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Abstract. In a related-key attack, the adversary is allowed to trans-
form the secret key and request encryptions of plaintexts under the
transformed key. This paper studies the security of PRF- and PRP-
constructions against related-key attacks.
For adversaries who can only transform a part of the key, we propose
a construction and prove its security, assuming a conventionally secure
block cipher is given. By the terms of concrete security, this is an im-
provement over a recent result by Bellare and Kohno [2]. Further, based
on some technical observations, we present two novel constructions for
related-key secure PRFs, and we prove their security under number-
theoretical infeasibility assumptions.

Keywords: related-key attacks, provable security, pseudorandom functions, block
ciphers, concrete security

1 Introduction

In a related-key scenario, the adversary can partially control the key. It remains
secret to the adversary (i.e., she can’t read it), but she can choose key transfor-
mations, modify the key accordingly, and request encryptions under the modified
keys. The well-known DES complementation property can be viewed as a vul-
nerability against a related-key DES-distinguisher.

One motivation to study related-key attacks is to evaluate the security of secret-
key cryptosystems, namely the security of block ciphers and their “key sched-
ules”, see Knudsen [11] and Biham [3]. Kelsey, Schneier and Wagner [9, 10]
presented related-key attacks against several block ciphers, including three-key
triple-DES. Today, related-key attacks are a well established tool to evaluate
the security of block ciphers, e.g. in the context of the AES [4, 5, 7]. Another
motivation is the existence of cryptographic schemes, whose security depends on
the related-key security of some underlying primitive. Two examples are tweak-
able block ciphers by Liskov, Rivest and Wagner [13] and RMAC by Jaulmes,
Joux and Valette [8]. Knudsen and Kohno [12] pointed out that the triple-DES
based variant of RMAC (which had been proposed for standardisation [6]) can
be attacked by exploiting the related-key insecurity of triple-DES.



Recently, Bellare and Kohno [1, 2] investigated related-key attacks from a theo-
retical point of view. They presented an approach to formally handle the notion
of related-key attacks. As it turned out, the security of a scheme against related-
key attacks greatly depends on the adversary’s capabilities, namely on the set
of key transformations available to her.

1.1 Focus of this Paper and Overview

In the current paper, we follow the approach from [1, 2], presenting some im-
proved possibility results, i.e., constructions for block ciphers (PRPs) and pseudo-
random function generators (PRFs), which are provably secure against related-
key (RK) adversaries. We first concentrate on “partially-transforming” adver-
saries, where a part of the secret key is unaffected and remains constant. Then
we deal with stronger “T+-transforming” adversaries, where the adversary can
add a known (or rather chosen) difference to the secret key. See Section 1.2 for
the exact definitions. Finally, we provide a short summary. Our main results are:

– For some applications of RK-secure PRFs or PRPs, it would suffice to use
a cipher being secure against partially-transforming RK adversaries [2]. Sec-
tion 2 introduces a new construction for secure PRPs provably secure against
partially-transforming adversaries. A similar construction and a proof of se-
curity can be found in [2]1. The concrete complexity (i.e., the upper bound
on the adversary’s advantage) shown in [2] turns out to be rather weak,
though. The construction in Section 2 allows to prove a better bound.

– In Section 3, we explore equivalent constructions for related-key secure PRFs,
and we consider the composition of conventionally secure and related-key
secure PRFs. Our observations may be useful as a tool for finding PRFs
provably secure against more general related-key adversaries, instead of only
partially-transforming ones.

– Section 4 describes two new PRF-constructions. Based on certain number-
theoretical assumptions, we prove the security of these constructions against
T+-transforming adversaries. This is a step towards solving a challenge posed
in [1, 2]. To the best of the author’s knowledge, these constructions are the
only PRFs so far with a standard-model proof of security against group-
induced transformations. Note though, that the assumptions we make are
new and not well-studied.

– Sections 5 and 6 conclude the paper with a remark on using a hash function
as a tool to ensure related-key security, and with a summary.

