
New attacks against standardized MACs

Antoine Joux1, Guillaume Poupard1, and Jacques Stern2

1 DCSSI Crypto Lab
51 Boulevard de La Tour-Maubourg

75700 Paris 07 SP, France
Antoine.Joux@m4x.org

Guillaume.Poupard@m4x.org
2 Département d’Informatique

Ecole normale supérieure
45 rue d’Ulm, 75230 Paris Cedex 05, France

Jacques.Stern@ens.fr

Abstract. In this paper, we revisit the security of several message authentication
code (MAC) algorithms based on block ciphers, when instantiated with 64-bit block
ciphers such as DES. We essentially focus on algorithms that were proposed in the
norm ISO/IEC 9797–1. We consider both forgery attacks and key recovery attacks.
Our results improve upon the previously known attacks and show that all algorithms
but one proposed in this norm can be broken by obtaining at most about 233 MACs of
chosen messages and performing an exhaustive search of the same order as the search
for a single DES key.

1 Introduction

Message authentication codes (MACs) are secret-key cryptographic primitives de-
signed to ensure the integrity of messages sent between users sharing common keys.
MAC algorithms are often based on block ciphers or hash functions. Among the MAC
algorithms based on block cipher, the CBC-MAC construction is probably the best
known and studied. Initially proposed in [2], it has been studied in many papers, both
from the cryptanalytic point of view [12] and from the security point of view [3].
It is well known that this algorithm suffers from birthday paradox based weak-

nesses, and this fact is reflected both in the known attacks and in the security proofs
for this mode of operation of block ciphers. Of course, with 64-bit block ciphers, the
birthday paradox hits as soon as 232 messages have been authenticated with the same
key. With high speed networks and high bandwidth applications, this is clearly not
enough. In order to reach higher security, it is possible to use block ciphers with larger
blocks, such as the AES, or more complicated MAC mechanisms secure beyond the
birthday paradox, such as for example RMAC [11].
However, in many real life applications, developers still use variants of the CBC-

MAC such as the algorithms described in ISO/IEC 9797–1 [7]. Of course, none of
these algorithms has a known security proof that holds beyond the birthday paradox
barrier. Moreover, most of them have known forgery attack with 232 known or chosen
messages. Yet, these forgery attacks are often seen as academic and impractical, and
most developers only care about key recovery attacks. As long as finding the keys
requires an exhaustive search of two or more DES keys simultaneously, i.e. as long



as the 56-bit DES keys cannot be found one by one, the algorithm is deemed secure.
According to this point of view, some algorithms in the norm are still insecure, but
others are considered as secure against key recovery attacks. More precisely, accord-
ing to the informative annex B of ISO/IEC 9797–1, among the 6 MAC algorithms
proposed in this standard, the first 3 algorithms have known efficient key recovery
attacks, while the 3 others are considered to be secure in that sense. However, Copper-
smith, Knudsen and Mitchell [6, 5] have proved that, whatever the padding method
may be, the fourth algorithm is also insecure.
In this paper, we show that the fifth algorithm can also be cryptanalysed with

efficient key recovery attacks. This algorithm consists in two parallel computations
of CBC-MAC. As a consequence, both for efficiency and for security reasons, it is
much preferable to use a classical CBC-MAC with retail using a 128-bit block cipher
such as AES and, if needed, to truncate the MAC value to 64 bits. We also describe
generic key recovery attacks against any MAC based on a single internal CBC chain.

2 Description of CBC–MAC and some variants

In this section, we give a general description of MAC algorithm based on a single
CBC chain with a key K and quite general and arbitrary initial and final keyed
transformation. For the sake of simplicity, we assume that the initial computation I
is applied to the first block of message and yields the initial value of the CBC chain
which starts at the second block. We also assume that the final computation F is
applied to the final value in the CBC chain and results in the MAC tag m. Since all
MAC algorithms based on a single CBC chain we are aware of, are of this type, we do
not lose much generality. Furthermore, this formalism is also used in ISO/IEC 9797–1.
More precisely, for a message M1, M2,. . . , M` the computation works as follows

(see also figure 1):

– Let C1 = I(M1).
– For i from 2 to `, let Ci = EK(Ci−1 ⊕Mi).
– Let the MAC tag m be F (C`).

