
Improving Fast Algebraic Attacks

Frederik Armknecht⋆

Theoretische Informatik
Universität Mannheim

68131 Mannheim, Germany
Armknecht@th.informatik.uni-mannheim.de

Abstract. An algebraic attack is a method for cryptanalysis which is
based on finding and solving a system of nonlinear equations. Recently,
algebraic attacks where found helpful in cryptanalysing LFSR-based
stream ciphers. The efficiency of these attacks greatly depends on the
degree of the nonlinear equations. At Crypto 2003, Courtois [8] pro-
posed Fast Algebraic Attacks. His main idea is to decrease the degree
of the equations using a precomputation algorithm. Unfortunately, the
correctness of the precomputation step was neither proven, nor was it
obvious.

The three main results of this paper are the following: First, we prove
that Courtois’ precomputation step is applicable for cryptographically
reasonable LFSR-based stream ciphers. Second, we present an improved
precomputation algorithm. Our new precomputation algorithm is par-
allelisable, in contrast to Courtois’ algorithm, and it is more efficient
even when running sequentially. Third, we demonstrate the improved ef-
ficiency of our new algorithm by applying it to the key stream generator
E0 from the Bluetooth standard. In this case, we get a theoretical speed-
up by a factor of about 8, even without any parallelism. This improves
the fastest attack known. Practical tests confirm the advantage of our
new precomputation algorithm for the test cases considered.

Keywords: algebraic attacks, stream ciphers, linear feedback shift registers,
Bluetooth

1 Introduction

Stream ciphers are designed for online encryption of secret plaintext bit streams
M = (m1,m2, · · ·), mi ∈ F2, which have to pass an insecure channel. Depending
on a secret key K, the stream cipher produces a regularly clocked key stream
Z = (z1, z2, . . .), zi ∈ F2, and encrypts M by adding both streams termwise over
F2. The legal receiver who uses the same stream cipher and the same key K,
decrypts the received message by applying the same procedure.

⋆ This work has been supported by grant 620307 of the DFG (German Research Foun-
dation)

2 F. Armknecht

Many popular stream ciphers are LFSR-based. They consist of some linear
feedback shift registers (LFSRs) and an additional device, called the nonlinear
combiner. An LFSR produces a sequence over F2 depending on its initial state.
They can be constructed very efficiently in hardware and can be chosen such
that the produced sequence has a high period and good statistical properties.
For these reasons, LFSR-based stream ciphers are widely used in cryptography.

A lot of different nontrivial approaches to the cryptanalysis of LFSR-based
stream ciphers were discussed in the literature, e.g. fast correlation attacks
(Meier, Staffelbach [18], Chepyzhov, Smeets [5], Johansson, Joensson [12, 13]),
backtracking attacks (Golic [10], Zenner, Krause, Lucks [24], Fluhrer, Lucks [9],
Zenner [23]), time-space tradeoffs (Biryukov, Shamir [4]), BDD-based attacks
(Krause [15]) etc. For such stream ciphers many corresponding design criteria
(correlation immunity, large period and linear complexity, good local statistics
etc.) were developed, e.g. Rueppel [20]. Recently, a new kind of attack was pro-
posed: algebraic attack. For some ciphers, algebraic attacks outmatched all pre-
viously known attacks (e.g. Courtois, Meier [7], Armknecht, Krause [1], Courtois
[6]).

An algebraic attack consists of two steps: First find a system of equations in
the bits of the secret key K and the output bits zt. If the combiner is memoryless,
the methods of [7] can be used. A general method, which applies to combiners
with memory too, was presented in [1]. If enough low degree equations and
known key stream bits are given, the secret key K can be recovered by solving
this system of equations in a second step. For this purpose, several methods
(Linearization, XL, XSL, Groebner bases, . . .) exist. Most of them run faster if
the degree of the equations is low. Hence, the search for systems of low degree
equations is a desirable goal in algebraic attacks.

Having this in mind, fast algebraic attacks were introduced by Courtois at
Crypto 2003 [8], using a very clever idea. Before solving the system of equations,
the degree of the system of equations is decreased in a precomputation step. The
trick is to eliminate all high degree monomials independent of the key stream bits
which has to be done only once. For this purpose, an algorithm A was proposed,
using the well known Berlekamp-Massey algorithm [17, 19]. Unfortunately, the
correctness of A was neither proven, nor is it obvious. Therefore, the applicability
of fast algebraic attacks on LFSR-based stream ciphers in general was still an
open question.

In this paper, we finally give a positive answer to this question. We present a
non-trivial proof that fast algebraic attacks work under rather weak assumptions
which are satisfied by all LFSR-based stream ciphers we know. In particular, it is
not necessary that the periods are pairwise co-prime which is not true in general
(e.g., see the cipher used in the Bluetooth standard). To get the result, we prove
some statements about minimal polynomials of linear recurring sequences. To
the best of our knowledge, these statements have not been published elsewhere
in open literature. Thus, our results may be of independent interest.

In general, an attacker has knowledge of the whole cipher except the secret
key. Hence, it seems to be logical to exploit these information to perform the

Improving Fast Algebraic Attacks 3

precomputation step more directly, reducing the number of operations. This was
the motivation for developing a new algorithm B. Contrary to A, which runs
strictly sequential, B can be performed partly in parallel. Thus, our new method
improves the efficiency of fast algebraic attacks significantly.

We demonstrate this by applying B to the E0 key stream generator used in
the Bluetooth standard for wireless communication. A theoretical examination
shows that our algorithm has a speed-up factor of about 8, even without any
parallelism. This improves the fastest known attack against the E0 cipher. Prac-
tical tests on reduced versions of E0 confirm the advantage of B for the test
cases considered.

The paper is organized as follows: in Section 2 we describe fast algebraic
attacks. In Section 3 we give the missing correctness proof for fast algebraic
attacks. In Section 4 we improve fast algebraic attacks by introducing a new
precomputation step. In Section 5 we demonstrate the higher efficiency of our
new method in theory and practice. Section 6 concludes the paper.