1.2 Notation and Definitions

We write PRF for a Pseudo-Random Function generator and PRP for a Pseudo-
Random Permutation generator (= block cipher). Let K, D and R be finite

1 . . . , but it was not included in the Eurocrypt version [1] of that paper.
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sets. We write Perm(D) for the set of permutations over D. I.e., p : D → D is
in Perm(D) if and only if p−1 : D → D exists with p−1(p(d)) = d for all d ∈ D.
We view a function F : K × D → R as a family of functions F (k, ·) = Fk(·)
indexed by k ∈ K. If additionally D = R and Fk ∈ Perm(D) for all k ∈ K, then
F is a family of permutations, also called a block cipher. We write F−1

k for the
inverse of Fk, i.e., for the decryption function. Perm(K,D) denotes the set of all
block ciphers E : K × D → D. Below, E : K × D → D denotes a block cipher
encryption function and E−1 denotes its inverse.

Recall the advantage of an adversary in a (conventional) chosen plaintext attack
(cf. e.g. [14]): Given E and an adversary A(〈CP-oracle〉) with access to a chosen
plaintext oracle, the PRP-advantage of A when attacking E is the unsigned
difference for A to distinguish the real case from a random case:

Advprp
E (A) =

∣
∣
∣
∣

Pr[k ∈R K : A(Ek(·)) = 1]

− Pr[g ∈R Perm(D) : A(g(·)) = 1]

∣
∣
∣
∣
.

Let k ∈R K be a secret key. A related-key oracle Erk(·,k)(·) is an oracle with two
inputs, a key transformation t : K → K, and an element d ∈ D. Given a query
(t, d), the related-key oracle responds Et(k)(d) in the real case, which is to be
distinguished from a random case.

Definition 1 (Security of a PRP under RK attacks).
Let the block cipher E and the set of transformations T be given. The adversary
A(〈RK − oracle〉) with access to a related-key oracle is a T -transforming adver-
sary,2 if she is allowed to choose queries (t, d) ∈ T × D as oracle queries. The
PRP-RK-advantage of a T -transforming adversary A when attacking E is

Advprp−rk
T,E =

∣
∣
∣
∣

Pr[k ∈R K : A(Erk(·,k)(·)) = 1]

− Pr[k ∈R K,G ∈R Perm(K,D) : A(Grk(·,k)(·)) = 1]

∣
∣
∣
∣
.

Here, the real case is the experiment “randomly choose k ∈ K and, on a query
(t, d), respond the value Et(k)(d)”. The random case is: “Randomly choose k ∈ K
and G ∈ Perm(K,D), i.e., a family of |K| independent random permutations.
Respond Gt(k)(d) to oracle queries (t, d).” The attack game for A means to
distinguish the real from the random case.

Similarly, we define the security of a PRF under RK attacks.

We concentrate on the following types of key transformations:

2 [1, 2] call this a “T -restricted adversary”. This could be misleading, since RK ad-
versaries appear to be enhanced and not restricted, in comparison to conventional
adversaries.
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Group-induced transformations: Let (K, �) be a group. We define
T � := {f : K → K | ∃δ ∈ K : f(k) = k � δ}.

In Section 4, we focus on T+, where “+” denotes addition mod |K|.
Partial transformations: Set K = K1 × K2 for non-empty sets K1 and K2.

T is a set of partial transformations, if T can be rewritten as
T = {t | ∃t′ ∈ T ′ : t(k1, k2) = (k1, t

′(k2))},
where T ′ is a set of functions K2 → K2.

Collision free sets of transformations: T is collision-free, if, for all k, k′ ∈
K, there exists at most one t ∈ T with t(k) = k′. This is relevant in the con-
text of protocol design, such the previously mentioned RMAC and tweakable
block ciphers. Sets of group-induced transformations are collision free. Sets
of partial transformations can be collision-free.

