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Abstrat. In this paper, we analyze the seurity of the stream ipher Helix,
reently proposed at FSE'03. Helix is a high-speed asynhronous stream ipher,
with a built-in MAC funtionality. We analyze the di�erential properties of its
keystream generator and desribe two new attaks.
The �rst attak requires 2

88 basi operations and proesses only 2
12 words of

hosen plaintext in order to reover the seret key for any length up to 256 bits.
However, it assumes the attaker an fore nones to be used twie. Our seond
attak relies on weaker assumptions. It is a distinguishing attak that detets
internal state ollisions after 2

114 words of hosen plaintext.

1 Introdution

A stream ipher is a seret key ryptosystem that transforms a short random seret

key K into a long pseudo-random sequene also alled keystream, whih is XORed

to the plaintext to produe the iphertext. Although it is possible to obtain a simi-

lar primitive with a blok ipher in a �pseudo-random number generator� mode (like

OFB or CFB [6℄), it is generally not onsidered to o�er optimal speed performanes.

To respond e�ieny onsiderations, fast stream iphers reveal useful in real-life ap-

pliations, espeially those using live data transmission. Many reent stream iphers

proposals have been made in that diretion inluding SEAL [16℄, SNOW [2℄, Sream [10℄

or Sober-t32 [11℄.

However, the seurity of stream iphers is still an issue (see [1, 3, 7℄), espeially when

ompared to the level of on�dene in blok iphers seurity. For instane, all stream

iphers andidates for the NESSIE projet [14℄ revealed various degrees of weakness

allowing at least distinguishing attaks faster than exhaustive searh, while no seond

round blok ipher was suessfully attaked. As a onsequene, NESSIE did not selet

any stream ipher in its �nal portfolio. Thus the atual hallenge is to design fast stream

iphers and provide a better on�dene in their seurity level. Several new iphers aim

at reahing these expetations.

Helix was reently proposed at FSE'03 [5℄. It is an asynhronous stream ipher

based on a fast keystream generator. Its advantage over other new iphers is to o�er

both on�dentiality and integrity. Indeed, after enryption, Helix an produe a tag

that guarantees the integrity of the message for very little additional omputation and

without requiring a seond pass. This funtionality is very useful in many appliations

where enryption and authentiation must funtion together on streaming data. Re-

ently, several blok ipher modes of operation also providing integrity �almost for free�

(see [9, 12, 15℄) have been proposed, but some of them appear to be patented, whih is

supposedly not the ase of Helix.



Moreover, the analysis of Helix is an interesting topi sine new mehanisms that

will be inluded in the new 802.11i standard for wireless networks are apparently fairly

lose to Helix [4, 18℄. The new standard will have to repair some ryptologi �aws from

the previous 802.11b standard, whih resulted from weaknesses in RC4 key sheduling

and from an improper use of initialization vetors [8℄.

In this paper, we analyze the seurity of Helix against hosen plaintext and hosen

none attaks. We present two attaks whih are both faster than exhaustive searh.

Our �rst attak reovers the seret key (for any length up to 256 bits) with time

omplexity of 288 basi operations and using 212 words of hosen plaintext. It assumes

an attaker ould fore enryption of several messages using the same pair (key,none).

Our seond attak is based on internal state ollisions and distinguishes Helix from

random with data omplexity of 2114 bloks. This attak uses hosen nones and hosen

plaintext but never re-uses a pair (key,none). Our paper is organized as follows : �rst,

we brie�y desribe Helix. Then, in Setion 3, we show two weaknesses of the ipher

whih are further developed in Setion 4. In Setion 5, we desribe two attaks based

on the previous observations.

2 Desription of Helix

Helix o�ers two main features : enryption of a plain message and prodution of a

Message Authentiation Code (MAC) to ensure integrity. Several modes of operation

for Helix are proposed by its authors - enryption only, MAC only, PRNG, . . . Here,

we desribe brie�y the mehanisms of Helix that are important in our attaks. More

details about this design an be obtained in [5℄.

We mostly handle 32 bits values that we denote as words. Besides, ⊕ denotes bitwise

addition on these values and + addition modulo 232. ROTLn(x) is the irular rotation
of the word x by n bits to the left. We also use the notations LSB and MSB to refer

to the least and most signi�ant bit of a word.

