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Abstract. A simple one-way function along with its proposed applica-
tion in symmetric cryptography is described. The function is computable
with three elementary operations on permutations per byte. Inverting
the function, using the most efficient method known to the author, is
estimated to require an average computational effort of about 2260 oper-
ations. The proposed stream cipher based on the function was designed
to be efficient in software implementations and, in particular, to elimi-
nate the known weaknesses of the alleged RC4 keystream generator while
retaining most of its speed and simplicity.
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1 Introduction

A simple transformation of permutations appearing to be hard to invert is de-
scribed together with its proposed practical application in a software-efficient
symmetric encryption algorithm.

The transformation, here termed “VMPC” function as an abbreviation of
“Variably Modified Permutation Composition”, is a combination of elementary
operations on permutations and integers. The simplest variant of the function
can be coded with three basic “MOV” instructions from the Intel 80x86 pro-
cessor instruction set per byte. When applied on 256-element permutations (a
comfortable size in practical cryptographic applications), the function requires
an estimated average of 2260 computational operations to be inverted using the
most efficient method known to the author.

The very low computational cost required to obtain practical one-way prop-
erty makes the function a plausible candidate for cryptographic applications.
The simplicity of the function could also raise a question whether it might be
possible to prove a lower bound on the complexity of inverting it. This currently
is an open problem and a possible subject of future research.

A proposition of an encryption algorithm constructed as a stream cipher
based on the VMPC function is described in sections 8-14. The cipher was de-
signed to be both efficient in software implementations and to resist the known
attacks against this kind of algorithms (like the alleged RC4 keystream genera-
tor) – in particular against attacks distinguishing the keystream from a truly ran-
dom source and attacks against the cipher’s Key Scheduling Algorithm (KSA).



2 Definition of the VMPC function

Notation:

n, P,Q : P, Q : n-element permutations. For simplicity of further references
P and Q are assumed to be one-to-one mappings A → A; A = {0, 1, . . . , n− 1}
k : Level of the function; k < n
+ : addition modulo n

Definition:

A k-level VMPC function, referred to as VMPCk, is such transformation of
P into Q, where

Q[x] = P [Pk[Pk−1[. . . [P1[P [x]]] . . .]]],

x ∈ {0, 1, . . . , n− 1},
Pi is an n-element permutation such that Pi[x] = fi(P [x]), where fi is any func-
tion such that Pi[x] 6= P [x] 6= Pj [x] for i ∈ {1, 2, ..., k}, j ∈ {1, 2, ..., k}, i 6= j.
For simplicity of further references fi is assumed to be fi(x) = x + i

Example: Q = VMPC1(P ) : Q[x] = P [P [P [x]] + 1]

3 Difficulty of inverting the VMPC function

n-element permutation P has to be recovered from the n-element permutation
Q, where Q = VMPCk(P ).

By definition each element of Q is formed by k + 2, usually different, ele-
ments of P . One element of Q can be formed by many possible configurations
of elements of P (e.g. for Q = VMPC1(P ) : Q[X] = Y can be formed by
P [X] = a, P [a] = b, P [b + 1] = Y for any reasonable combination of values of a
and b).

All possible configurations are equally likely to be correct. If any of them is
chosen, it needs to be verified with all of those elements of Q which use any of
the elements of P included in the picked configuration.

Each element of P is usually used to form k + 2 different elements of Q thus
(k+2)×(k+1) new elements of Q usually need to be inverted (all k+2 elements
of P used to form each of these elements of Q need to be revealed) to verify the
elements of P from the picked configuration.

Because the cycle structure of P is corrupted by the addition operation(s) it
is usually impossible to find two different elements of Q, which share at least
k + 1 elements of P .



Instead only such element of Q can usually be found, name it Q[x], which shares
only one of the k + 2 elements of P with another element of Q. This forces k
elements of P used to form Q[x] to be guessed to invert Q[x].