2 Secure PRPs and Partial Transformations

Set K∗ := {0, 1}m+n and consider a set T of partial transformations:

T ⊆ {t ∈ {K∗ → K∗} | ∃τ : {0, 1}n → {0, 1}n : t(x, y) = (x, τ(y))}. (1)

Let E : {0, 1}m × {0, 1}n → {0, 1}n be a block cipher and consider

E0 : {0, 1}m+n × {0, 1}n → {0, 1}n, E0
(X,Y )(M) = EX(M).

The adversary has no control over the key X in use. So if E is conventionally
secure, shouldn’t E0 be secure against T -transforming adversaries? Consider
the following adversary: Choose transformations σ, τ : {0, 1}n → {0, 1}n with
σ(Y ) 6= τ(Y ) being likely for random Y . Ask for the encryptions of a random
plaintext M under (X,σ(Y )) and (X, τ(Y )). In the real case (encryption using
E0), you get the same answer both times. In the random case, if σ(Y ) 6= τ(Y )
then M is encrypted under two independent random permutations – and the two
answers are probably different. By comparing the two answers, the adversary can
win her attack game.

So we need a different construction. Assume E (as above) being conventionally
secure and consider

E′ : {0, 1}m+n × {0, 1}n → {0, 1}n, E′
(X,Y )(M) = EX(Y ⊕ EX(M)).

Theorem 1 (Security of E′ [2]). Let K∗, T , E, and E′ be as above. Let
A′ be a T -transforming adversary. We limit the oracle-queries (ti, xi,j) made
by A′ as follows: r is the number of different transformations ti and q is the
highest number of different queries (ti, xi,j) for any transformation ti. (Formally
r and q are defined as r =

∣
∣{ti ∈ T | ∃ query (ti, ·)}

∣
∣ and q = maxti

∣
∣{xi,j ∈

{0, 1}n | ∃ query (ti, xi,j)}
∣
∣. 3)

3 Hence, the actual number of oracle queries A makes is between (r + q − 1) and rq.
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For any such RK-adversary A′ attacking E′, we can construct a chosen plaintext
adversary A attacking E with

Advprp
E (A) ≥ Advprp−rk

T,E′ (A′) −
16r2q2 + rq′(q′ − 1)

2n+1
,

where q′ = q ∗ maxk,k′∈{0,1}m+n |{ transformations t ∈ T with t(k) = k′ }|, and
A needs the same running time as A′.

Theorem 1 describes the concrete security of E ′, depending on the security of E.
As usual with concrete security analysis, Theorem 1 should provide a practically
relevant security assurance for security architects. Intuitively: The difference be-
tween Advprp

E (A) and Advprp−rk
T,E′ (A′) is low (or rather negligible). Unfortunately,

this only holds for large n. E.g., with E=AES and thus n = 128, the difference
may exceed 16r2q2/2n+1, even if T is collision-free. Assume the AES to be prac-
tically secure against chosen plaintext attacks. This means that the advantage
of any “reasonable-time” adversary A against E is Advprp

E (A) = ε ≈ 0. Allow
for r = q = 231. Since n = 128, a “reasonable-time” RK-adversary A′ can exist,
who distinguishes E′ from random with Advprp−rk

T,E′ (A′) > 1/2 + ε. The number

of oracle queries made by A′ can be as low as p + q − 1 < 232. Therefore, E′

can be insecure in practice, in spite of Theorem 1 and the (assumed) security of
E=AES. We don’t claim A′ exists – but we would like to prove its nonexistence.

Thus, it is practically interesting to find an improved bound, either for construc-
tion E′, or an alternative construction. Below, we consider

E′′ : {0, 1}2n × {0, 1}n → {0, 1}n, E′′
(X,Y )(M) = EEX(Y )(M),

where E : {0, 1}n × {0, 1}n → {0, 1}n is conventionally secure, as above. Thus,
we have K∗ = {0, 1}2n, and T is a set of partial transformations, as before (Eq.
1). For simplicity, we additionally require T to be collision-free.