2.1 General struture of the ipher

Helix is an asynhronous stream ipher, based on an iterated blok funtion applied to

an internal state of 160 bits. The input onsists in a seret key K of varying length,

up to 256 bits, and a none N of 128 bits. The internal state before enryption of the

i-th word of plaintext is represented as 5 words

(Z
(i)
0 , . . . , Z

(i)
4 )

whih are initialized for i = 0 using K and N . Details of this initialization mehanism

are irrelevant here. The general struture of the enryption algorithm is desribed in

Figure 1. It basially uses a blok funtion F to update the internal state in funtion

of the plaintext P , the key K and the none N .

More preisely, during the i-th round, the internal state is updated with F , using

the i-th word of plaintext Pi and two words derived from K, N and i, denoted as Xi,0

and Xi,1. We refer to them as the �round key words�. Hene,

(Z
(i+1)
0 , . . . , Z

(i+1)
4 ) = F (Z

(i)
0 , . . . , Z

(i)
4 , Pi,Xi,0,Xi,1)
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Fig. 1. The general struture of Helix

The i-th keystream word, also denoted as Si, is equal to Z
(i)
0 . It is added to Pi to

produe the i-th iphertext word Ci. Thus,

Si = Z
(i)
0

Ci = Si ⊕ Pi

This proess is repeated until all words of the plaintext have been enrypted. Finally,

a last step (desribed in [5℄) an generate a tag of 128 bits that onstitutes the MAC.

More details on this general framework are given in the following setions.

2.2 The blok funtion

The round funtion F of Helix mixes three types of basi operations on words: bitwise

addition represented as ⊕, addition modulo 232 represented as ⊞, and yli shifts rep-

resented as <<<. F relies on two onseutive appliations of a single �helix� funtion,

whih onstitutes half of the round funtion. This �helix� funtion is denoted as G and

is represented in Figure 2.

G uses two auxiliary inputs (A,B). In the �rst half of the round funtion, (A,B) =
(0,Xi,0) and in the seond half, (A,B) = (Pi,Xi,1). Thus, the blok funtion an be

desribed by the following relations

(Y
(i)
0 , . . . , Y

(i)
4 ) = G(Z

(i)
0 , . . . , Z

(i)
4 , 0,Xi,0)

(Z
(i+1)
0 , . . . , Z

(i+1)
4 ) = G(Y

(i)
0 , . . . , Y

(i)
4 , Pi,Xi,1)

where (Y
(i)
0 , . . . , Y

(i)
4 ) is the internal state in the middle of the omputation.

2.3 Role of K and N

To protet the ipher against related-key attaks, a �rst step is applied that omputes

a working key K from the atual seret key U . Independently of its length l(U), K
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Fig. 2. The half-round �helix� funtion G

is always 256 bits long and is used in all subsequent operations instead of U . The

derivation of K is based on 8 rounds of a Feistel network. The result is also represented

as 8 words: K0, . . . ,K7.

Besides, Helix uses a none N to obtain di�erent keystream sequenes with the

same seret key. N is always 128 bits long and is generally represented as 4 words:

N0, . . . , N3. An expansion phase turns it into a 256 bits value by reating 4 additional

words N4, . . . , N7 de�ned as

Nk+4 := (k mod 4) − Nk

for k = 0, . . . , 3. During the i-th round of enryption, the round key words Xi,0 and

Xi,1 are omputed as

Xi,0 := Ki mod 8

Xi,1 := K(i+4) mod 8 + Ni mod 8 + X ′

i + i + 8

X ′

i :=







⌊

(i + 8)/231
⌋

if i mod 4 = 3
4 l(U) if i mod 4 = 1
0 otherwise

These values depend only on i, K and Ni. Besides, it is straightforward to reonstrut

the seret key from these values for 4 onseutive rounds when the none is known.

3 Some weaknesses of Helix

In this setion, we desribe two weaknesses of the blok funtion. They respetively

onern the role of the plaintext words and the none words at eah round.



3.1 In�uene of Eah Plaintext Word

Sine Helix requires a plaintext-dependent keystream, it is reasonable to analyze the

round funtion assuming an attaker an ontrol the plaintext introdued. In general,

an attaker should not be able to reover any information about the seret key or

the internal state of the ipher, by observing the keystream orresponding to hosen

plaintext.

