengths that we tested.Note, however, that all the implementations used to
ompute Table 1 werewritten in C. Furthermore, the
urrent CWC-AES
ode does not make use ofall of the optimization te
hniques (and in parti
ular pre
omputation) that wedes
ribe below. By swit
hing to assembly and using the additional optimizationte
hniques, we anti
ipate the speed for CWC-HASH to drop to better than 8
lo
ks per byte, whereas the speed for the CBC-MAC portion of CCM-AES andEAX-AES will be limited by the speed of AES (the best reported speed for AESon a Pentium III is 14.1
pb, due to a proprietary library by Helger Lipmaa;Gladman's free hand-optimized Windows assembly implementation runs at 17.5
pb [16℄). Returning to the speed of CWC-HASH, for referen
e we note thatBernstein's related hash127 [6℄ runs around 4
pb on a Pentium III when writtenin assembly and using the pre
omputation approa
h. Bernstein's hash127 alsoworks by evaluating a polynomial modulo 2127�1; the main di�eren
e is that the
oeÆ
ients for hash127 are 32 bits long, whereas the
oeÆ
ients for CWC-HASH

are 96 bits long (re
all Se
tion 5, whi
h dis
usses why we use 96-bit
oeÆ
ients).We also note that the performan
e of CWC-HASH will in
rease dramati
ally on64-bit ar
hite
tures with larger multiplies; an initial implementation on a G5using 64-bit integer operations runs at around 6
pb (when running the G5 in32-bit mode, the hash fun
tion runs at around 15
pb).Sin
e the implementation of CWC-HASH is more
ompli
ated than the im-plementation of the CWC-CTR portion of CWC, we devote the rest of this se
tionto dis
ussing CWC-HASH.Pre
omputation. As noted in Se
tion 5, there are two general approa
hes toimplementing CWC-HASH in software. The �rst is to use Horner's rule. These
ond is to evaluate the polynomial dire
tly, whi
h
an be faster if one pre
om-putes powers of the hash key Kh at setup time (here the powers of Kh
an beviewed as an expanded key-s
hedule). In parti
ular, as noted in Se
tion 5, eval-uating the polynomial using Horner's rule requires a 127x127-bit multiply forea
h
oeÆ
ient, whereas evaluating the polynomial dire
tly using pre
omputedpowers of Kh requires a 96x127-bit multiply for ea
h
oeÆ
ient. (We dis
usselsewhere why we did not make the hash subkey 96-bits, whi
h
ould have spedup a serial Horner's rule implementation.) The advantage with pre
omputationwas �rst observed by Bernstein in the
ontext of hash127 [6℄.The above des
ription of the pre
omputation approa
h assumed that if thepolynomial is Y1K
�1h +� � �+Y
�1Kh+Y
 (i.e., the polynomial has

oeÆ
ients),then we had pre
omputed the powers ofKih for all i 2 f1; : : : ;
�1g. The pre
om-putation approa
h extends naturally to the
ase where we have pre
omputed thepowersKjh, j 2 f1; : : : ; ng, for some n �
�1. For simpli
ity, �rst assume that weknow the polynomial has a multiple of n
oeÆ
ients. For su
h a polynomial, onepro
esses the �rst n
oeÆ
ients (to get Y1Kn�1h +: : :+Yn�1Kh+Yn), then multi-plies the intermediate result by Knh (to get Y1K2n�1h + : : :+Yn�1Kn+1h +YnKnh).After that, one
an
ontinue pro
essing data with the same pre
omputed values(to get Y1K2n�1h + : : :+ Y2n�1Kh + Y2n), and so on. Note that ea
h
hunk of n
oeÆ
ients takes (n� 1) 96x127-bit multiplies, and all but the last
hunk takesan additional 127x127-bit multiply. Now assume that the number of
oeÆ
ientsm in the polynomial is not ne
essarily a multiple of n. If m is known in advan
e,one
ould �rst pro
ess m mod n
oeÆ
ients, multiply by Knh , then pro
ess inn-
oeÆ
ient
hunks as before. Alternately, as long as the end of the messageis known n
oeÆ
ients in advan
e, one
ould pro
ess n-
oeÆ
ients
hunks, andthen �nish o� the �nal m mod n
oeÆ
ients using Horner's rule. Or, if the num-ber of
oeÆ
ients in the polynomial is not known until the �nal
oeÆ
ient isrea
hed, one
ould pro
ess the message in n-
oeÆ
ient
hunks and then mul-tiply by a pre
omputed power of K�1h on
e the end of the message hash beenrea
hed.Naturally, pre
omputation requires extra memory, but that is usually
heapand plentiful in a software-based environment. Using 32-bit multiplies, the pre-
omputation approa
h requires 12 32-bit multiplies per 96-bit
oeÆ
ient, as wellas 17 adds, all of whi
h may
arry. In assembly, most of these
arry operations
an be implemented for free, or
lose to it by using a spe
ial variant of the add