However at each new guessed element of P there usually occur k + 1 new ele-
ments of Q which use this element of P and which need to be inverted to verify
the guess.

The algorithm falls into a loop, where at every step usually k new elements
of P need to be guessed to enable continuation of verification of the previously
guessed elements. In consequence the k+2 elements of P picked at the beginning
of the process indirectly depend on all n elements of Q.

The described scenario is the case usually. In some circumstances the verification
process can be simplified by benefiting from coincidences (where for example it
is possible to find two elements of Q, which share more than one element of
P (e.g. for Q = VMPC1(P ) : Q[2] = 3 : P [2] = 4, P [4] = 8, P [9] = 3 and
Q[1] = 8 : P [1] = 9, P [9] = 3, P [4] = 8)).

A proposed algorithm for inverting the VMPC function (Section 6) was opti-
mized to benefit from the possible coincidences. The average number of elements
of P which need to be guessed for n = 256 was reduced to about 34 for 1-level
VMPC function, to about 57 for 2-level VMPC, to about 77 for 3-level VMPC
and to about 92 for 4-level VMPC function.

Searching through half of the possible states of these elements of P requires
on average about 2260 steps for 1-level VMPC function, about 2420 for 2-level
VMPC, about 2550 for 3-level VMPC and about 2660 steps for 4-level VMPC
function.

4 A 3-instruction implementation of the VMPC function

Implementation of 1-level VMPC function, where Q[x] = P [P [P [x]] + 1], for
256-element permutations P and Q in assembly language is described.

Assume that :

– Pm is a 257-byte array indexed by numbers from 0 to 256. The P permuta-
tion is stored in the Pm array at indexes from 0 to 255 (Pm[0...255] = P )
and Pm[256] = Pm[0]

– the EAX 32-bit register specifies which element of the Q permutation to com-
pute (“AL” always denotes 8 least significant bits of EAX, here EAX=AL)



Execute:

Table 1. Assembler implementation of 1-level VMPC function

Instruction Description

MOV AL, [Pm] + EAX Store (EAX=AL)-th element of Pm in AL
MOV AL, [Pm] + EAX Store (EAX=AL)-th element of Pm in AL
MOV AL, [Pm] + EAX+1 Store ((EAX=AL)+1)-th element of Pm in AL

The 3 MOV instructions in Table 1 store the EAX-th element of permutation
Q, where Q=VMPC1(P ), in the AL (and EAX) register.

5 Example values of the VMPC function

Values of 1,2,3 and 4-level VMPC function of an example 10-element permuta-
tion P are given in Table 2:

Table 2. Example values of the VMPC function

index 0 1 2 3 4 5 6 7 8 9

P 2 0 4 3 6 9 7 8 5 1

Q1=VMPC1(P ) 9 3 8 6 5 4 1 7 2 0

Q2=VMPC2(P ) 0 9 2 5 8 7 3 1 6 4

Q3=VMPC3(P ) 3 4 9 5 0 2 7 6 1 8

Q4=VMPC4(P ) 8 5 3 1 6 7 0 2 9 4

6 Proposed algorithm for inverting the VMPC function

The algorithm outputs an n-element permutation P satisfying Q = VMPCk(P ).

Notation:

P : n-element table the searched permutation will be stored in
X, Y : temporary variables
Argument, V alue, Base, Parameter of an element of P :
For an element P [x] = y : x is termed the Argument; x can be either the Base
or the Parameter. y is termed the V alue; y is the Parameter or the Base
respectively.



Example: For an element P [3] = 5: If Argument 3 is the Parameter, V alue 5
is the Base.

1.1) Reveal one element of P by assuming P [X] = Y , where
X and Y are any values from {0, 1, ..., n− 1}

1.2) Choose at random whether X is the Base and Y the Parameter
or Y the Base and X the Parameter of the element P [X] = Y .
Denote P [X] = Y as the Current element of P .