2 Fast Algebraic attacks

Let Z := (zt) := (zt)
∞
t=0 be the key stream produced by an LFSR-based key

stream generator, using a secret key K ∈ {0, 1}n. K is defined as the initial states
of the used LFSRs. At each clock t, the internal state of the cipher consists of
Lt(K) and some additional memory bits1, where L : {0, 1}n → {0, 1}n is a linear
boolean function known to the attacker. An algebraic attack works as follows:

The first step is to find a boolean function F̂ 6= 0 such that for an integer
δ ≥ 0 the equation

F̂ (Lt(K), . . . , Lt+δ(K), zt, . . . , zt+δ) = 0 (1)

is true for all clocks t. If the cipher is memoryless, the methods described in [7]
can be used. Unfortunately, these methods neither work with ciphers using mem-
ory, nor are they guaranteed to find equations with the lowest degree. Therefore,
in general the method proposed in [1] is the better choice. It can be applied to
every cipher and finds for certain the equations with the lowest degree.

The second step is to use (1) to get a system of equations describing K in
dependence of the observed key stream Z. For each row zt, . . . , zt+δ of output
bits known to the attacker, replace these values in (1). The result is a valid
equation in the bits of the secret key K.

The third and final step is to recover the secret key K by solving this system
of equations. One possibility to do so is the linearization method. Due to the
linearity of L, all equations (1) have a degree ≤ degF̂ . Therefore, the number
m of different monomials occurring is limited. If the attacker has enough known
key stream bits at his disposal the number of linearly independent equations
equals m. By substituting each monomial by a new variable, the attacker gets

1 Where zero memory bits are possible.

4 F. Armknecht

a linear system of equations in m unknowns which can be solved by Gaussian
elimination or more refined methods like the one by Strassen [22].

In general, m will be about
(
n
d

)
. Hence, the lower the degree d the more

efficient the attack. Therefore, an attacker using an algebraic attack will always
try to find a system of low degree equations. A very clever approach, called
”fast algebraic attack”, to decrease the degree of a given system of equations
was presented in [8]. We will discuss this method now. Suppose that (1) can be
rewritten as

0 = F̂ (Lt(K), . . . , Lt+δ(K), zt, . . . , zt+δ)

= F (Lt(K), . . . , Lt+δ(K)) + G(Lt(K), . . . , Lt+δ(K), zt, . . . , zt+δ)

=: Ft(K) + Gt(K,Z) (2)

where the degree e of G in K is lower than the degree d of F̂ .2 Furtheron, we
assume that the attacker knows coefficients c0, . . . , cT−1 ∈ {0, 1} such that

T−1∑

i=0

ci · Ft+i(K) = 0 ∀t,K. (3)

Using (2) and (3), we get by
∑T−1

i=0 ci · Gt+i(K,Z) = 0 an equation in K and
Z with a lower degree e < d. Therefore, the attacker can reduce the system of
equations given by (1) with degree d into a new system of equations of degree
e < d where all equations are of the type

∑
ciGt+i. Note, that this improves the

third step enormously, but requires more known key stream bits zt to perform
step two.

Of course, it is vital for the whole approach that such coefficients c0, . . . , cT−1

can be found efficiently. In [8], the following algorithm A was proposed:

1. Chose a reasonable3 key K̂ and compute ẑt := Ft(K̂) for t = 1, . . . , 2T .
2. Apply the Berlekamp-Massey algorithm to find c0, . . . , cT−1 with

T−1∑

i=0

ci · Ft+i(K̂) = 0 ∀t. (4)

It is known that the Berlekamp-Massey algorithm finds coefficients with the
smallest value of T fulfilling (4). This needs about O(T 2) basic operations. To-
gether with the first step, algorithm A has to perform about O(T 2 + 2T |K|)
steps. In general, the exact value of T is unknown but an upper bound is the
maximum number of different monomials occurring.

The result of algorithm A is correct if (4) implies (3) which has not been
proven in [8]. The only correctness argument indicated there was based on the

2 For example, this assumption is true for the three ciphers E0, Toyocrypt and LILI-
128.

3 In [8], K̂ can be any value in {0, 1}n. But if one of the LFSRs is initialised with the
all-zero state, the algorithm returns a wrong result in most cases. Therefore, K̂ has
to be chosen such that the initial states are all non-zero.

Improving Fast Algebraic Attacks 5

assumption that the sequences produced by the LFSRs have pairwise co-prime
periods. But this is not true in general. A counter-example is the key stream
generator E0 used in the Bluetooth standard for wireless communication: the
two periods 233 − 1 and 239 − 1 share the common factor 7.

On the other hand algorithm A does not work correctly in general without
any preconditions. An example is given in appendix D. This raises the question
which preconditions are necessary for the correctness of algorithm A and if they
are fulfilled by E0.

One of the major achievements from this paper is to show the correctness
of algorithm A under weaker assumptions. As we are not aware of any LFSR-
based stream cipher for which these conditions are not true (including E0), we
assume that fast algebraic attacks as described in [8] can be mounted against
most LFSR-based stream ciphers discussed in public.

3 Proof of Correctness

In this section, we prove the correctness of algorithm A under cryptographically
reasonable assumptions. First, we repeat some known facts about linear recurring
sequences.

Theorem 1. (Lidl, Niederreiter [16]) A sequence Z = (zt) over F2 is called a
linear recurring sequence if coefficients c0, . . . , cT−1 ∈ {0, 1} (not all zero) exist
such that

∑
cizt+i = 0 is true for all values t ≥ 1. In this case,

∑
cix

i ∈ F2[x] is
called a characteristic polynomial of the sequence Z. Amongst all characteristic
polynomials of Z exists one unique polynomial min(Z) which has the lowest
degree. We will call it the minimal polynomial of Z. A polynomial f(x) ∈ F2[x]
is a characteristic polynomial of Z if and only if min(Z) divides f(x).

From now on, a sequence Z will always stand for a linear recurring sequence.
Furtheron, we will denote by F2 the algebraic closure of the field F2.

4 By the
roots of f(x)F2[x], we will always mean the roots in F2.

Definition 1. Let R1, . . . , Rκ ⊆ F2 be pairwise disjunct, R := R1

.
∪ . . .

.
∪ Rκ.

We say that a pair of vectors (α1, . . . , αn) ∈ Rn, (β1, . . . , βm) ∈ Rm factorizes
uniquely over R1, . . . , Rκ if the following holds

α1 · . . . · αn = β1 · . . . · βm ⇒
∏

αi∈Rl

αi ·
∏

βj∈Rl

(βj)
−1 = 1, 1 ≤ l ≤ κ

For a monomial µ =
∏k

j=1 xij
∈ F2[x1, . . . , xn] with {i1, . . . , ik} ⊆ {1, . . . , n}

and α = (α1, . . . , αn) ∈ Rn, we define the vector
−−→
µ(α) := (αi1 , . . . , αik

) ∈ Rk.