Using the notations of Setion 2, Pi denotes the i-th word of plaintext. It is intro-

dued inside Helix internal state at the i-th advane. Then, at the beginning of the

(i + 1)-th advane, a new keystream word Si+1 is produed. From the desription of

Helix, one sees that Pi is introdued only in the seond half of the blok funtion (as

the input A of Figure 2). It is XORed to Y
(i)
3 , then added to Y

(i)
0 . The result is then

modi�ed only one before the end of the round - exepting yli shifts - through a

XOR with some intermediate value (referred to as a). However, it is easy to verify that

a is atually independent of Pi. Thus Si+1 an be omputed as

Si+1 = Z
(i+1)
0 = ROTL20(a ⊕ ROTL9(Y

(i)
0 + (Y

(i)
3 ⊕ Pi)))

If the plaintext word P ′

i = Pi⊕∆ was introdued instead of Pi, then the next keystream

word would be S′

i+1, suh that

δ = Si+1 ⊕ S′

i+1

= ROTL29((x + (y ⊕ Pi)) ⊕ (x + (y ⊕ Pi ⊕ ∆)))

where x and y respetively denote the intermediate words Y
(i)
0 and Y

(i)
3 . Suppose that

Pi = 0, then for any di�erene ∆ on the plaintext,

∆′ = ROTL3(δ) = (x + y) ⊕ (x + (y ⊕ ∆)) (1)

is the orresponding di�erene on the keystream. In Setion 4, we will disuss how an

attaker an take advantage of this di�erential property.

3.2 In�uene of eah None Word

Similar di�erential properties hold regarding eah none word. Indeed, the none N
serves two purposes in Helix :

� Fill the initial 160 bits of internal state.

� Derive two words Xi,0 and Xi,1 introdued at round i.

Conerning this seond task, it appears from Setion 2.3 that the two �key words�

introdued at eah round do not depend on the full none. Atually, the round key

words at round i depend only on Ni mod 4. Therefore, if we onsider two distint

nones N and N ′ where only one word hanges, the round funtion will essentially

apply the same mapping on the internal state, for 3 rounds out of 4. This property has

onsequenes on the propagation of state ollisions.

Moreover, if only one none word Ni is modi�ed to Ni + ∆ then, for rounds j suh

that j mod 4 6= i, both round key words remain unhanged. For other positions, Xj,1

is hanged to (Xj,1 ±∆) while Xj,0 is unhanged. Sine Xj,1 is introdued at the very

end of the blok funtion, we have a di�erential property, like in Setion 3.1. When all



other inputs are unhanged, the di�erene on the keystream words resulting from this

di�erene ∆ on the none word Ni is

∆′ = a ⊕ (a ± ∆) (2)

for some unknown internal value a (see Figure 2).

4 Di�erential properties of addition modulo 2
32

We have seen that di�erential patterns on the plaintext or the none propagate to

simple di�erential patterns on the keystream. More preisely, the di�erential property

on the plaintext is related to a general problem onerning linear approximations of

addition modulo 232 that an be summarized by relation (1). In this setion, we will

desribe various ways to take advantage of this observation.

4.1 Related Problems

A well known problem (see [13℄) is, given two �xed words x and y, to �nd a pair (∆,∆′)

suh that

∆′ = (x + y) ⊕ (x + (y ⊕ ∆)) (3)

and that is observed with high probability. This problem has been studied from a

theoretial point of view in [17℄. However, in the present situation, we are looking

things the other way around sine x and y are unknown to us but we might be able to

hoose ∆ and observe ∆′. More preisely, we want to

1. �nd statistial properties that an be easily deteted in order to distinguish Helix

from a random soure.

2. reover some seret information about the internal state of Helix (the values of x
and y for instane).

4.2 A �Dummy� Distinguisher

Suppose an attaker enrypts two messages that begin similarly, but, at some point,

di�er on one word by

∆ = 0x80000000

Then, the di�erene on the next keystream word (alled ∆′) is suh that ∆′ = ∆, sine

there is no propagation from MSBs to LSBs during an addition. Using this relation,

the blok funtion of Helix an be distinguished from a random soure with two hosen

messages, but this requires to use twie the same key and the same none. This attak

senario is disussed in Setion 5. In the next setion, we go further by trying to atually

reover the two internal values x and y using relation (3).