2) Reveal all possible elements of P by running the Deducing Process
(see Sect. 6.1)

3) If n elements of P are revealed with no contradiction:
Terminate the algorithm and output P

4) If fewer than n elements of P are revealed with no contradiction:
4.1) Reveal a new element of P by running the Selecting Process (see Sect. 6.2).

Denote the revealed element as the Current element of P .
4.2) Save the Parameter of the Current element of P
4.3) Go to step 2

5) If a contradiction occurred in step 2:
5.1) Remove all elements of P revealed in step 2 when

the Current element of P had been revealed
5.2) Increment modulo n the Parameter of the Current element of P
5.3) If the Parameter of the Current element of P returned

to the value saved in step 4.2:
5.3.1) Remove the Current element of P
5.3.2) Denote the element, which had been the Current element of P

directly before the element removed in step 5.3.1 became
the Current one, as the Current element of P

5.3.3) Go to step 5.1
6) Go to step 2

6.1 The Deducing Process

The Deducing Process reveals all possible elements of P given Q and given the
already revealed elements of P .

Notation as in Section 6, with:

C, A : temporary variables
Statement y : A sequence of k + 2 elements of P used to compute Q[y]
Word x of Statement y : The x-th element of the sequence of k + 2 elements of
P used to compute Q[y]



Example: For Q = VMPC2(P ) : Q[x] = P [P [P [P [x]] + 1] + 2]:

Assume that P [2] = 3, P [3] = 5, P [6] = 2, P [4] = 7, which forms Q[2] = 7.
The elements P [2] = 3, P [3] = 5, P [6] = 2, P [4] = 7 form Statement 2.
The element P [2] = 3 is Word 1 of Statement 2; P [3] = 5 is Word 2 of
Statement 2, etc.

1.1) Set C to 0
1.2) Set A to 0
2) If the element P [A] is revealed:

2.1) If the element P [A] and k other revealed elements of P fit
a general pattern of k + 1 Words of any Statement:
Deduce the remaining Word of that Statement (see Example 6.1.1)

2.2) If the deduced Word is not a revealed element of P :
2.2.1) Reveal the deduced Word as an element of P
2.2.2) Set C to 1

2.3) If the deduced Word contradicts any already revealed element of P
(see Example 6.1.2):
Output a contradiction and terminate the Deducing Process

3.1) Increment A
3.2) If A is lower than n: Go to step 2
3.3) If C is equal 1: Go to step 1.1

Example 6.1.1. For Q = VMPC2(P ) : Q[x] = P [P [P [P [x]] + 1] + 2]:

Assume that Q[0] = 9 and that the following elements of P are revealed:
P [0] = 1, P [1] = 3, P [8] = 9.
Word 3 of Statement 0 can be deduced as P ′[4] = 6 (P ′[3 + 1] = 8− 2)

Example 6.1.2. For Q = VMPC2(P ) : Q[x] = P [P [P [P [x]] + 1] + 2]:

Assume that Q[7] = 2 and that the following elements of P are revealed:
P [1] = 8, P [9] = 3, P [5] = 2 and P [6] = 1.
Word 1 of Statement 7, deduced as P ′[7] = 1,
contradicts the already revealed element P [6] = 1

6.2 The Selecting Process (for k not higher than 4)

The Selecting Process selects such new element of P to be revealed which is
expected to maximize the number of elements of P possible to deduce in further
steps of the inverting algorithm. The Selecting Process outputs a selected Base
and a randomly chosen Parameter of a new element of P .