instru
tion that adds in the operand as well as the value of the
arry from theprevious add operation. But when implemented in C, they will generally
ompileto
ode that requires a
onditional bran
h and an extra addition. An implemen-tation using Horner's rule requires an additional four multiplies and three addi-tions with
arry per
oeÆ
ient, adding about 33% overhead, sin
e the multipliesdominate the additions. A 64-bit platform only requires four multiplies and fouradds (whi
h may all
arry), no matter the implementation strategy taken, whi
hexplains why implementations of CWC-HASH for 64-bit ar
hite
tures are mu
hfaster.Exploiting the parallelism of some instru
tion sets. On most 32-bitplatforms, it turns out that the integer exe
ution unit is not the fastest wayto implement CWC-HASH. Many platforms have multimedia instru
tions that
an be used to speed up the implementation. As another alternative, Bernsteindemonstrated that, on most platforms, the
oating point unit
an be used toimplement this
lass of universal hash fun
tions far more eÆ
iently than
an bedone in the integer unit. This is parti
ularly true on the x86 platform where,in
ontrast to using the standard registers, two
oating point multiples
anbe started in
lose proximity without introdu
ing a pipeline stall. That is, thex86
an e�e
tively perform two
oating-point operations in parallel. The disad-vantage of using
oating-point registers is that the operands for the individualmultiplies need to be small, so that the operations
an be done without lossof pre
ision. On the x86, Bernstein multiplies 24-bit values, allowing the sumsof produ
t terms to �t into double pre
ision values with 53 bits of pre
isionwithout loss of information. Bernstein details many ways to optimize this sortof
al
ulation in [6℄.As noted before, there are only two main di�eren
es between the stru
ture ofthe polynomials of Bernstein's hash127 and CWC-HASH. The �rst is that Bern-stein uses signed
oeÆ
ients, whereas CWC-HASH uses unsigned
oeÆ
ients; thisshould not have an impa
t on eÆ
ien
y. The other di�eren
e is that Bernsteinuses 32-bit
oeÆ
ients, whereas CWC-HASH uses 96-bit
oeÆ
ients. While bothsolutions average one multipli
ation per byte when using integer math, Bern-stein's solution requires only .75 additions per byte, whereas CWC-HASH requires1.42 additions per byte, nearly twi
e as many. Using 32-bit multiplies to builda 96x127 multiplier (assuming pre
omputation), CWC-HASH should thereforeperform no worse than at half the speed of hash127. When using 24-bit
oatingpoint
oeÆ
ients to build a multiply (without applying any non-obvious opti-mizations), hash127 requires 12 multiplies and 16 adds per 32-bit word. CWC
an get by with 8 multiples per word and 12.67 additions per word. This is be-
ause a 96-bit
oeÆ
ient �ts exa
tly into four 24-bit values, meaning we
an usea 6x4 multiply for every three words. With 32-bit
oeÆ
ients, we need to usetwo 24-bit values to represent ea
h
oeÆ
ient, resulting in a single 6x2 multiplythat needs to be performed for ea
h word.Gladman's C implementation of CWC-HASH uses
oating point arithmeti
,but uses Horner's rule instead of performing pre
omputation to a
hieve extraspeed. Nothing about the CWC hash indi
ates that it should run any worse than

half the speed of hash127, if implemented in a similar manner, in assembly, andusing the
oating point registers and pre
omputation. This upper-bound paintsan en
ouraging pi
ture for CWC performan
e, be
ause hash127 on a PentiumIII runs around 4
pb when implemented in assembly and using the
oatingpoint registers and pre
omputation. This indi
ates that a well-optimized softwareversion of CWC-HASH should run no slower than 8
y
les per byte on the samema
hine.Finally, it may be possible to further improve the performan
e of CWC-HASH.For example, literature from the gaming
ommunity [11℄ indi
ates that one
anuse both integer and
oating point registers in parallel. Although we have nottested this approa
h, it seems reasonable to
on
lude that one might be able tointerleave integer operations, and thereby obtain additional speedups.A
knowledgmentsWe thank Peter Gutmann, David M
Grew, Fabian Monrose, Avi Rubin, AdamStubble�eld, and David Wagner for their
omments. Additionally, we thankBrian Gladman for helping to validate our test ve
tors and for working withus to obtain timing information. T. Kohno was supported by a National DefenseS
ien
e and Engineering Fellowship.Referen
es1. M. Bellare, R. Canetti, and H. Kraw
zyk. Keying hash fun
tions for messageauthenti
ation. In N. Koblitz, editor, CRYPTO '96, volume 1109 of LNCS, pages1{15. Springer-Verlag, Aug. 1996.2. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A
on
rete se
urity treatment ofsymmetri
 en
ryption. In Pro
. of the 38th FOCS, pages 394{403. IEEE ComputerSo
iety Press, 1997.3. M. Bellare, R. Gu�erin, and P. Rogaway. XOR MACs: New methods for messageauthenti
ation using �nite pseudorandom fun
tions. In D. Coppersmith, editor,CRYPTO '95, volume 963 of LNCS, pages 15{28. Springer-Verlag, Aug. 1995.4. M. Bellare and C. Namprempre. Authenti
ated en
ryption: Relations among no-tions and analysis of the generi