Example Set R1 := {α, αβ} and R2 := {β} with β 6= 1. The pair of vectors
(α, β) and (αβ) does not factorize uniquely over R1, R2 because of α · β = αβ

4 I.e., F2 is the smallest field such that F2 ⊂ F2 and each polynomial f(x) ∈ F2[x] has
at least one root in F2.

6 F. Armknecht

but α · (αβ)−1 = β−1 6= 1.

The motivation for this definition is that we need in our main theorem that
certain products of roots of minimal polynomials are unique in the sense above
(see appendix A. The main theorem of our paper is:

Theorem 2. Let Z1 = (z
(1)
t), . . . ,Zκ = (z

(κ)
t) be sequences with pairwise co-

prime minimal polynomials which have only non-zero roots. Let Ri denote the
set of roots of min(Zi) in F2, F : Fn

2 → F2 be an arbitrary boolean function and
I := (i1, . . . , in) ∈ {1, . . . , κ}n and δ := (δ1, . . . , δκ) ∈ Nκ be two vectors.

We set R := Ri1 × . . .×Rin
and divide F =

∑
µi into a sum of monomials.

Furtheron, for arbitrary d := (d1, . . . , dκ) ∈ Nκ the sequences Z := (zt) and

Z(d) := (z
(d)
t) are defined by

zt := F (z
(i1)
t+δ1

, . . . , z
(in)
t+δn

), z
(d)
t := F (z

(i1)
t+δ1+di1

, . . . , z
(in)
t+δn+din

)

If all pairs of vectors
−−−→
µi(α),

−−−−→
µj(α

′) with α, α′ ∈ R factorize uniquely over
R1, . . . , Rκ, then min(Z) = min(Z(d)).

What is the connection to algorithm A? From the theory of LFSRs, it can be
easily argued that the sequence Ẑ = (ẑt) from algorithm A is a linear recurring
sequence and that ĉ0, . . . , ĉT−1 correspond to its minimal polynomial m. Ẑ is
produced in the way sequence Z is described in theorem 2 which assures that
the minimal polynomial m remains unchanged if we shift each of the sequences
produced by the LFSRs individually. As in the general the produced sequences
have maximal period, the minimal polynomial found by algorithm A is the same
for each possible key K. In appendix B we show that the conditions of theorem 2
are satisfied for a large class of LFSR-based ciphers automatically, independent
of F ,I and δ. Before we can prove theorem 2, we need some statements about
minimal polynomials.

Theorem 3. ([16], Theorem 6.21) Let Z = (zt) be a sequence with character-
istic polynomial f(x) =

∏n
i=1(x − αi) where the roots lie in F2. If the roots

α1, . . . , αn are all distinct, i.e. each root has multiplicity one, then for each t, zt

can be expressed in the following way:

zt =

n∑

i=1

Aiα
t
i

where A1, . . . , At ∈ F2 are uniquely determined by the initial values of the se-
quence Z.

Theorem 4. Let Z = (zt) be a sequence with zt =
∑n

i=1 Aiα
t
i with pairwise

distinct elements αi ∈ F2 and non-zero coefficients Ai. Let m(x) ∈ F2[x] be the
polynomial with the lowest degree such that m(αi) = 0 for 1 ≤ i ≤ n. Then
m(x) is the minimal polynomial min(Z). In particular, each root of min(Z) has
multiplicity one.

Improving Fast Algebraic Attacks 7

Proof. We show that f(x) ∈ F2[x] is a characteristic polynomial of Z if and only
if f(αi) = 0 for all i. Thus, m(x) is the characteristic polynomial with the lowest
degree what is the definition of min(Z). Let f(x) =

∑r
k=0 ckxk. Then for each

t, we have

r∑

k=0

ckzt+k =

r∑

k=0

ck

(
n∑

i=1

Aiα
t+k
i

)

=

n∑

i=1

(

Ai

r∑

k=0

ckαk
i

)

αt
i =

n∑

i=1

(Aif(αi))αt
i

For 1 ≤ i ≤ n and 0 ≤ t ≤ n−1, let M := (αt
i) be a Vandermonde-matrix of size

n×n. As the elements αi are pairwise distinct, M is regular. Thus, the expression
above equals to zero for each t if and only if (A1f(α1), . . . , Anf(αn)) ∈ {0, 1}n

is an element of the kernel of M , i.e. Aif(αi) = 0. As the coefficients Ai were
assumed to be non-zero, this is equivalent to f(αi) = 0 for all i. 2

Proof of theorem 2. By theorem 4 all roots in Ri have multiplicity one. There-

fore, by theorem 3, each sequence Zi can be expressed by z
(i)
t =

∑

α∈Ri
Aααt

with unique coefficients Aα. For each i it holds

z
(i)
t+δi

=
∑

α∈Ri

Aααt+δi =
∑

α∈Ri

(
Aααδi

)
αt

and therefore

zt = F (
∑

α∈Ri1

(Aααδi1)αt, . . . ,
∑

α∈Rin

(Aααδin)αt)

We set P := {µi(α)|α ∈ R, 1 ≤ i ≤ l}. The sequences Z and Z(d) can be
expressed by

zt =
∑

π∈P

Aππt, z
(d)
t =

∑

π∈P

A(d)
π πt

with unique coefficients Aπ and A
(d)
π . We show that Aπ is non-zero if and only if

A
(d)
π is non-zero. Then the equality of min(Z) and min(Z(d)) follows by theorem

4.

We express the coefficients Aπ and A
(d)
π in dependence of the coefficients

Aα. For π = α1 · . . . · αm ∈ P, αi ∈
.⋃

Ri, we define by πd the product
(
∏

αi∈R1
αd1

i

)

·. . .·
(
∏

αi∈Rκ
αdκ

i

)

. As all pairs of vectors −→π1,−→π2 factorize uniquely

over R1, . . . , Rκ, this expression is independent of the factorization α1 · . . . · αm.