Theorem 2 (Security of E′′). Let K∗ = {0, 1}2n, T a collision-free set of
partial transformations. A′′ is a T -transforming adversary for E ′′. Count the
transformations in A′′-queries by r =

∣
∣{ti ∈ T | ∃ query (ti, ·)}

∣
∣. Then a chosen

plaintext adversary A for E exists, making no more oracle queries than A, with
the same running time as A′′ and the advantage

Advprp
E (A) ≥

Advprp−rk
T,E′′ (A′′)

r + 1
.

Proof. Assume the nonexistence of an adversary A for E with the advantage
a ≥ Advprp−rk

T,E′′ (A′′)/(r + 1).

Observe that the oracle queries (ti, di,j) from A′′ can be viewed as accessing r
different oracles, each implementing a permutation. So in the real case, A′′ is
querying the r-tuple

P = (EEX(t1(Y )), . . . , EEX(tr(Y )))
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of permutations over {0, 1}n. An oracle query (ti, di,j) is equivalent to asking
the i-th permutation pi = EEX(ti(Y )) for pi(di,j).

4

Due to the collision-freeness of T , we have ti(Y ) 6= tj(Y ) for ti 6= tj , thus
EX(ti(Y )) 6= EX(tj(Y )). Hence, the r permutations in P are defined by r dif-
ferent keys EX(t1(Y )), . . . , EX(tr(Y )). But in the random case, the tuple of
permutations can actually be viewed as r independent random permutations E∗

i

over {0, 1}n. We write this tuple as

Pr = (E∗
1 , . . . , E∗

r−1, E
∗
r ).

The attack game of A′′ is equivalent to distinguishing the r-tuple P of permu-
tations from Pr. In doing so, the advantage of A′′ is Advprp−rk

T,E′′ (A′′).

There are other ways to respond to oracle queries (ti, di,j), different from both
the real and the random case. Let E∗ be a random permutation, and replace
EEX(ti(Y ))(M) by EE∗(ti(Y ))(M). This way, we get r independent random values
Zi = E∗(ti(Y )), and a new r-tuple of permutations

P0 = (EZ1
, . . . , EZr

).

Distinguishing P0 from P is equivalent to distinguishing EX from E∗, which is
exactly the attack game for A. From the assumption on A, we conclude that A′′

can only distinguish P from P0 with an advantage < a.

What is the advantage of A′′ in distinguishing P0 from Pr? Consider the r-tuples

P1 = (EZ1
, . . . , EZr−2

, EZr−1
, E∗

r ),
P2 = (EZ1

, . . . , EZr−2
, E∗

r−1, E∗
r ),

...
Pr = (E∗

1 , . . . , E∗
r−2, E∗

r−1, E∗
r ).

If, for any i ∈ {1, . . . , r}, A′′ could distinguish Pi−1 from Pi with an advantage a,
then A′′ could as well distinguish EZi

from E∗
i in the same running time. Since

Zi is just a random value, and E∗
i a random function, independent from the other

values and functions here, distinguishing EZi
from E∗

i is (again) equivalent to
winning the attack game for A. Thus, the advantage of A′′ to distinguish Pi−1

from Pi must be less than a.

Finally, we put things together: A′′ can only distinguish P from P0 with an
advantage less than a, A′′ can only distinguish P0 from P1 with an advantage
less than a, . . . , A′′ can only distinguish Pr−1 from Pr with an advantage less
than a. Consequently, the advantage for A in distinguishing P from Pr must be
strictly smaller than (r + 1)a. See the picture below.