Notation as in Section 6.1, with:

B, R : temporary variables
Ta, Tv : temporary tables
Weight : table of numbers: Weight[0; 1; 2; 3; 4] = (0; 2; 5; 9; 14).
Example: Weight[3] = 9

1.1) Set Ta and Tv to 0
1.2) Set B to 0
1.3) Set R to 1
2) Count the number of revealed elements of P which fit a general pattern

of Words of a Statement in which an unrevealed element of P with
Argument B would be Word R. Increment Ta[B] by Weight of this number
(see Example 6.2.1)

3) Count the number of revealed elements of P which fit a general pattern
of Words of a Statement in which an unrevealed element of P with
V alue B would be Word R. Increment Tv[B] by Weight of this number

4.1) Increment R
4.2) If R is lower than k + 3: Go to step 2
4.3) Increment B
4.4) If B is lower than n: Go to step 1.3
5.1) Pick any index of Ta or Tv for which the number stored in tables

Ta and Tv is maximal
5.2) If the index picked in step 5.1 is an index of Ta:

5.2.1) Store this index in variable X

5.2.2) Generate a random number Y ∈ {0, 1, . . . , n− 1},
such that an element of P with V alue Y is not revealed

5.2.3) Output P ′[X] = Y , where X is the Base and Y is the Parameter
5.3) If the index picked in step 5.1 is an index of Tv:

5.3.1) Store this index in variable Y

5.3.2) Generate a random number X ∈ {0, 1, . . . , n− 1},
such that an element of P with Argument X is not revealed

5.3.3) Output P ′[X] = Y , where Y is the Base and X is the Parameter

Example 6.2.1. For Q = VMPC2(P ) : Q[x] = P [P [P [P [x]] + 1] + 2]:

Assume that B = 8, R = 2, Q[6] = 9 and that P [6] = 8 and P [2] = 9 are
revealed.
There are two revealed elements of P which fit a general pattern of Words of a
Statement in which P [8] would be Word 2: P [6] = 8 and P [2] = 9:

Word 1 Word 2 Word 3 Word 4
P [6] = 8 P [8] = y P [y + 1] = 0 P [2] = 9

(Ta[8] = Ta[8] + Weight[2] = Ta[8] + 5)



7 Example complexities of inverting the VMPC function

Complexity of inverting the VMPC function (Table 3) was approximated as an
average number of times the Deducing Process (step 2) needs to be run by the
inverting algorithm described in Section 6 until permutation P satisfies Q =
VMPCk(P ).

Average numbers of elements of P which need to be assumed are given in Table
3 in brackets.

Complexities of inverting the VMPC function of the following levels were ap-
proximated:

Q = VMPC1(P ) : Q[x] = P [P [P [x]] + 1]
Q = VMPC2(P ) : Q[x] = P [P [P [P [x]] + 1] + 2]
Q = VMPC3(P ) : Q[x] = P [P [P [P [P [x]] + 1] + 2] + 3]
Q = VMPC4(P ) : Q[x] = P [P [P [P [P [P [x]] + 1] + 2] + 3] + 4]

Table 3. Example complexities of inverting the VMPC function

Function VMPC1 VMPC2 VMPC3 VMPC4

n

6 24,1 (2,3) 25,5 (3,1) 26,1 (3,3) 26,9 (3,8)

8 25,5 (2,7) 27,5 (3,4) 28,8 (4,0) 29,8 (4,4)

10 27,1 (3,0) 29,7 (4,0) 211,5 (4,7) 213,0 (5,2)

16 211,5 (3,8) 216,6 (5,4) 220,4 (6,6) 223,3 (7,5)

32 224 (6,0) 237 (9,1) 247 (11,5) 254 (13,4)

64 253 (10,2) 284 (16,2) 2108 (21,0) 2127 (24,9)

128 2117 (18) 2190 (30) 2245 (40) 2292 (47)

256 2260 (34) 2420 (57) 2550 (77) 2660 (92)

Example: For 1-level VMPC function applied on 256-element permutations: on
average about 34 elements of P need to be assumed. Searching through half of
the possible states of these elements requires about 2260 calls to the Deducing
Process.



8 Design objectives for the VMPC Stream Cipher and
its KSA

The Cipher should require no initial outputs to be discarded directly after run-
ning the KSA.

Probability that the Cipher’s output will enter a short cycle should be negli-
gibly low.