4.3 Reovering x and y

In this setion, we are interested in reovering the two intermediate values x and y
involved in relation (3). Thus, we have to onsider the following problem

Problem 1. Let x and y be two given onstants of 32 bits. For any

∆,

∆′ = (x + y) ⊕ (x + (y ⊕ ∆)) (4)

is given. How many (x, y) are possible solutions ? Give an e�ient

algorithm to reover these solutions.

First, it is easy to see that the solution is not always unique. Indeed, if x = 0, then
∆′ does not depend on y. However, in average, the number of andidates is small. In

this setion, we propose an e�ient algorithm to reover the two unknown values x
and y with a limited number of observations. The following notations are used : wj

denotes the j-th bit of a word w. Besides, let cj denote the arry bit at position j in

the addition of x and y ⊕ ∆. For all j, 0 ≤ j ≤ 31,

(x + (y ⊕ ∆))j = xj ⊕ yj ⊕ ∆j ⊕ cj

and initially c0 = 0. We also suppose that x 6= 0.

Claim. Let t, 0 ≤ t ≤ 30, denote the position of the least signif-

iant bit '1' of x. Then, there are exatly 2t+3 valid pairs (x, y),
solutions of the previous problem. Reovering these solutions an

be done by testing at most 93 hosen values of ∆.

We use the following indution

� Assume all bits of x and y are known up to position (i − 1).
� If any xj = 1 with 0 ≤ j < i, then

• By hoosing an appropriate value of ∆k for j ≤ k < i, it is possible to obtain

any value of ci (0 or 1), sine everything is known up to position i.
• In both ases, pik both values of ∆i (0 and 1) and set all other bits of ∆ to 0.
The resulting value of ∆′

i+1 depends only on the arry bit ci+1.

• Reover xi and yi by omparing the di�erent distributions (see Table 1)

� Otherwise

• Neessarily, ci = 0
• Using Table 1, it is still possible to reover xi.

• No information on yi is obtained.

Therefore, by indution, all bits of x an be reovered from position 0 to 30 (it is

impossible to reover x31 beause no observation an be made about position 32 of

∆′). Similarly, all bits of y from position (t+1) to 30 an be reovered. The other t+3
bits of x and y need to be guessed. When x = 0, our analysis remains valid by taking

t = 30.
In fat, 3 queries are enough to distinguish the distributions in Table 1. Thus, at

most 3 × 31 = 93 queries are su�ient to reover a valid solution (x, y). Besides, it is
easy to verify that �ipping the bit yt will imply to �ip all bits xj and yj for t < j < 31



xi yi ci ∆i ∆′

i+1

1 1 0 0 δ

1 1 0 1 δ ⊕ 1

1 1 1 0 δ

1 1 1 1 δ

1 0 0 0 δ

1 0 0 1 δ ⊕ 1

1 0 1 0 δ ⊕ 1

1 0 1 1 δ ⊕ 1

xi yi ci ∆i ∆′

i+1

0 1 0 0 δ

0 1 0 1 δ

0 1 1 0 δ ⊕ 1

0 1 1 1 δ

0 0 0 0 δ

0 0 0 1 δ

0 0 1 0 δ

0 0 1 1 δ ⊕ 1

Table 1. Distribution of ∆′

i+1 depending on xi and yi

in order to obtain an other valid solution, sine all arry bits also get �ipped. Therefore

all solutions of the system an be expressed diretly from a single solution, without

any extra query.

We performed some experiments using various values of x and y and always iden-

ti�ed with suess the expeted number of 2t+3 solutions.

5 Attaks Against Helix

In this setion, two attaks against Helix are developed. The �rst one is a distinguishing

attak using hosen plaintext, whih is extended to a key reovery attak requiring 288

basi operations and about 212 blok enryptions. A seond attak takes advantage of

hoosing similar nones to detet internal state ollisions.

5.1 A Distinguishing Attak

In Setion 3.1, we have shown that the introdution of a hosen di�erene on the

plaintext from a �xed internal state results in preditable patterns on the keystream.

However, to turn these observations into an attak, it is neessary to onsider the

following senario

� The attaker requests enryption of some random message P = (P1, . . . , Pn) under
some pair (key,none) = (K,N). The resulting iphertext is C = (C1, . . . , Cn).