4 This does not restrict the order in which A makes her oracle queries. After making
an oracle query (ti, ·), and having seen the answer, A′′ may of course freely choose
some queries (ti′ , ·) for arbitrary values i′ ∈ {1, . . . , i}.
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By the definition of a, we know that A′′ can distinguish P from Pr with the
advantage (r + 1)a. This contradicts the assumption on A. ut

Theorem 2 implies that if E is practically secure and r is not overwhelmingly
large, then E′′ is secure, too. As above, consider E=AES (with a key size of
128 bit) and assume the AES to be practically secure against chosen plaintext
attacks. This means that the advantage of any “reasonable-time” adversary A
against E is Advprp

E (A) = ε ≈ 0. Restrict A′′ to less than 232 oracle queries, thus
r < 232. In this case, attacking E′′ can be at most 232-times better (i.e. lead
to an advantage 232-times as large), compared to an attack on the AES in the
same running time.

We argue that the bound in Theorem 2 is sharp, and hence our result is close
to optimal: The attack scenario on E ′′ allows the adversary to see encryptions
under r different keys. Consider an exhaustive key-search attack against E ′′,
trying to find any of the 2r keys and compare it with an exhaustive key-search
attack against E. The chances of successfully attacking E ′′ are 2r-times better
than the chances of successfully attacking E.

3 Equivalence and Composition of PRF Constructions

In this section, we make some technical observations. While rather simple, these
observations may nevertheless be useful both for understanding the phenomenon
of related-key security, and for designing ciphers provably secure against related-
key attacks.

Let F be a function F : K ×D → R (which equivalently is a family of functions
D → R). For F , we consider a set of transformations T ⊆ {K → K}. Let
D = D′ × D′′ (where even |D′| = 1 or |D′′| = 1 is allowed). We can rewrite F
as a function F ′ with

F ′ : (

K′

︷ ︸︸ ︷

K × D′) × D′′ → R.

Equivalently, F ′ is a family of functions D′′ → R. We consider the set T ′ of
transformations:

T ′ = {t′ : K ′ → K ′ | ∃t ∈ T, d′ ∈ D′ : t′(k, x) = (t(k), d′)}.

Theorem 3 (Equivalence of F and F ′).
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1. Let A be a T -transforming RK adversary for F . A T ′-transforming RK ad-
versary A′ for F ′ exists, with the same running time, the same number of
oracle queries and the same advantage.

2. Let A′ be a T ′-transforming RK adversary for F ′. A T -transforming RK
adversary A for F exists, with the same running time, the same number of
oracle queries and the same advantage.

Proof. Consider claim 1 and the T -transforming RK adversary A for F . A’s
queries are of the form (t, (d′, d′′)) ∈ T × (D′×D′′). Our T ′-transforming adver-
sary A′ for F ′ is identical to T , except that each query (t, (d′, d′′)) is replaced by
the equivalent query ((t, d′), d′′) ∈ K ′ × D′′. Thus, T ′ makes exactly the same
number of oracle queries, needs the same running time and wins the attack game
with the same advantage as T . Proving claim 2 is similar. ut

In the context of Theorem 3, we even allowed |D′′| = 1. In this case, F ′ :
K ′ × D′′ → R can, of course, be rewritten as F ′ : K ′ → R′. This apparently
trivial case is worth investigating. By means of some function F ′′ : R′×D → R,
we define a composed function

F : K ′ × D → R, Fk(d) = F ′′
F ′(k)(d).

Theorem 4 (Security of composed function F ). Let A be a T -transforming
adversary for F . We can construct a T -transforming adversary A′ for F ′, and
a chosen ciphertext adversary A′′ for F ′′, such that neither the running time of
A′, nor the running time of A′′ exceed the running time of A, and the following
condition holds:

Advprf−rk
T,F (A) ≤ Advprf−rk

T,F ′ (A′) + Advprf
F ′′(A

′′). (2)

Neither A′ nor A′′ makes more oracle queries than A.

Proof. Let k ∈ K ′ be a random key, unknown to the adversary A. A distinguishes
between the events Real and Random

– Real: All responses to oracle queries (δ, d) ∈ K ′ × D are generated as

F ′′
F ′(k+δ)(d).

– Random: Let F ∗ : K ′×D → R be a random function. All responses to oracle
queries (δ, d) ∈ K ′ × D are generated as F ∗(δ, d).