Output generated by the Cipher should be free from statistical biases.

Effort required to recover the internal state from the Cipher’s output should
be higher than a brute-force search of all possible 512-bit keys.

The KSA should resist related-key attacks and attacks against the scheme of
using the Initialization Vector (IV).

The KSA should provide random-looking diffusion of changes of one byte of
the key of size up to 512 bits onto the generated permutation and onto output
generated by the Cipher.

9 Description of the VMPC Stream Cipher

The algorithm generates a stream of 8-bit values.

Variables:

P : 256-byte table storing a permutation initialized by the VMPC KSA
s : 8-bit variable initialized by the VMPC KSA
n : 8-bit variable
L : desired length of the keystream in bytes

Table 4. VMPC Stream Cipher

1. n = 0

2. Repeat steps 3-6 L times:
3. s = P [(s + P [n]) modulo 256 ]
4. Output P [(P [P [s]] + 1) modulo 256 ]
5. Temp = P [n]

P [n] = P [s]
P [s] = Temp

6. n = (n + 1) modulo 256



10 Description of the VMPC Key Scheduling Algorithm

The VMPC Key Scheduling Algorithm (KSA) transforms a cryptographic key
and (optionally) an Initialization Vector into a 256-element permutation P and
initializes variable s.

Variables as in Section 9, with:

c : fixed length of the cryptographic key in bytes, 16 ≤ c ≤ 64
K : c-element table storing the cryptographic key
z : fixed length of the Initialization Vector in bytes, 16 ≤ z ≤ 64
V : z-element table storing the Initialization Vector
m : 16-bit variable

Table 5. VMPC Key Scheduling Algorithm

1. s = 0
2. for n from 0 to 255: P [n] = n

3. for m from 0 to 767: execute steps 4-6:
4. n = m modulo 256
5. s = P [(s + P [n] + K[m modulo c]) modulo 256 ]
6. Temp = P [n]

P [n] = P [s]
P [s] = Temp

7. If Initialization Vector is used: execute step 8:

8. for m from 0 to 767: execute steps 9-11:
9. n = m modulo 256

10. s = P [(s + P [n] + V [m modulo z]) modulo 256 ]
11. Temp = P [n]

P [n] = P [s]
P [s] = Temp



11 VMPC Stream Cipher test vectors

Table 6 gives 16 test output-bytes generated by the VMPC Stream Cipher for a
given 16-byte key (K) and a given 16-byte Initialization Vector (V ):

Table 6. Test-output of the VMPC Stream Cipher

K; c = 16 [hex] 96, 61, 41, 0A, B7, 97, D8, A9, EB, 76, 7C, 21, 17, 2D, F6, C7

V ; z = 16 [hex] 4B, 5C, 2F, 00, 3E, 67, F3, 95, 57, A8, D2, 6F, 3D, A2, B1, 55

Output-byte position [dec] 0 1 2 3 252 253 254 255

Output-byte value [hex] A8 24 79 F5 B8 FC 66 A4

Output-byte position [dec] 1020 1021 1022 1023 102396 102397 102398 102399

Output-byte value [hex] E0 56 40 A5 81 CA 49 9A

12 Performance of the VMPC Stream Cipher

Performance of a moderately optimized 32-bit assembler implementation of the
VMPC Stream Cipher and its KSA, measured on an Intel Pentium 4, 2.66 GHz
processor, is given in tables 7 and 8.

Table 7. Perfomance of the VMPC Stream Cipher

MBytes/s MBits/s cycles/byte

210 1680 12.7

Table 8. Perfomance of the VMPC KSA for 128-, 256- and 512-bit keys

keys/s milliseconds/key

310 000 0.0032



13 Analysis of the VMPC Stream Cipher

13.1 Theoretical probability of equal consecutive outputs

Probability of two consecutive outputs being equal appears to be an important
parameter for a cipher based, as VMPC is, on an internal permutation (P ). A
sole permutation is obviously distinguishable from a truly random stream as its
values never repeat. The construction of a cipher based on an internal permuta-
tion should corrupt the regular structure of the permutation in such way as to
force the outputs to repeat with a random-looking probability.