� He requests enryption with (K,N) of an other message where Pn−1 is replaed by

P ′

n−1 = Pn−1 ⊕ ∆. This yields the iphertext C ′ = (C ′

1, . . . , C
′

n).
� The attaker observes ∆′ = Cn ⊕ C ′

n.

In this ase, we have seen that a real Helix output an be distinguished from a random

output, by piking ∆ = 0x80000000 (then, neessarily, ∆′ = ∆).

5.2 A Simple Key Reovery Attak

Now, we wish to extend the observations of Setion 4.3. This tehnique allowed an

attaker to retrieve up to 64 bits of intermediate values by observing the keystream

orresponding to well hosen plaintexts. Atually, this information leakage is an impor-

tant weakness, sine it redues the entropy of the internal state. Using an appropriate



guessing tehnique, one may hope to turn it into a key reovery attak. Suh an attak

is generally alled a guess-then-determine attak, sine an attaker will �rst guess some

internal state bits and then determine the orret guess using available information.

First, let us onsider the round number i of Helix enryption. We suppose an at-

taker has aess to the keystream word Z
(i)
0 and to a few andidates for Y

(i)
0 and

Y
(i)
3 as desribed in Setion 4.3. These two intermediate words depend on the internal

state at input of round i : (Z
(i)
0 , . . . , Z

(i)
4 ) and on the �rst round key word Xi,0. This is

represented in Figure 3 where eah box is a 32 bits value and dashed boxes represent

known values. An attaker may hope to use these onditions to redue the number of

possible internal states to

2128 × 232 × 2−64 = 296

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

Internal state

Intermediate state

round key

word
G

Fig. 3. The framework of the simple attak

Atually, this number an be reahed by guessing Z
(i)
2 , Z

(i)
3 and Xi,0. Then the

attaker an retrieve Z
(i)
1 and Z

(i)
4 by looking preisely at the funtion G (see Figure 2).

Thus, the attaker an indeed �nd 296 andidates for the internal state at the beginning

of round i. To tell whih andidate is orret, some of the previous rounds (say τ =
5 rounds) need to be inverted. This an be done without inreasing the number of

andidates, provided Y
(i−j)
0 and Y

(i−j)
3 are known, for 0 ≤ j < τ . For this purpose,

the reovery tehnique of Setion 4.3 needs to be applied τ times here. As long as it

returns few solutions, an appropriate round inversion redues the number of andidates

- roughly by a fator 232. Thus, for τ = 5 we eventually obtain a unique andidate,

and enough �round key words� to diretly retrieve the omplete seret key.

To summarize, this simple attak requires to guess 96 bits of internal state and to

apply τ times the tehnique desribed in Setion 4.3 to reover intermediate values.

However, this tehnique does not provide a unique solution, whih inreases the time

omplexity of the attak. Atually, only the round i is in the ritial path and with

probability 1
2 , the number of solutions here is only 8. In this �good� ase, the omplexity

of the attak is 296 × 8 = 299 basi instrutions. In �bad� ases, there are more than 8
solutions at position i, but the attaker may easily �nd another position i′ where there
are only 8 solutions.



The data omplexity orresponds to the enryption of τ × 93 pairs of messages of

length at most τ = 5 words. Thus, the number of plaintext bloks enrypted is

2 × 5 × 5 × 93 ≃ 212

5.3 An Improved Attak

A more subtle guessing tehnique an be applied using bitwise analysis of the blok

funtion. The �subtle� attak onsists in guessing only 2 words, Z
(i)
3 and (Z

(i)
1 + Z

(i)
4 ),

plus 17 LSBs of Z
(i)
2 . Then, like in the �simple� attak, the attaker an obtain the 17

LSBs of ROTL25(Z
(i)
4 ) and thus the 17 LSBs of ROTL25(Z

(i)
1 ). Looking at the blok

funtion of round i−1, the attaker knows two output words, and has partial knowledge

of the three other output words. Two relations an be written, involving one unknown

intermediate word a

Z
(i)
3 = ROTL21(Z

(i)
1 ) + a

Y
(i−1)
3 = ROTL28(Z

(i)
1 ) ⊕ ROTL21(Z

(i)
2 )

⊕ROTL26(Z
(i)
4 ) ⊕ ROTL19(a)

From the �rst relation, one sees that guessing the 4 LSBs of a will give the attaker

a andidate for the 21 LSBs of a (using partial knowledge of Z
(i)
1 ). Then, using the

seond relation, a ondition on bit number 13 of Y
(i−1)
3 is obtained. This ondition

eliminates half of the andidates. Then, eah additional guessed bit of Z
(i)
2 provides

one extra ondition, that is immediately used to disard half of the guesses. This "early

abort" tehnique results in a guessing omplexity of

232 × 232 × 217 × 24 = 285

The baktraking an be performed here exatly as before to omplete the attak.