We introduce a third event, K ′-Random:

– K ′-Random: Let F ∗∗ : K ′ → R′ be a random function. All responses to
oracle queries (δ, d) ∈ K ′ × D are generated as

F ′′
F∗∗(δ)(d).
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Distinguishing Real from K ′-Random means to distinguish K ′ from a random
function. This is exactly the task A′ is supposed to do. Thus, we can turn A into
A′ without increasing either running time or number of queries.

Similarly, we observe that if we can distinguish K ′-Random from Random, we
can mount a chosen plaintext attack against F ′′ and thus turn A into A′′, again
with the same running time and number of queries.

What about Condition 2? See the picture below.

Real Random

A’ A’’

A

K’−Random

With A′ and A′′ as described above, condition 2 holds. ut

In short, Theorem 4 implies that if F ′ is practically secure against T -transforming
adversaries and F ′′ is practically secure against chosen ciphertext adversaries,
then F must be practically secure against T -transforming adversaries. This pro-
vides us with a tool for finding RK-secure PRFs, or proving their existence under
reasonable assumptions:

Let T , K ′, D and R be given. We are searching for

F : K ′ × D → R,

practically secure w.r.t. T -transforming adversaries. It is sufficient to choose
an appropriate R′ and a conventionally secure PRF F ′′ : R′ × D → R, and
then search for a function

F ′ : K ′ → R′,

practically secure w.r.t. T -transforming adversaries.

The idea is that finding F ′ may be less difficult than finding F directly. In the
next section, we concentrate on finding appropriate functions F ′.

4 PRFs and Group-Induced Key Transformations

In this section, we describe two PRFs and prove their security against T +-
transforming adversaries under certain assumptions from algorithmic number-
theory. This is a step towards solving a “challenging problem” posed by Bellare
and Kohno [1, 2]. Note though, that our assumptions are non-standard and have
not much been studied much, so far. It remains an open problem, to describe
some PRFs or PRPs and reduce their security against T +-transforming adver-
saries to some cryptographic standard assumption, such as Decisional Diffie-
Hellman, Quadratic Residousity, or others.
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4.1 The RSA-based PRF F
′

RSA

Let N be the product of two large random primes. We define the function

F ′
RSA :

�
N →

�
N , F ′

RSA(k) := kN mod N.

To evaluate the security of F ′
RSA, we define an appropriate problem:

Definition 2. Let N be the product of two large random primes. Let R be a
random value in

�
N . Define

f(x) = (x + R)N mod N. (3)

Interactive Dependent RSA Problem (IDRP): Distinguish f from a ran-
dom function

�
N →

�
N . The distinguisher is given N and oracle access to the

function (but neither R nor the factors of N).

Interactive Dependent RSA Assumption: The IDRP is infeasible.

Some remarks on the IDRP:

1. We can make the above scheme and the IDRP more “RSA-like” by choos-
ing any large RSA-exponent e (that means, e and ϕ(N) have no common
divisors) and rewriting Equation 3 by f(x) = (x + R)e mod N . If e is small,
however, this variant of the IDRP is feasible [15].

2. The IDRP can be seen as a generalisation of Pointcheval’s Dependent-RSA
problem [15]: For independent random x, y ∈

�
N , distinguish the random

pair (x, y) from the pair (xe mod N, (x + 1)e mod N).
Given an efficient algorithm to solve the Dependent-RSA problem, we could
efficiently solve the IDRP.

Theorem 5 (Security of F ′
RSA). Under the Interactive Dependent RSA As-

sumption, no efficient T+-transforming adversary with significant advantage for
F ′

RSA can exist.

Proof. The proof is quite straightforward. Assume F ′
RSA to be insecure. Then an

efficient T+-transforming adversary A for F ′
RSA wins the following attack game

with significant advantage:

– choose δ ∈
�

N , define a key transformation tδ(k) = k + δ mod N ,
– ask for F ′

RSA(tδ(k)) = F ′
RSA(k + δ) = (k + δ)N mod N (with k unknown),

– and, after repeating the above two steps a couple of times, distinguish the
results from the outputs of a random function.