Analogously, for α = (α1, . . . , αn) ∈ R we set αd := (α
di1
1 , . . . , α

din
n). With these

definitions, we get

zt =
∑

π∈P

∑

µi

∑

α∈R
µi(α)=π

µi(Aα)

︸ ︷︷ ︸

=Aπ

πt

8 F. Armknecht

where Aα = (Aαi1
, . . . , Aαin

). Therefore, the coefficients A
(d)
π can be expressed

by

A(d)
π =

∑

µi

∑

α∈R
µi(α)=π

µi(Aααd) =
∑

µi

∑

α∈R
µi(α)=π

µi(Aα)µi(α
d) =

∑

µi

∑

α∈R
µi(α)=π

µi(Aα)πd

= Aπ · πd

As the roots of mi(x) are all non-zero by assumption, it is πd 6= 0. Therefore,

Aπ 6= 0 iff A
(d)
π 6= 0. 2

The proof shows why a precondition is necessary for the correctness of the
pre-computation step. Otherwise, it could happen that for some π it is Aπ 6= 0

but A
(d)
π = 0 (or vice versa). In this cases, the corresponding minimal polyno-

mials could be different (see appendix D).

4 Improvements

In this section, we show how algorithm A can be improved. Let min(F) denote
the (unique) minimal polynomial found by algorithm A. Until now, we made no
use of the knowledge of the minimal polynomials m1(x), . . . ,mκ(x). The idea
is to compute min(F) and/or the parameter T more or less directly from the
known minimal polynomials and F . For this purpose, we cite some statements
about minimal polynomials.

Definition 2. Consider two co-prime polynomials f(x) =
∏n

i=1(x − αi) and
g(x) =

∏m
j=1(x − βj) with no multiple roots. Then we define

f(x) ⊗ g(x) :=
∏

i,j

(x − αiβj), f(x) ⊗ f(x) :=
∏

1≤i<j≤n

(x − αiαj) · f(x).

Theorem 5. ([16], Th. 6.57 + 6.67) Let Z1 = (z
(1)
t), . . . ,Zκ = (z

(κ)
t) be se-

quences with pairwise co-prime min(Zi). Then

min(Z1 + . . . + Zκ) = min(Z1) · . . . · min(Zκ)

min(Zi · Zj) = min(Zi) ⊗ min(Zj), ∀i 6= j

where Z1 + . . . + Zκ := (z
(1)
t + . . . + z

(κ)
t) and Zi · Zj := (z

(i)
t · z

(j)
t).

Theorem 6. (Key [14], Th. 1) Let Z = (zt) be a sequence and l := deg(min(Z)).
If d is an integer with 1 ≤ d < l, then the sequence (zt · zt+d) has the minimal

polynomial min(Z) ⊗ min(Z) of degree l(l+1)
2 .

Before we proceed further, we will take a closer look on the complexities of the
operators ′′·′′ and ′′⊗′′.

Theorem 7. (Schoenhage [21]) Let two polynomials f(x) resp. g(x) of F2[x] be
given of degrees ≤ m. Then, the product f(x) · g(x) can be computed with an
effort of O(m log m log log m).

Improving Fast Algebraic Attacks 9

Theorem 8. (Bostan, Flajolet, Salvy, Schost [3], Theorem 1) Let f(x) resp.
g(x) be two co-prime polynomials of degree n resp. m with no multiple roots.
Then the polynomial f(x) ⊗ g(x) can be computed directly within

O(nm log2(nm/2) log log(nm/2) + nm log(nm) log log(nm)
︸ ︷︷ ︸

=:T (nm)

)

operations in F2 without knowing the roots of f(x) or g(x).

This implies a kind of divide-and-conquer approach for computing the mini-
mal polynomial from F . The trick is to split the function F into two or more func-
tions F1, . . . , Fl such that the corresponding minimal polynomials min(Fi) are
pairwise co-prime. Then by theorem 5 it holds min(F) = min(F1) · . . . ·min(Fl).
In some cases, such a partition can be hard to find or may not even exist.
If the minimal polynomials min(Fi) are not pairwise co-prime the product
p(x) := min(F1) · . . . · min(Fl) is a characteristic polynomial of each possible
sequence Ẑ, i.e. the coefficients of p(x) fulfill equation (3) also. Therefore, using
p(x) makes a fast algebraic attack possible though it may require more known
key stream bits than really necessary.

We compare the effort of this approach to that of algorithm A. For simplicity
we assume l = 2, i.e. min(F) = min(F1) · min(F2). Let T1 := deg(min(F1)) ≤
deg(min(F2)) =: T2. Then deg(min(F)) = T1 + T2. As said before, algorithm A
needs about

O(T 2
1 + T 2

2 + 2(T1 + T2)|K| + 2T1T2))

basic operations. Instead of using algorithm A, we can do the following: First
compute min(F1) and min(F2). In general, this can be done with algorithm A or
in some cases by using the ⊗-product (see details later). If we use algorithm A,
the complexity of these operations are O(T 2

1 +2T1) resp. O(T 2
2 +2T2). Notice that

both operations can be performed in parallel. Having computed min(F1) and
min(F2), the second and final step consists of computing the product min(F1) ·
min(F2) = min(F). By theorem 7, this has an effort of O(T2 log T2 log log T2)
which implies an overall effort of

O(T 2
1 + T 2

2 + 2(T1 + T2)|K| + T2 log T2 log log T2)

In general, it is log T2 log log T2 ≪ 2T1. Thus, our new approach has a lower
runtime than algorithm A. The advantage increases if F can be divided in more
than two parts.

In some cases, the precomputation step can be improved even a bit further.
Assume that at least one of the Fi mentioned above can be written as a product
Fi = G1 ·G2 such that min(G1) and min(G2) are co-prime. This is for example
almost always the case when Fi is a monomial. Then, by theorem 5 it holds
min(Fi) = min(G1) ⊗ min(G2) which implies a similar strategy. Let again be
T1 := deg(min(G1)) ≤ deg(min(G2)) =: T2. Using algorithm A would need
about

O(T 2
1 T 2

2 + 2T1T2|K|)

10 F. Armknecht

operations. Instead, we can we compute min(G1) and min(G2) with algorithm
A in a first step. This takes O(T 2

1 + T 2
2 + 2(T1 + T2)|K|) operations. If min(G1)

and/or min(G2) are already known, than this step can be omitted. This is for
example the case if Fi is the product of the output of two or several distinct
LFSRs (see the E0 example in appendix C). In the second step, we use the algo-
rithm described in [3] to compute min(G1)⊗min(G2). The effort is O(T (T1T2))
which is in O(T1T2 log2(T1T2) log log(T1T2)). Altogether, this approach needs

O(T1T2 log2(T1T2) log log(T1T2) + T 2
1 + T 2

2 + 2(T1 + T2)|K|)

operations. This shows the improvement. If we perform the operations of the
first step in parallel, the time needed to get the result can be decreased further.
In the following, we summarize our approaches by proposing the following new
algorithm B:

Algorithm B

Given: Pairwise co-prime primitive polynomials m1(x), . . . ,mk(x), an
arbitrary boolean function F as described in section 2 and a partition
F = F1 + . . . + Fl such that the minimal polynomials min(Fi) are
pairwise co-prime

Task: Find min(F)
Algorithm:

– Compute the minimal polynomials min(Fi) by using algorithm
A. This can be done in parallel.
If Fi = G1 ·G2 with co-prime min(G1) and min(G2) (e.g., Fi is
a monomial), then the ⊗-product algorithm described in [3] can
be used.