omposition paradigm. In T. Okamoto, editor,ASIACRYPT 2000, volume 1976 of LNCS, pages 531{545. Springer-Verlag, De
.2000.5. M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. In W. Meierand B. Roy, editors, FSE 2004, LNCS. Springer-Verlag, 2004.6. D. Bernstein. Floating-point arithmeti
 and message authenti
ation, 2000. Avail-able at http://
r.yp.to/papers.html#hash127.7. J. Bla
k and P. Rogaway. A blo
k-
ipher mode of operation for parallelizablemessage authenti
ation. In L. Knudsen, editor, EUROCRYPT 2002, volume 2332of LNCS. Springer-Verlag, 2002.8. J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag, 2002.9. B. Gladman. AES and
ombined en
ryption/authenti
ation modes, 2003. Availableat http://fp.gladman.plus.
om/AES/index.htm.

10. V. Gligor and P. Dones
u. Fast en
ryption and authenti
ation: XCBC en
ryptionand XECB authenti
ation modes. In M. Matsui, editor, FSE 2001, LNCS. Spring-er-Verlag, 2001.11. C. He
ker. Perspe
tive texture mapping, part V: It's about time. Game Developer,Apr. 1996. Available at http://www.d6.
om/users/
he
ker/pdfs/gdmtex5.pdf.12. C. Jutla. En
ryption modes with almost free message integrity. In B. P�tzmann,editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 529{544. Springer-Ver-lag, May 2001.13. J. Katz and M. Yung. Unforgeable en
ryption and
hosen
iphertext se
ure modesof operation. In B. S
hneier, editor, FSE 2000, volume 1978 of LNCS, pages 284{299. Springer-Verlag, Apr. 2000.14. T. Kohno, J. Viega, and D. Whiting. CWC: A high-performan
e
onventionalauthenti
ated en
ryption mode, 2003. Full version of this paper, available at http://eprint.ia
r.org/2003/106/.15. H. Kraw
zyk. The order of en
ryption and authenti
ation for prote
ting
ommu-ni
ations (or: How se
ure is SSL?). In J. Kilian, editor, CRYPTO 2001, volume2139 of LNCS, pages 310{331. Springer-Verlag, Aug. 2001.16. H. Lipmaa. AES/Rijndael: speed, 2003. Available at http://www.t
s.hut.fi/~helger/aes/rijndael.html.17. M. Luby and C. Ra
ko�. How to
onstru
t pseudorandom permutations frompseudorandom fun
tions. SIAM J. Computation, 17(2), Apr. 1988.18. D. M
Grew. Integer
ounter mode, O
t. 2002. Available at http://www.ietf.org/internet-drafts/draft-irtf-
frg-i
m-01.txt.19. D. M
Grew. The trun
ated multi-modular hash fun
tion (TMMH), ver-sion two, O
t. 2002. Available at http://www.ietf.org/internet-drafts/draft-irtf-
frg-tmmh-00.txt.20. D. M
Grew. The universal se
urity transform, O
t. 2002. Available at http://www.ietf.org/internet-drafts/draft-irtf-
frg-ust-01.txt.21. D. M
Grew and J. Viega. Galois/
ounter mode. Submission to NIST. Availableat http://
sr
.nist.gov/CryptoToolkit/modes/proposedmodes/, 2004.22. W. Nevelsteen and B. Preneel. In J. Stern, editor, EUROCRYPT '99, volume 1592of LNCS, pages 24{41. Springer-Verlag, 1999.23. P. Rogaway. Authenti
ated en
ryption with asso
iated data. In Pro
. of the 9thCCS, Nov. 2002.24. P. Rogaway, M. Bellare, J. Bla
k, and T. Krovetz. OCB: A blo
k-
ipher mode ofoperation for eÆ
ient authenti
ated en
ryption. In Pro
. of the 8th CCS, pages196{205. ACM Press, 2001.25. P. Rogaway and D. Wagner. A
ritique of CCM, Apr. 2003. Available at http://eprint.ia
r.org/2003/070/.26. V. Shoup. On fast and provably se
ure message authenti
ation based on universalhashing. In N. Koblitz, editor, CRYPTO '96, volume 1109 of LNCS, pages 313{328.Springer-Verlag, Aug. 1996.27. M. Wegman and L. Carter. New hash fun
tions and their use in authenti
ationand set equality. Journal of Computer and System S
ien
es, 22:265{279, 1981.28. D. Whiting, N. Ferguson, and R. Housley. Counter with CBC-MAC (CCM).Submission to NIST. Available at http://
sr
.nist.gov/CryptoToolkit/modes/proposedmodes/, 2002.