This attack game is equivalent to solving the IDRP. ut
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4.2 The Diffie-Hellman based PRF F
′

DH

In [1, 2], Bellare and Kohno consider two PRF-constructions which are provably
secure against chosen plaintext adversaries under the Decisional Diffie-Hellman
assumption. Both turn out to be insecure against additive-transforming adver-
saries. How can we define a Diffie-Hellman based PRF, with plausible hope for
security against additive-transforming adversaries?

Let P , P2, P3 and P4 be primes, P = 2P2 + 1, P2 = 2P3 + 1. P3 = 2P4 + 1. Let
g be an element of order P2 in

� ∗
P . Let g2 be an element of order P3 in

� ∗
P2

.
Let g3 be an element of order P4 in

� ∗
P3

. As before, the key transformations are
additions (below, we will formally define the set T + in this context). We consider
the following functions:

– The function F ′
1(k) = gk mod P is weak, since gk+δ = gk ∗ gδ mod P. Thus,

given gk = F ′
1(k + 0) and δ, we can compare a response from the RK oracle

with F ′
1(k +0) = gk ∗ gδ mod P . This is used in [1, 2] for straightforward RK

attacks certain Diffie-Hellman based PRFs.

– Similarly, the function F ′
2(k) = g(gk

2 ) mod P is also weak, since g(gk+δ

2
) =

g(gk

2 )(gδ

2) =
(
g(gk

2 )
)(gδ

2)
mod P.

– The function

F ′
DH(k) = g

(
g
(gk

3 )
2

)

mod P

looks like a promising candidate.

For F ′
DH(k), the set of keys is

�
P4

. Consequently, our set T+ of key transforma-
tions is defined by the addition modulo P4.

Definition 3. Let P , P4, g, g2, and g3 be defined as above. Let r be a random
value in

� ∗
P4

. Define

f(x) = g

(
g
(gx+r

3 )

2

)

mod P.

Define R = {z ∈
�

P | ∃k ∈
�

P4
: z = F ′

DH(k)}.

Diffie-Hellman Random Function Assumption (DHRFA): It is infeasi-
ble, to distinguish f from a random function

�
P4

→ R.

Theorem 6 (Security of F ′
DH). Under the DHRFA, there exists no efficient

T+-transforming adversary for F ′
DH with significant advantage.

The proof of Theorem 6 is similar to the proof of Theorem 5 and omitted here.
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5 Using a Hash Function

As Ross Anderson pointed out at the FSE workshop in Delhi, a common engi-
neering technique to ensure related-key security is to combine a block cipher E
with a hash function H, defining a new block cipher

EH
X (M) = EH(X)(M).

This is a reasonable construction. In fact, for many types of related-key adver-
saries – including those considered in the current paper – it is straightforward
to prove the security of EH in the random oracle model, assuming E to be
conventionally secure.

This approach has the following drawbacks, however:

– For implementing EH , we need to implement two cryptographic primitives
E and H.

– The security of EH depends on the security of E and on the security of H. If,
e.g., E is conventionally secure but H fails to meet its security requirements,
EH can be insecure.

– A random oracle proof of security for EH does reveal the security require-
ments for H.
On the other hand, it may be possible to prove the security of EH against
certain kinds of related-key adversaries in the standard model, making some
nonstandard assumptions on H.

6 Summary

This paper presented new constructions for related-key secure PRFs.

For one construction, a tight security bound against partially-transforming ad-
versaries has been shown, improving the concrete complexity of previous con-
structions. The proof assumes some block cipher to be secure in the conventional
sense (i.e., without related keys).

Two other constructions are shown secure against more general adversaries, how-
ever under certain non-standard number-theoretical assumptions.
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