– Compute min(F) = min(F1) · . . . · min(Fl) using the algorithm
in [21].

5 Application to the E0 key stream generator

In this section, we demonstrate the efficiency of algorithm B on the E0 key
stream generator which is part of the Bluetooth standard for wireless communi-
cation [2]. It uses four different LFSRs with pairwise co-prime primitive minimal
polynomials m1,m2,m3,m4 of degrees T1 = 25, T2 = 31, T3 = 33 and T4 = 39.
The sequences produced by the LFSRs have the periods 2T1 − 1, . . . , 2T4 − 1. As
the values 2T3 − 1 and 2T4 − 1 share the common factor 7, the assumption made
in [8] is not satisfied.

In [1], a boolean function F̂ was developed fulfilling equation (1). F̂ can be
divided as shown in (2) into F +G with deg(F) = 4 > 3 = deg(G). The function
F is

F =
∑

1≤i<j≤4
1≤k<l≤4

z
(i)
t z

(j)
t z

(k)
t+1z

(l)
t+1 + z

(1)
t z

(2)
t z

(3)
t z

(4)
t

Improving Fast Algebraic Attacks 11

where Zi = (z
(i)
t) is the sequence produced by LFSR i. Let Ri be the set of roots

of mi. Inspired by the definition in theorem 2, we define

P := {αiαjαkαl| αs ∈ Rs, 1 ≤ i < j ≤ 4, 1 ≤ k < l ≤ 4}∪{α1α2α3α4 | αi ∈ Ri}.

We have checked with Maple that for all pairs π1, π2 ∈ P the pair of vectors
−→π1 and −→π2 factorize uniquely over the union R1

.
∪ R2

.
∪ R3

.
∪ R4. Hence, the

weaker assumptions from theorem 2 are fulfilled here and a unique minimal
polynomial min(F) exists. Furtheron, it can be showed that F can be written
as F = F1 + . . . + F11 such that the minimal polynomials min(Fi) are pairwise
co-prime (see appendix C). By theorem 5, min(F) can be expressed by

min(F) =

11∏

i=1

min(Fi) (5)

The degree of min(F) and thus the parameter T is upper bounded by

∑

1≤i<j≤4

Ti(Ti + 1)Tj(Tj + 1)

4
+

∑

1≤i<j<k≤4

TiTjTk

Ti + Tj + Tk − 1

2
+ T1T2T3T4

In [2], the degrees T1, T2, T3, T4 are defined as 25, 31, 33, 39 respectively. Thus,
the degree of min(F) is ≤ 8.822.188 ≈ 223.07. The computation of min(F) using
algorithm A would need most about 246.15 basic operations.

Equation (5) implies the usage of algorithm B. In the first step we apply
algorithm A to compute the minimal polynomials min(Fi), i = 1, . . . , 11. This
takes an overall number of basic operations of ≈ 243.37. Exploiting parallelism,
we have only to wait the time needed to perform ≈ 241.91 basic operations.5

The second step is the computation of the product of these minimal poly-
nomials. Here, this takes altogether about ≈ 228.25 basic operations. Performed
in sequential, algorithm B needs about 243.37 basic operations which is almost
8 times faster than algorithm A. If we exploit the parallelism mentioned above,
the number of basic operations we have to wait is about 241.91 which is more
than 16 times faster than in algorithm A. This improves the fastest known attack
against the E0 cipher. Table 1 sums up the fastest previous attacks known:

Table 1. Fastest previous attacks against E0

Attack Data Memory Pre-computation Attack Complexity

[1] 224 248 268

[8] 224 237 246 249

new (sequential) 224 237 243 249

new (parallel) 224 237 242 249

5 Of course, the number of operations remains unchanged.

12 F. Armknecht

An ad-hoc implementation in Maple (without using parallelism and the algo-
rithm of [3]), applied to reduced versions of E0 with shorter LFSRs, confirmed
the improved efficiency of our new algorithm. The results can be found in table
2. In the first four columns, the coefficients of the four minimal polynomials are
given. The next two columns show the time consumptions of algorithm A and
B respectively which are compared in the last column. In all cases, our new

Table 2. Comparison of algorithm A and B on reduced versions of E0

C1 C2 C3 C4 Algorithm A Algorithm B A/B

110 1100 10100 1000100 10 h 41 m 43 s 12 m 3 s 53.32

101 1001 10010 1000001 11 h 2 m 49 s 12 m 7 s 54.75

10 h 50 m 0 s 11 m 59 s 54.30

10 h 52 m 59 s 11 m 55 s 54.86

10 h 53 m 31 s 11 m 58 s 54.65

110 1100 10100 10100010100 78 h 30 m 16 s 1 h 43 m 25 s 45.55

101 10100 1100000 11100010000 18 d 18 h 26 m 0 s 13 h 50 m 7 s 32.56

algorithm B was significantly faster than algorithm A, even without using par-
allelism. The speed-up factor was much higher than predicted theoretically and
depended on the chosen minimal polynomials and the initial states.

In all cases, the degree of min(F) was equal to the upper bound estimated
on page 11. Hence, we expect that the upper bound is tight for the real E0 key
stream generator also.

6 Conclusion

In this paper, we discussed the fast algebraic attacks introduced by Courtois at
Crypto 2003. Using a very clever idea, ”traditional” algebraic attacks can be
improved significantly in many cases by performing an efficient precomputation
step. For this purpose, an algorithm A was proposed. Unfortunately, neither a
correctness proof was given, nor was the correctness obvious.