In order to fully specify a MAC algorithm of this type, it suffices to give explicit
descriptions of I and F . The simplest example of a plain CBC-MAC occurs when I
is defined as EK and F is the identity function. ISO/IEC 9797–1 standard defines 6
MAC algorithms. The first 4 ones are defined in the following table:

Algorithm ISO/IEC 9797–1 initial transformation final transformation reference

1 EK ∅ [7, 10, 2]

2 EK EK1 [7]

3 EK EK ◦DK1 [7, 1]

4 EK2 ◦ EK EK1 [7, 9]

The MAC algorithm 5 is defined as the exclusive-or of two MAC values computed
using algorithm 1 with different keys. The MAC algorithm 6 is similar but uses the
exclusive-or of two MACs computed with algorithm 4.

2



?

F

MAC(M)

¢¡-K E ¢¡-K E¢¡

jj j? - - ?

?
-

?

?

?

?

-

?

M1 M3

K

M2

E

M`

I

C1 C2 C3

C`

Fig. 1. Generic CBC MAC algorithm.

Even if the algorithms of [7] are defined with up to 6 secret keys, it is advised to
derive them from only one or two keys. In the following, we propose attacks that do
not try to take advantage of such key derivation technique.

It should also be noticed that ISO/IEC 9797–1 defines a complete MAC algorithm
by specifying which padding should be used and if a final truncation is applied to the
result. Our attacks immediately apply to standard paddings but we do not consider
messages that include the bit length as a first block (padding 3 of [7]).

3 Overview of classical attacks

Algorithm complexity(∗) reference

algorithm 1 [256,1,0,0]

algorithms 2 and 3 [3× 256,232,0,0]

algorithm 4 [4× 256,232,2,0] [6]
with paddings 1 et 2 or [4× 256,1,1,256]

algorithm 4 [4× 256,0,264,264] [5]
with padding 3 or [8× 256,2× 232,3× 248,0]

(∗) an [a, b, c, d] attack requires

– a off-line block cipher encipherments,
– b known data string/MAC pairs,
– c chosen data string/MAC pairs,
– d on-line MAC verifications.

Fig. 2. Complexity of key recovery attacks against ISO/IEC 9797–1 MAC algorithms.

3



3.1 Birthday paradox forgery of any generic CBC MAC algorithm

Let us assume that the final transformation F of a generic CBC MAC algorithm is
a permutation. Then, we observe MAC tags of known messages. If we denote by n
the block size (which is also the size of the MAC tag), according to the birthday
paradox, the observation of O(2n/2) MAC tags allows to find a collision, i.e., two
different messages M and M ′ with the same MAC. For a 64-bit block cipher such as
DES or triple-DES, this means that a collision occurs after the computation of only
about 232 MAC tags.
More precisely, we note the blocks of messages M and M ′ in the following way

M = (M1, M2, . . . , M`1 , N1, . . . , N`2)
M ′ = (M ′

1, M
′
2, . . . , M

′
`′1
, N1 . . . , N`2)

with M`1 6=M ′
`′1
. Then, it is easy to check that, for any blocks N ′

1, . . . N
′
`′2
,

MAC(M1,M2, . . . ,M`1 , N
′
1, . . . , N

′
`′2
) = MAC(M ′

1,M
′
2, . . .M

′
`′1
, N ′

1, . . . , N
′
`′2
).

Consequently, we obtain a forgery attack where the query of the MAC tag of a message
enables to compute the (same) MAC tag of a different message.
Furthermore, using the same notations, we can also notice the following identity

that will be used in the sequel:

MAC(M1,M2, . . . ,M`1−1, X,N ′
1, . . . , N

′
`′2
)

= MAC(M ′
1,M

′
2, . . . ,M

′
`′1−1, X ⊕M`1 ⊕M ′

`′1
, N ′

1, . . . , N
′
`′2
).

In conclusion, independently of the key size and of the complexity of initial and
final transformations I and F , CBC MAC algorithms are vulnerable to forgery attacks
if the block size is too small. However, such attacks are often seen as academic and
impractical by developers. That is why, in the following, we mainly focus on key
recovery attacks.

3.2 Attacking algorithm 1 from ISO/IEC 9797–1.

The first and simplest MAC algorithm, that has also been standardized by NIST [10],
can be attacked in many different ways. Used with the simple DES block cipher, the
knowledge of one MAC tag allows, through an exhaustive search on the key K, to
recover this key. Furthermore, the algorithm does not have any final “retail” so it
is easy to obtain valid MAC tags of concatenated messages using a so-called “xor-
forgery”.