The resulting time omplexity is redued to 8 × 285 = 288 guesses (eah requiring a

few boolean operations on 32 bit words). Furthermore, the existene of even better

guessing tehniques should be investigated.

5.4 Pratial Impat

Previously, we have proposed a di�erential attak on Helix, using hosen plaintext. It

requires to obtain twie the same internal state as input of the blok funtion. Thus, the

attaker needs to enrypt twie with the same key and the same none, and to introdue

a di�erene in the plaintext at some point. However in [5℄, it is spei�ed that "the sender

must ensure that eah (K,N) is used at most one to enrypt a message", otherwise

Helix "loses its seurity properties". Aording to the authors, this requirement is not

restritive sine it is underlying many similar situations in ryptography. For instane,

when using a synhronous stream ipher, if seret key and none are unhanged, the

same pseudo-random sequene is generated twie, whih breaks the on�dentiality.

Similar problems may also be enountered when using a blok ipher in OFB mode for

instane. In general, a distinguishing attak is always possible when nones are re-used.

We believe the situation is more preoupying in the ase of Helix sine we obtain key

reovery attaks and not only distinguishing attaks.



On the one hand, there are situations where the previous senario is not realisti.

Indeed, the seret key may be used to ommuniate only in one diretion. In this ase,

it is straightforward for the sender never to re-use the same none (he an use ounters

for instane). Apparently, this is true for wireless networks, where eah pair of users

have two separate seret keys, one for eah diretion. A di�erential attak annot be

applied there, unless the attaker gains physially aess to the enryption mahine

and an fore none repetition. This may be possible in some partiular oasions, but

in general it is a strong assumption.

On the other hand, in most situations, our di�erential attak senario seems re-

alisti. For instane, several users often need to share a seret key. Even if they split

properly the none spae, what happens if the same message is sent to multiple reeivers

? An attaker an sit in the middle, and modify the iphertext on one of the ommuni-

ation hannels. Then, by omparing a �faulty� deryption with a orret deryption,

he may obtain the kind of di�erential information he needs.

To onlude, we think the seurity impat of our attaks will highly depend on the

ontext, but in general, one should expet the blok funtion of Helix to resist better

against di�erential attaks. Overall, the serey of the key annot reasonably rely on

the absene of none repetition.

5.5 A Chosen None Attak

A weakness regarding the in�uene of eah none word has been identi�ed in Se-

tion 3.2. Here, we propose an extension to a distinguishing attak against Helix. Its

omplexity is muh bigger than the previous attak. However it has the advantage of

being based on weaker assumptions. Indeed, in this ase, the attaker does not need to

enrypt several messages with the same pair (key,none). Instead, we suppose that the

same plaintext P is enrypted twie with the same seret key, but two distint nones

N and N ′ suh that

N = (N0, N1, N2, N3)

N ′ = (N0, N1, N2, N3 + ∆)

Then, as argued in 3.2, the blok funtion is essentially the same for any round i suh
that i mod 4 6= 3. If a state ollision ours on the input of suh a round, it will also

propagate to a state ollision for the input of the next round. Thus state ollisions

on inputs of rounds i suh that i mod 4 = 0 imply ollisions on 4 onseutive bloks

of keystream. Moreover, the di�erene on the 5-th blok an be predited exatly (by

piking ∆ = 10 . . . 0x for instane). Thus, we obtain a detetable ondition on 160 bits

of keystream. This is su�ient to detet state ollisions with good probability.

Therefore, ontrarily to what is laimed in [5℄, state ollisions in Helix an be de-

teted. However, the length of messages is not allowed to exeed 262 bloks, so ollisions

are unlikely to be observed for pratie purpose.

5.6 Foring the Collisions

In this setion, we show that the previous attak an be extended into a distinguisher

against Helix with only 2114 enrypted bloks. This is an important result, sine it

onstitutes a break of the ipher, aording to the de�nition given by the authors [5℄.