In this paper, we gave the missing proof based on a cryptographically rea-
sonable assumptions. To do so, it was necessary to prove some non-trivial state-
ments about minimal polynomials of linear recurring sequences. To the best of
our knowledge, these have not been published elsewhere in open literature.

In addition, we showed that the knowledge of the minimal polynomials of the
LFSRs used in the cipher can help to improve fast algebraic attacks. For this
reason, we developed an algorithm B which is based on a deeper understanding
of minimal polynomials of linear recurring sequences.

Finally, we demonstrated the higher efficiency of algorithm B by applying
it to the E0 key stream generator used in the Bluetooth standard for wireless
communication. In this case, theoretical analysis yielded that algorithm B runs

Improving Fast Algebraic Attacks 13

almost 8 times faster than algorithm A. This improves the fastest known attack
against E0. An ad-hoc implementation applied to reduced versions of E0 con-
firmed the advantage of our new algorithm for the test cases considered, even
without using parallelism.

Acknowledgment

The author would like to thank Erik Zenner, Stefan Lucks, Matthias Krause and
some unknown referees for helpful comments and discussions.

References

1. Frederik Armknecht, Matthias Krause: Algebraic attacks on Combiners with Mem-
ory, Proceedings of Crypto 2003, LNCS 2729, pp. 162-176, Springer, 2003.

2. Bluetooth SIG, Specification of the Bluetooth system, Version 1.1, February 22, 2001.
Available at http://www.bluetooth.com/.

3. Alin Bostan, Philippe Flajolet, Bruno Salvy, Eric Schost: Fast Computation With
Two Algebraic Numbers, submitted, 2003.

4. Alex Biryukov, Adi Shamir: Cryptanalytic Time/Memory/Data tradeoffs for Stream
Ciphers, Proceedings of Asiacrypt 2000, LNCS 1976, pp. 1-13, Springer, 2000.

5. Vladimor V. Chepyzhov, Ben Smeets: On A Fast Correlation Attack on Certain
Stream Ciphers, Proceedings of Eurocrypt 1991, LNCS 547 pp. 176-185, Springer,
1991.

6. Nicolas Courtois: Higher Order Correlation Attacks, XL Algorithm and Cryptanal-
ysis of Toyocrypt, ICISC 2002, LNCS 2587. An updated version (2002) is available
at http://eprint.iacr.org/2002/087/.

7. Nicolas Courtois, Willi Meier: Algebraic attacks on Stream Ciphers with Linear Feed-
back, Eurocrypt 2003, Warsaw, Poland, LNCS 2656, pp. 345-359, Springer, 2003. An
extended version is available at http://www.minrnak.org/toyolili.pdf

8. Nicolas Courtois: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback,
Proceedings of Crypto ’03, LNCS 2729, pp. 177-194, Springer, 2003.

9. Scott R. Fluhrer, Stefan Lucks: Analysis of the E0 Encryption System, Proceedings
of Selected Areas of Cryptography ’01, LNCS 2259, pp. 38-48, Springer, 2001.

10. Jovan Dj. Golic: Cryptanalysis of Alleged A5 Stream Cipher, Proceedings of Euro-
crypt 1997, LNCS 1233, pp. 239-255, Springer, 1997.

11. Rainer Goettfert, Harald Niederreiter: On the Linear Complexity of Products of
Shift-Register Sequences, Proceedings of Eurocrypt ’93, pp. 151-158, LNCS 765,
Springer, 1994.

12. Thomas Johansson, Fredrik Joensson: Fast Correlation Attacks Based on Turbo
Code Techniques, Proceedings of Crypto 1999, LNCS 1666, pp. 181-197, Springer,
1999.

13. Thomas Johansson, Fredrik Joensson: Improved Fast Correlation Attacks on
Stream Ciphers via Convolutional Codes, Proceedings of Eurocrypt 1999, pp. 347-
362, Springer, 1999.

14. Edwin L. Key: An Analysis of the Structure and Complexity of Nonlinear Binary
Sequence Generators, IEEE Transactions on Information Theory, Vol. IT-22, No. 6,
November 1976.

14 F. Armknecht

15. Matthias Krause: BDD-Based Cryptanalysis of Key stream Generators; Proceed-
ings of Eurocrypt ’02, pp. 222-237, LNCS 2332, Springer, 2002.

16. Rudolf Lidl, Harald Niederreiter: Introduction to finite fields an their applications,
Cambridge University Press, 1994.

17. J. L. Massey: Shift-register synthesis and BCH decoding, IEEE Trans. Information
Theory, IT-15 (1969), pp. 122-127, 1969.

18. Willi Meier, Othmar Staffelbach: Fast Correlation Attacks on certain Stream Ci-
phers, Journal of Cryptology, pp. 159-176, 1989.

19. Alfred J. Menezes, Paul C. Oorschot, Scott A. Vanstone: Handbook of Applied
Cryptography, Chapter 6, CRC Press.

20. Rainer A. Rueppel: Stream Ciphers; Contemporary Cryptology: The Science of
Information Integrity. G. Simmons ed., IEEE Press New York, 1991.

21. A. Schoenhage: Schnelle Multiplikation von Polynomen ueber Koerpern der
Charakteristik 2, Acta Informatica 7 (1977), pp. 395-398, 1977.

22. Volker Strassen: Gaussian Elimination is Not Optimal; Numerische Mathematik,
vol 13, pp 354-356, 1969.

23. Erik Zenner: On the Efficiency of the Clock Control Guessing Attack, Proceedings
of ICISC 2002, LNCS 2587, Springer, 2002.

24. Erik Zenner, Matthias Krause, Stefan Lucks: Improved Cryptanalysis of the Self-
Shrinking Generator ACISP 2001, LNCS 2119, Springer, 2001.