3.3 Attacking algorithms 2 and 3 from ISO/IEC 9797–1.

If the initial transformation is a single application of the block cipher, as in algorithms
2 and 3, and if the final transformation is a permutation, the observation of a collision
allows to recover the key K as in the case of algorithm 1. The attack [12] goes as

4



follows. Observe MAC tags of known messages of at least two blocks until a collision
occurs. Using the birthday paradox, such an event should appear after the observation
of O(2n/2) messages, where n is the block size. Since F is a permutation, a collision
is also present at the end of the CBC chain so we obtain a test for the exhaustive
search on K.

When using DES, we need the observation of 232 MAC values for known messages
followed by an exhaustive search of a single DES key. Then, the key K1 used in F
can be recovered by another exhaustive search.

4 Devising some tools

Throughout this section, we assume that n denotes the block size used in the MAC
algorithms, or equivalently in the basic block cipher E we rely on. We are mostly
interested in the case were n is 64 bits. The attacks presented in this paper mostly
rely on techniques that allows us to learn the exclusive-or of two intermediate values
present in two of the core CBC chains.

4.1 Exclusive-Or of intermediate values in CBC chains

We first remind a technique of Coppersmith and Mitchell [6]. We assume that we
are given any generic message authentication code algorithm based on a single CBC
computation chain with block cipher E and key K, as defined in section 2. Clearly,
by fixing the last blocks of the message, we transform the final computation into a
function of the final output of the CBC chain. In many cases, such as algorithms 1 to
4 of ISO/IEC 9797–1 without final truncation, this function is in fact a permutation
and we are able to learn whether the outputs of two different chains are equal or not.

Note that this hypothesis is not essential. Indeed, if the output function is not
a permutation, it suffices to observe the output of several computation pairs done
with different final blocks. When the output of the two chains are equal, all pairs
will contain two identical values whatever the final transformation may be. As a
consequence, we may ignore the final computation and assume that we can learn
whether the output of two chains are equal or not.

Let M and N be two messages of respective length `M and `N . Let C`M denote
the final value of the CBC chain computed for message M and D`N denote the final
value of chain computed for message N . Now form a messageM (T ) by adding a single
block T , right at the end of the CBC chain for message M . Likewise, add a single
block U at the end of N and form N (U). Writing down the equations of the two CBC
chains, we find that the final value for messages M (T ) and N (U) are respectively:

C
(T )
`M+1 = EK(C`M ⊕ T ),

D
(U)
`N+1 = EK(D`N ⊕ U).

Given 2n/2 different messages M (T ) and 2n/2 different N (U) along with their MAC,
we find a MAC collision with high probability. Since EK is a permutation, such a

5



collision implies that:
C`M ⊕ T = D`N ⊕ U.

As a consequence, we learn the value of C`M ⊕D`N , namely T ⊕ U .
Note that by structuring our choices for T and U , we can find a collision with

probability 1. One possible choice is to fix the n/2 high order bits of T and let the
n/2 remaining bits of T cover the 2n/2 possible choices. Similarly, we fix the low order
bits of U and let the high order bits cover the possible choices.
Using the technique presented in this section, requires the MAC computation of

21+n/2 chosen messages, i.e., 233 chosen messages for 64-bit blocks.

4.2 Multiple exclusive-or of intermediate values in CBC chains

We now explain how to efficiently obtain a large number of exclusive-ors of interme-
diate values in CBC chains, following ideas initially proposed in [5]. This useful tool
will be applied in section 6.2 to attack general MAC algorithms based on CBC chains.
We first introduce a notation; for any message M formed with blocks M1, M2,

. . .M`, we denote by Internal(M, i) the intermediate value of the CBC chain at posi-
tion i

Internal(M, i) = EK(EK(EK(I(M1)⊕M2)⊕M3) . . .⊕Mi)

We consider a set of 2αn unknown intermediate values Xj . For each such value,
we build a set Sj of 2

βn MAC tags where Xj is the penultimate intermediate value.
Formally, this means that Xj = Internal(M [j], i[j]) for a fixed message M [j] and an
index i[j] smaller than the block length of M [j]. Then we choose 2βn blocks Tk and
that we query the MAC tags of messages (M [j]1, . . . ,M [j]i[j], Tk), for the 2

βn values
of k, in order to build the set Sj .
Next, we compare the values of the sets Sj . If the same MAC tag appears in both

Sa and Sb, we learn the exclusive-or of Xa and Xb, exactly as in the previous section.
The probability to obtain Xa ⊕Xb for fixed indexes a and b is about 2βn × 2βn/2n.
When both Xa ⊕Xb and Xb ⊕Xc are known, Xa ⊕Xc can be easily deduced. In

order to construct many exclusive-ors, we make a graph whose vertices are the 2αn

unknown values Xj and where an edge links two vertices with known exclusive-or
obtained by collision of related sets Sj . When a path exists in this graph from Xa

to Xb, Xa ⊕ Xb can be computed. We claim that this graph behaves like a random
graph and well known results [4, 8] on such graphs say that as soon as the number
of edges is larger than the number of vertices, a “giant component” (with size linear
in the total number of vertices) appears. More precisely, with s vertices and cs/2
randomly placed edges, with c > 1, there is a single giant component whose size is
almost exactly (1− t(c))s, where [4]

t(x) =
1

c

∞∑

k=1

kk−1(ce−c)
k

k!