This section explains theoretically why the probability of consecutive outputs
generated by the VMPC Stream Cipher being equal is the same as we would
expect from a random oracle, i.e. that Prob(out[x] = out[x + 1]) = 2−N , where
N is the word-size of the Cipher in bits; the standard value of N is 8.

To compute the probability, two scenarios need to be considered: (1) - there
is no swap in step 5 (Table 4) and (2) - there is a swap in step 5.

In (1): Prob(no-swap)=Prob(s[x] = n[x]) = 2−N

As a result of (1) permutation P will have the same arrangement of elements in
steps x and x + 1. This implies a distinction into two sub-scenarios - (1a) where
s[x] = s[x + 1] and (1b) where s[x] 6= s[x + 1], which directly affects whether
out[x] = out[x + 1] or out[x] 6= out[x + 1].

In (1a): Prob(s[x] = s[x + 1]) = 2−N

and (1aR): Prob(out[x] = out[x + 1]) = 1

In (1b): Prob(s[x] 6= s[x + 1]) = 1− 2−N

and (1bR): Prob(out[x] = out[x + 1]) = 0

In (2): Prob(swap)=Prob(s[x] 6= n[x]) = 1− 2−N

and (2R): Prob(out[x] = out[x + 1]) = 2−N ,
regardless of the relation between s[x] and s[x+1] because P (and VMPC1(P ))
in steps x and x + 1 are different permutations. This probability was also con-
firmed experimentally.

By combining the probabilities in scenarios (1)(1a)(1aR), (1)(1b)(1bR) and
(2)(2R) we get:

Prob(out[x] = out[x + 1]) =

= 2−N × 2−N × 1 + 2−N × (1− 2−N )× 0 + (1− 2−N )× 2−N = 2−N

which ends the proof.



13.2 Recovering the Cipher’s internal state

A method analogous to the Forward Tracking Algorithm proposed by Mister
and Tavares in [3] was applied to break the VMPC Stream Cipher. Following
this approach an average of over 2900 computational operations is estimated to
be required to recover the Cipher’s internal state from its output.

13.3 Digraph and trigraph probabilities

Frequencies of occurrence of each of the possible 216 pairs of consecutive output
values (out[x], out[x+1]) were measured in a stream of 240.1 output bytes. None
of the measured frequencies showed a statistically significant deviation from its
expected value of 1 / 65536.

Frequencies of occurrence of each of the possible 224 triplets of two consecu-
tive output values and the n variable (out[x], out[x + 1], n) were measured in a
stream of 241.85 output bytes. None of the measured frequencies showed a sta-
tistically significant deviation from its expected value of 1 / 16777216.

Frequencies of occurrence of each of the possible 224 trigraphs of consecutive
output values (out[x], out[x + 1], out[x + 2]) were measured in a stream of 241.6

output bytes. None of the measured frequencies showed a statistically significant
deviation from its expected value of 1 / 16777216.

13.4 Single-output probabilities

Frequencies of occurrence of each of the possible 28 output values (out[x]) were
measured in a stream of 241.85 output bytes. None of the measured frequencies
showed a statistically significant deviation from its expected value of 1 / 256.

Frequencies of occurrence of each of the possible 216 configurations of an output
value and the n variable (out[x], n) were measured in a stream of 239.4 out-
put bytes. None of the measured frequencies showed a statistically significant
deviation from its expected value of 1 / 65536.

13.5 First-outputs probabilities

Frequencies of occurrence of each of the possible 28 values on each of the first 256
byte-positions of the keystream generated directly after running the KSA were
measured in a sample of 240.3 bytes of the Cipher’s output for 232.3 different keys.
None of the measured frequencies showed a statistically significant deviation from
its expected value of 1 / 256. [In [6] Mantin and Shamir show that the second
output of RC4 takes on value 0 with probability 1 / 128 rather than 1 / 256.]