The general idea is to work on a large set of nones that will preserve ollisions dur-

ing a few rounds. Then these ollisions an be deteted by observing the orresponding

keystream bloks. More preisely, we build a message P of the maximal authorized

length 262 words by repeating 262 times the same word P0. Then, P is enrypted under

a �xed unknown seret key K using di�erent nones of the form

N (δ,∆) = (N0 + δ,N1 + δ,N2 + δ,N3 + ∆)

with four �xed onstants (N0, . . . , N3). δ is of the form 8 × x where x spans all values

from 0 to 220 and ∆ spans all 232 possible words. Therefore the number of bloks

enrypted is

262 × 232 × 220 = 2114

As before, we onsider any state ollisions that ours between two di�erent nones

N (δ1,∆1) and N (δ2,∆2), at two di�erent positions in the enryption, respetively i1 and

i2. We would like this state ollision to be preserved for several rounds, in order to

detet some properties on the keystream, as in the previous Setion. We are sure that

the plaintext word introdued is always P0, by onstrution. Furthermore we would

like to have the same round key words for both enryptions. Hene, these positions

should satisfy

i1 mod 8 = i2 mod 8 = 0

in order to have Xi1+j,0 = Xi2+j,0 for all j. Besides, if

δ1 + i1 = δ2 + i2 mod 232 (5)

then Xi1+j,1 = Xi2+j,1 when j mod 4 6= 3. In this ase, the state ollision is preserved

during at least 3 rounds. Conerning rounds i1 + 3 and i2 + 3, we would like to also

preserve the ollision, thus we need Xi1+3,1 = Xi2+3,1 or

∆1 + i1 + X ′

i1+3 = ∆2 + i2 + X ′

i2+3 mod 232 (6)

With these three assumptions, the state ollision is preserved at least until the rounds

i1 + 7 and i2 + 7 whih results in ollisions on 8 onseutive words of keystream.

To mount an attak, we �rst store sequenes of 8 onseutive keystream words,

for eah message and for eah position i suh that i mod 8 = 0. Then, we look for a

ollision among the 2114

8 = 2111 entries in this table. This an be ahieved by sorting the

table, with omplexity of 2111 × 111 ≃ 2118 basi instrutions. Then, sine we onsider

objets of 256 bits, the number of �fortuitous� ollisions in the table is

2111 × 2111

2
× 2−256 ≃ 0

Besides, when a �true� state ollision ours, a ollision is also observed on the entries

of the table, provided the additional assumptions (5) and (6) hold. (5) holds with

probability 2−29, sine all terms are multiples of 8, and (6) holds with probability

2−32. Therefore, the number of �true� ollision observed in the table is in average

2111 × 2111

2
× 2−160 × 2−29 × 2−32 = 1

Thus we have onsidered enough enrypted data to detet some partiular state olli-

sions that are preserved during a few rounds. We ahieve it by observing patterns of



8 onseutive words of keystream. For a true Helix output we expet to �nd a olli-

sion in the previous table, while it will not be the ase for a random output. Atually

this distinguishing attak an be slightly improved if we take into aount the ase

i mod 8 = 4.

To onlude, we have proposed a distinguishing attak against Helix requiring the

enryption of 2
114 words of plaintext under hosen nones. This attak is faster than

exhaustive searh, proesses less than 2
128 bloks of plaintext and respets the seu-

rity requirements proposed in [5℄, sine no pair (key,none) is ever re-used to enrypt

di�erent messages. Therefore, this attak onstitutes a theoretial break of Helix.

6 Conlusion

This paper desribes two attaks against the new stream ipher Helix. The �rst one

reovers the seret key with a reasonably low omplexity in time and data, so we think

it should be onsidered as an important threat. The assumptions we use are quite usual

(hosen plaintext, hosen none), but they are outside the seurity model proposed by

the authors of the ipher.

However, we also propose a seond attak, less e�ient but whih relies on weaker

assumptions. This distinguishing attak onstitutes a break of Helix aording to the

de�nition given by the authors. Both attaks result from weak di�erential properties of

the enryption funtion regarding the plaintext and the none. In general, our attak

illustrates the fat that one should be areful to protet new stream iphers against

di�erential-like attaks.
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