Since the number of edges is about 2(2α+2β−1)n, we obtain that, if α + 2β is larger
than 1, the exclusive-or of all pairs of intermediate values in the giant component can

6



be learned. Moreover, with a number of edges larger than the number of vertices, the
giant component covers with probability more than 79% of all vertices. Furthermore,
the smallest path between most pairs of vertices in the giant component is logarithmic
(i.e. linear in n). As a consequence, we can efficiently learn the exclusive-or of a fixed
proportion, say one half, of the vertices in time O(n× 2αn).
As a conclusion, we obtain the exclusive-or of O(2αn) intermediate values asking

O(2(α+β)n) MAC tags, with α+ 2β ≥ 1.

5 Advanced attacks against algorithm 4 from ISO/IEC 9797–1

¢¡-K E ¢¡-K E

?
MAC(M)

¢¡- EK2

¢¡¢¡

¢¡ jj j- -

-

?

?

?

?

?

?

-

?

?

?
-

-

K

M3

E

M2 M`

C1 C2 C3

M1

E

K E

K1

C`

Fig. 3. Algorithm 4 from ISO/IEC 9797–1.

Let us recall that in this MAC algorithm, the final value of the CBC chain is
encrypted by a final application of the block cipher, with a specific key K2 (see
figure 3). Coppersmith and Mitchell [6] have proposed the following attack against
this algorithm when padding methods 1 or 2 are used. Notice that even if padding
method 3 is preferred, variants based on multiple exclusive-or computation can be
applied [5]. The attack goes as follows.
Observe MAC tags of messages of at least two blocks until a collision occurs. Let us

note M and N such messages of respective length `M and `N and common MAC tag
mcoll. Since the block cipher EK2 is a permutation, using the notation of section 4.1,
we obtain C`M = D`N . Consequently, EK(C`M−1 ⊕M`M ) = EK(D`N−1 ⊕ N`N ) and
C`M−1 ⊕M`M = D`N−1 ⊕N`N , so

C`M−1 ⊕D`N−1 =M`M ⊕N`N

Finally, query the MAC tags mM and mN of the two truncated messagesM1...M`M−1

and N1...N`N−1. Since mM = EK2(C`M−1) and mN = EK2(D`N−1), we obtain

E−1
K2
(mM )⊕ E−1

K2
(mN ) =M`M ⊕N`N .

7



Then K2 is found by an exhaustive search. We expect that a single value will remain
for K2, when the key size is no larger than the block size. Once K2 is known, we can
recover K through a second exhaustive search using the test

EK(E
−1
K2
(mM )⊕M`M ) = E−1

K2
(mcoll).

Finally, recovering K1 can be done with a final exhaustive search.
This attack requires the observation of 2n/2 MAC values for known messages, the

computation of two MAC values for chosen messages and finally the independent
exhaustive searches on a K2, K and K1. When using the DES, we need 2

32 known
messages and 2 chosen messages followed by an exhaustive search about four time as
expensive as a simple exhaustive search on a single DES key.

6 New attacks

6.1 Attacking algorithm 5 from ISO/IEC 9797–1

j

j

¢¡¢¡ ¢¡ ¢¡

¢¡¢¡ ¢¡ ¢¡

j j

jj j

?

- -

-

?

?

?

?

?

?

-

- - -

?

- -

-

?

?

?

?

?

?

-

- - -

?

6

-
M1

K2

M3

E

M2 M`

D1 D2 D3

K2 E K2 E K2 E

M1

K1

M3

E

M2 M`

C1 C2 C3

K1 E K1 E K1 E

MAC(M)

C`

D`

Fig. 4. Algorithm 5 from ISO/IEC 9797–1.