13.6 Short cycles

Probability of entering a cycle not longer than X Following Knuth’s
[1], probability of entering a cycle not longer than X for an n-element random
permutation is X/n.

To compare cycle lengths in the output of the VMPC Stream Cipher to cycle
lengths in a random permutation, the Cipher was scaled down to use M -element
permutations for M ∈ {4, 5, . . . , 10}.

The total number of M !×M2 possible internal states of the Cipher is determined
by all possible configurations of permutation P and variables s and n.

The observed cycle lengths, listed in the Appendix, do not show an appreciable
difference from a model of cycles in a random (M !×M2)-element permutation.
Probability of entering a cycle not longer than X by the VMPC Stream Cipher
is conjectured from this to be approximately X/(256! × 2562) ∼= X/21700. An
example estimate is that probability that the Cipher’s output will enter a cycle
not longer than 2850 is about 1 / 2850.

Finney states In [10] Finney defined a theoretical class of internal states of
RC4 which produce a short cycle of length 65280 by swapping P [n] = 1 in each
step (the KSA of RC4 prevents the cipher’s internal state from entering this
class). The class is diagnosed by n + 1 = s and P [n + 1] = 1.

Such phenomenon is possible because step s = s+P [n] of the state-transformation
function of RC4 retains the linear structure of P [n] in variable s (P [n], after the
increment of n, is always equal 1).
The VMPC Stream Cipher uses an additional table-lookup (s = P [s + P [n]]),
which, assuming that P was properly initialized, corrupts a possible linear struc-
ture of P [n] (or s) and prevents situations analogous to Finney states from
occurring.

13.7 Binary derivatives of bit output sequences

This family of tests was inspired by Golic’s [8], where the author describes a
statistical bias in the second binary derivative of the least significant bit output
sequence of RC4. The author finds that the bias allows the attacker to distin-
guish RC4 output from a truly random source using about 64N/225 outputs,
where N is the cipher’s word-size in bits (e.g. for N = 8 the required length is
about 240) 1.

1 Authors of [5] consider this estimate somewhat optimistic and suggest that the
required keystream length for N = 8 is about 244.7



Output generated by the VMPC Stream Cipher showed no bias in this family
of tests. The following objectives were taken in testing VMPC here:

N = 7 word-size was chosen to make the tested algorithm as close to the real
8-bit one as possible while significantly decreasing the output-sequence length
required to reveal the bias for RC4 (for 7-bit RC4 - about 234.2 outputs according
to the original estimates in [8]). First, second and third binary derivatives of all
7 bits output sequences were tested (21 frequencies of (outk[x] + outk[x+A]=1)
were measured for k ∈ {0, 1, . . . , 6}, A ∈ {1, 2, 3}, where outk[x] denotes k-th bit
of x-th output word).

In a sequence of 244.8 (about 1013.5) VMPC outputs tested according to this
approach none of the measured frequencies showed a statistically significant de-
viation from its expected value of 0.5.

13.8 Equal neighboring outputs probabilities

Frequencies of occurrence of situations where there occurs a given number (0,
1, 2, 3, 4, 5 and over 5) of direct (generated consecutively) and indirect (sepa-
rated by one output byte) equal neighboring outputs in the consecutive 256-byte
sub-streams of the Cipher’s output and the average total number of direct and
indirect equal neighboring outputs – showed no statistically significant deviation
from their expected values in a sample of 243.1 bytes of the Cipher’s output.

13.9 Statistical tests on the Cipher’s output

Keystreams generated by the VMPC Stream Cipher were tested by two popular
batteries of statistical tests – the DIEHARD battery [11] and the NIST statis-
tical tests suite [12]. No bias was found by any of the 15 tests included in the
DIEHARD battery or by any of the 16 tests from the NIST suite.