Improving Fast Algebraic Attacks 15

A Motivation

In this section, we give a motivation for the somewhat technical definition 1.
For this purpose we discuss some kind of ”abstract example”. Let A = (at)
resp. B = (bt) be two sequences produced by the co-prime minimal polynomials
ma(x) =

∏
(x−αi) and mb(x) =

∏
(x− βi). Then by theorem 3, at resp. bt can

be expressed by

at =
∑

i

cαi
αt

i, bt =
∑

i

cβi
βt

i

Consequently, the shifted sequences can be expressed by

at+da
=
∑

i

cαi
αt+da

i =
∑

i

cαi
αda

i αt
i =:

∑

i

c̃αi
αt

i

bt+db
=
∑

i

cβi
βt+db

i =
∑

i

cβi
βdb

i βt
i =:

∑

i

c̃βi
βt

i

Furtheron, we define the sequences

zt = at · at + bt =
∑

i,j cαi
cαj

αt
iα

t
j +

∑

i cβi
βt

i =
∑

π cππt

z̃t = at+da
· at+da

+ bt+db
=
∑

π c̃ππt

where π ∈ P := {αi · αj} ∪ {βi}. If we assume that all roots αi and βj are
non-zero6 this holds for the elements in P too. The goal is to find a necessary
precondition which guarantees that min(zt)= min(z̃t) (regardless of the values
of da and db). By theorem 4 we know that such a precondition is

cπ 6= 0 ⇔ c̃π 6= 0 (6)

How can we be sure that this is true in our case? We show what can go wrong
on an example. Let π ∈ P fixed. We distinguish now between two different cases:

1. π has the following two different representations in P : π = α1 · α2 = α3

2. π has the following two different representations in P : π = α1 · α2 = α3 · β1

with β1 6= 1

In the first case, we can express cπ and c̃π by

cπ = (cα1
· cα2

+ cα3
)

c̃π = (c̃α1
· c̃α2

+ c̃α3
)

= (cα1
· αda

1 · cα2
· αda

2 + cα3
· αda

3)

= (cα1
· cα2

· (α1 · α2
︸ ︷︷ ︸

=π

)da + cα3
· (α3
︸︷︷︸

=π

)da)

= (cα1
· cα2

+ cα3
) · πda

= cππda

6 This is for example true if ma(x) and mb(x) are irreducible and have a degree > 1.

16 F. Armknecht

As we said before π ∈ P is non-zero. Hence, it is cπ 6= 0 ⇔ c̃π 6= 0 and
condition 6 is fulfilled. Therefore, we can be sure that min(Z̃) is the same for
all choices of da and db.

Now let us have a look at the second case. W.l.o.g., we assume da < db. Then

cπ = (cα1
· cα2

+ cα3
· cβ1

)

c̃π = (c̃α1
· c̃α2

+ c̃α3
· c̃β1

)

= (cα1
· cα2

· πda + cα3
· cβ1

· πda · βdb−da

1)

= (cα1
· cα2

+ cα3
· cβ1

· βdb−da

1) · πda

In this case (depending on cα1
, cα2

, cα3
, cβ1

, β1, da and db) it could happen
that cπ 6= 0 but c̃π = 0 (or vice versa).

The motivation for definition 1 was to avoid cases like case 2. To match the
case considered here on definition 1, we set R1 := {αi|i = . . .} (the roots of
ma(x)), R2 := {βj |j = . . .} and R = R1

.
∪ R2. Let V = (v1, . . . , vn) ∈ Rn and

W := (w1, . . . , wm) ∈ Rm. Definition 1 was that V and W factorize uniquely
over R1, R2 if

v1 · . . . · vn = w1 · . . . ·wm ⇒
∏

vi∈R1

vi ·
∏

wj∈R1

w−1
j = 1 and

∏

vi∈R2

vi ·
∏

wj∈R2

w−1
j = 1

Now we check if the definitions are fulfilled for case 1 and 2 for the represen-
tations of π:

Case 1: It is V = (v1, v2) = (α1, α2) ∈ R1 × R1 and W = (w1) = (α3) ∈ R1.
As all of them are elements of R1 we only have to check

v1 · v2 · w
−1
1 = π · π−1 = 1

Case 2: It is V = (v1, v2) = (α1, α2) ∈ R1 × R1 and W = (w1, w2) =
(α3, β1) ∈ R1 × R2. We have to check if v1 · v2 · w

−1
1 = 1 and w−1

2 = 1. But this
is not true as by assumption w2 = β1 6= 1.

In the proof of theorem 2 it is shown that cases like the second one can be
avoided if we require that the vectors −→π with π ∈ P do all factorize uniquely
over R1, R2.

B On the practical Relevance of Theorem 2

In this section we show that theorem 2 applies to a large class of LFSR-based
ciphers automatically. Let m1(x), . . . ,mκ(x) ∈ F2[x] be the primitive minimal
polynomials of the used LFSRs such that the roots are all pairwise distinct and
non-zero. For the following classes of ciphers, the assumptions of theorem 2 are
always satisfied:

1. The cipher is a filter generator, i.e. κ = 1.
2. The degrees of the minimal polynomials are pairwise co-prime.

Improving Fast Algebraic Attacks 17

Set R := R1

.
∪ . . .

.
∪ Rκ. We define by P := {α1 · . . . · αn|αi ∈ R,n ∈ N}

the set of all possible multiple products of elements in R. We show now that
in both cases, all pairs of vectors −→α ,

−→
β with α, β ∈ P factorize uniquely over

R1, . . . , Rκ. As P is a superset for all possible sets {µ(α)| . . .} this proves that
the conditions of theorem 2 are satisfied. Let from now on −→α = (α1, . . . , αn) and
−→
β = (β1, . . . , βm) denote two vectors such that α1 · . . . · αn and β1 · . . . · βm are
elements in P.

Let us start with the first case. Here, we have

α1 · . . . · αn = β1 · . . . · βm ⇔
∏

αi ·
∏

β−1
j = 1 ⇔

∏

αi∈R1

αi ·
∏

βj∈R1

β−1
j = 1

This concludes the first case.
For the second case we remember the fact that F2n ⊆ F2m iff n divides m.

In particular, F2n ∩F2m = F2c with c := gcd(n,m). We denote by Ti the degree
of the minimal polynomial mi(x). Then the elements α, α−1,α ∈ Ri, and all
multiple products are elements of F2Ti . Let l be arbitrary with 1 ≤ l ≤ κ and
set Sl := T1 · . . . · Tl−1 · Tl+1 · . . . · Tκ. Then α1 · . . . · αn = β1 · . . . · βm implies

γl :=
∏

αi∈Rl

αi

∏

βj∈Rl

β−1
j

︸ ︷︷ ︸

∈F
2Tl

=
∏

αi 6∈Rl

αi

∏

βj 6∈Rl

β−1
j

︸ ︷︷ ︸

∈F
2Sl

Therefore, γl ∈ F2Tl ∩ F2Sl . By assumption the values Ti are pairwise co-prime.
Hence, it is gcd(Tl, Sl) = 1 and γl ∈ F21 = F2. As the roots are all non-zero, γl

equals to 1 for each choice of l. This concludes the second case.

C The E0 key stream generator

In this section, we show that theorem 2 and algorithm B are applicable to the
E0 cipher together with the following boolean function:

F =
∑

1≤i<j≤4
1≤k<l≤4

z
(i)
t z

(j)
t z

(k)
t+1z

(l)
t+1 + z

(1)
t z

(2)
t z

(3)
t z

(4)
t (7)

Let from now on denote i, j, k, l integers from the set {1, 2, 3, 4}. We define the
following three sets of indices

I2 := {(i, j) | i < j}

I3 := {(i, j, k) | i < j < k}

I4 := {(i, j; k, l) | i < j, k < l, {i, j} ∪ {k, l} = {1, 2, 3, 4}}

Then, F can be rewritten as

F =
∑

(i,j)∈I2

z
(i)
t z

(i)
t+1z

(j)
t z

(j)
t+1

︸ ︷︷ ︸

=:F(i,j)

(8)

18 F. Armknecht

+
∑

(i,j,k)∈I3

(

fij · z
(k)
t z

(k)
t+1 + fik · z

(j)
t z

(j)
t+1 + fjk · z

(i)
t z

(i)
t+1

)

︸ ︷︷ ︸

=:F(i,j,k)

(9)

+
∑

(i,j;k,l)∈I4

z
(i)
t z

(j)
t+1z

(k)
t z

(l)
t+1 + z

(1)
t z

(2)
t z

(3)
t z

(4)
t

︸ ︷︷ ︸

F̃

(10)

where fij = z
(i)
t z

(j)
t+1 + z

(j)
t z

(i)
t+1. Let Ri be the set of roots of mi, the minimal

polynomial of the ith LFSR, and R2
i := {αα′|α, α′ ∈ Ri, α 6= α′}. We define the

sets :

R(i,j) := {αiαj | (i, j) ∈ I2, αs ∈ Rs ∪ R2
s}

R(i,j,k) := {αiαjαk | (i, j, k) ∈ I3, αs ∈ Rs ∪ R2
s}

R̃ := {αiαjαkαl | (i, j; k, l) ∈ I4, αs ∈ Rs}

The first thing we observe is that the sets defined above are all pairwise disjunct.
Furthermore, it is easy to see that the roots of min(F(i,j)) are a subset of R(i,j)

and so on. Thus, the minimal polynomials are pairwise co-prime and we can
write by theorem 5 min(F) as the product of 11 different minimal polynomials:

min(F) =
∏

(i,j)∈I2

min(F(i,j)) ·
∏

(i,j,k)∈I3

min(F(i,j,k)) · min(F̃)

Actually, even more can be said. Using theorem 5 and the fact that the polyno-
mials mi are pairwise co-prime, we have min(F(i,j)) = (mi ⊗ mi) ⊗ (mj ⊗ mj)
of degree Ti(Ti + 1)/2 · Tj(Tj + 1)/2. Before we can estimate min(F(i,j,k)) and

min(F̃), we need the following theorem:

Theorem 9. ([16], Th. 6.55) Given sequences Z1, . . . ,Zκ, the minimal polyno-
mial min(Z1 + . . . + Zκ) divides lcm(min(Z1), . . . ,min(Zκ)).

First, we consider min(F(i,j,k)). By theorem 5, it can be easy seen that

min(z
(i)
t z

(j)
t+1) = min(z

(j)
t z

(i)
t+1) = mi ⊗ mj ,

and by theorem 6, that min(z
(k)
t z

(k)
t+1) = mk ⊗ mk. By theorem 9, the minimal

polynomial min(F(i,j,k)) divides the least common multiple of the polynomials
(mi ⊗ mi) ⊗ (mj ⊗ mk), (mj ⊗ mj) ⊗ (mi ⊗ mk) and (mk ⊗ mk) ⊗ (mi ⊗ mj).
Notice that all three polynomials share the common factor mi⊗mj⊗mk.7 Thus,
the degree of min(F(i,j,k)) is upper bounded by

TiTjTk +
Ti(Ti − 1)

2
TjTk +

Tj(Tj − 1)

2
TiTk +

Tk(Tk − 1)

2
TiTj

= TiTjTK

Ti + Tj + Tk − 1

2
7 The reason is that f divides f ⊗ f and that (f · g) ⊗ h = (f ⊗ h) · (g ⊗ h).

Improving Fast Algebraic Attacks 19

The minimal polynomial min(F̃) can be found exactly. We observe that

min(z
(i)
t z

(j)
t+1z

(k)
t z

(l)
t+1) = min(z

(1)
t z

(2)
t z

(3)
t z

(4)
t) = m1 ⊗ m2 ⊗ m3 ⊗ m4 =: m

Thus, min(F̃) divides m. As m1, . . . ,m4 are irreducible, this holds for m too.
Therefore, min(F̃) is equal to 1 or equal to m. But the first case would imply
that the expression in (10) is the all-zero sequence which is obviously wrong.
Ergo, min(F̃) is equal to m of degree T1T2T3T4. Summing up, for the degree T
of min(F) it holds

T ≤
∑

(i,j)∈I2

Ti(Ti + 1)Tj(Tj + 1)

4
+

∑

(i,j,k)∈I3

TiTjTk

Ti + Tj + Tk − 1

2
+ T1T2T3T4

D Why preconditions are necessary

In this section, we show that algorithm A (and B) do not work properly without
some preconditions. To do so we give an example. We consider the case of two
LFSRs La and Lb with the primitive minimal polynomials ma(x) = 1 + x + x2

and mb(x) = 1 + x + x4. Notice that the polynomials are co-prime but the
corresponding periods are not. Let at resp. bt denote the outputs of LFSR A
and B and define the sequence Z := (zt) by

zt := atbt + at + bt + atat+1 + btbt+1.

Let Ka = (a1, a2) be the initial state of LFSR La and Kb = (b1, b2, b3, b4) be
the initial state of LFSR Lb. For the correctness of the pre-computation step,
min(Z) should be the same for all non-zero choices of Ka and Kb. This is not the
case. For Ka = (1, 0) and Kb = (1, 1, 1, 0) it is min(Z) = 1+x2+x3+x6+x7+x9.
But for Ka = (0, 1) and Kb = (1, 1, 1, 1) it is min(Z) = 1 + x15.