14 Analysis of the VMPC Key Scheduling Algorithm

The VMPC Key Scheduling Algorithm was tested for diffusion of changes of the
cryptographic key onto the generated permutation and onto the Cipher’s out-
put. A change of one byte of the cryptographic key of size 128, 256 and 512 bits
appears to cause a random-looking change in the generated permutation and in
the Cipher’s output.

The KSA was designed to provide the diffusion without the use of the Initial-
ization Vector and the tests were run without the IV. The Initialization Vector
would obviously mix the generated permutation further, which would improve
the diffusion effect.



14.1 Given numbers of equal permutation elements probabilities

Frequencies of occurrence of situations where in two permutations, generated
from keys differing in one byte, there occurs a given number (0, 1, 2, 3, 4,
5) of equal elements in the corresponding positions and the average number of
equal elements in the corresponding positions – showed no statistically significant
deviation from their expected values in samples of 233.2 pairs of 128-, 256- and
512-bit keys.

14.2 Given numbers of equal Cipher’s outputs probabilities

Frequencies of occurrence of situations where in two 256-byte streams generated
by the VMPC Stream Cipher directly after running the KSA for keys differing
in one byte, there occurs a given number (0, 1, 2, 3, 4, 5) of equal values in
the corresponding byte-positions and the average number of equal values in the
corresponding byte-positions – showed no statistically significant deviation from
their expected values in samples of 233.2 pairs of 128-, 256- and 512-bit keys.

14.3 Equal corresponding permutation elements probabilities

Frequencies of occurrence of situations where the elements in the corresponding
positions of permutations generated from keys differing in one byte are equal
(for each of the 256 positions) – showed no statistically significant deviation
from their expected value in samples of 233.2 pairs of 128-, 256- and 512-bit
keys.

15 Conclusions

A simple one-way function together with a description of the most efficient
method of inverting it found have been presented. An open problem is whether
the simplicity of the function helps make a hypothetical attempt to prove a lower
bound on the complexity of inverting it worth undertaking.

A proposed stream cipher which employs the function was given together
with some analysis of the cipher’s cryptographic strength, statistical properties
of the cipher’s output and statistical properties of the cipher’s Key Scheduling
Algorithm.

The analyses performed so far did not reveal any weakness in the design and
indicated that the cipher has a number of security advantages over the alleged
RC4 keystream generator while retaining most of its speed and simplicity.

Appendix: Cycle lengths observed in the output of the
VMPC Stream Cipher

The observed cycle lengths in the output of the scaled down variants of the
Cipher for M ∈ {4, 5, . . . , 10} are listed in Table 9. M denotes the number of
elements in the P permutation. All addition operations performed by the Cipher
here are additions modulo M .



Table 9. VMPC Stream Cipher cycle lengths

M Cycle lengths

4 200, 88, 40, 36, 12, 8

5 1 860, 640, 295, 110, 45, 25, 20, 5

6 15 510, 5 580, 2 508, 936, 516, 510, 252, 90, 12, 6

7 215 089, 23 821, 3 990, 2 485, 1 015, 392, 70, 56, 28, 14

8 2 401 728, 79 504, 53 512, 42 120, 2 136, 1 032, 288, 96, 24,
16 (2 different cycles of length 16 possible), 8

9 20 355 471, 2 908 098, 2 728 890, 1 359 855, 949 725, 609 174, 299 592,
125 091, 27 306, 13 068, 6 219, 5 067, 2 853, 2 538, 180, 90,
18 (3 different cycles of length 18 possible), 9

10 113 748 840, 99 425 590, 75 813 290, 37 178 940, 20 169 740, 9 955 030,
3 239 140, 2 349 150, 572 500, 363 830, 45 520, 8 730, 7 520, 700, 390,
370, 40 (17 different cycles of length 40 possible), 20,
10 (2 different cycles of length 10 possible)
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