Let us recall that in this MAC algorithm, each message goes through two inde-
pendent plain CBC chain with keys3 in K1 and K2 (see figure 4). The MAC tag is the

3 In algorithm 5 from ISO/IEC 9797–1, the keys K1 and K2 are derived from a single key K

8



exclusive-or of the final values of the two chains. We use a variation on the technique
from subsection 4.1 to attack this algorithm. The first step of the attack is to find a
collision between the MAC tags of two (short, i.e., one block) messages M and N .
Let m denote the common MAC tag of M and N . Moreover, let EK1(M), EK2(M),
EK1(N) and EK2(N) denote the final values of the 4 CBC chains involved. We have

m = EK1(M)⊕ EK2(M) = EK1(N)⊕ EK2(N).

We would like to learn the value δ = EK1(M) ⊕ EK1(N) = EK2(M) ⊕ EK2(N). This
can be done by computing the MAC values of two long lists of messagesM (T ) formed
by adding a single block T to M and N (U) by adding a block U to N . It is easy to
check that whenever T ⊕ U = δ, we get a collision for both of the CBC chains and
of course a collision on the MAC values of the extended messages. Moreover, this
kind of double collisions can be distinguished from “ordinary” collisions. Indeed, if
we add any block, say the zero block, at the end of both M (T ) and N (U) the resulting
messages still collide. Once δ, M (T ) and N (U) are known, we can proceed either with
a forgery attack or a key recovery attack. It should be noted that for this particular
algorithm, no efficient forgery attack was previously known.

Forgery attack. With a double collision between M (T ) and N (U) in hand, making
forgery is easy. Indeed, for any message completion L, the MAC value of M (T ) con-
catenated with L and the MAC value of N (U) concatenated with L are necessarily
equal. Indeed, the double collision propagates along L. Thus, it is easy to ask the
MAC tag of one of the two extended messages and to guess that the MAC tag of the
other extended message has the same value. The cost forgery attack is independent of
the size of the keys of E, it is only a function of the block size n. The attack requires
the computation of 21+n/2 MAC values.

Key recovery attack. Since we know the value of δ, we know the two values EK1(M)⊕
EK1(N) and EK2(M)⊕ EK2(N) (both are equal to δ). Thus, we get two independent
conditions respectively on K1 and K2, and the keys can be recovered with a simple
exhaustive search. Indeed, assume that M and N are different one block messages,
then search for a key K that satisfy:

EK(M1)⊕ EK(N1) = δ.

When the key size is no larger than the block size, we expect to find two different
solutions during the exhaustive search, K1 and K2. Furthermore, if there are more
than two candidate solutions, we simply form all possible candidate pairs and keep
the pair which is compatible with all the MAC values we already know. The key re-
covery attack requires the observation of 2n/2 MAC tags followed by the computation
of 21+n/2 MAC values. When using the DES, we need 233 message followed by an
exhaustive search roughly equivalent to a simple exhaustive search on a single DES
key.

9



6.2 General MAC algorithms with a single CBC chain

In this subsection, we consider key recovery attacks against general MAC algorithm
based on a single CBC chain with a key K. We let I and F denote the initial and
final transforms as in section 2. In this subsection, our goal is to recover the key K
of the main CBC chain as efficiently as possible. We assume that I and F are both
keyed transformations which cannot be computed by the attacker since it (at first)
does not know any key material. We first address the special case where I and F are
closely related transformations (with identical keys) before considering the general
case.

The special case I = F ◦ EK . For example, a natural MAC scheme could apply the
same triple-DES transformation, both at the beginning and at the end of the MAC
computation. With our notations, this means that I = EK ◦ DK1 ◦ EK and F =
EK ◦DK1 . None of the previously described attacks apply to such a scheme.

Let us consider 2αn blocks Mi and the associated internal value

Xi = Internal(Mi, 1) = I(Mi).

In order to learn I(Mi), we first remark that ∆I(Mi) = I(Mi) ⊕ I(Mi ⊕ 1) can be
seen as an identifier for Mi. Of course, this identifier is somewhat ambiguous, since
∆I(Mi) and ∆I(Mi ⊕ 1) are identical. However, given any value for the identifier,
it has only a few associated values (unless I is almost linear, in which case simpler
attacks are available).

With this in mind, we can apply the technique of subsection 4.2 that computes
∆I(Mi) for O(2

αn) blocks Mi asking 2
(α+β)n MAC tags (with α+ 2β larger than 1).

Then, we ask for the MAC tags of pairs of messages whose only difference is that
the last blocks are respectively Tj and Tj⊕1. We denote by Yj the intermediate value
after the exclusive-or with Tj , i.e., the input of the final transformation F ◦EK = I.
Consequently, when the last block is Tj⊕1, the input of I is Yj⊕1. So, the exclusive-or
of queried MAC tags reveals ∆I(Yj).

Finally, if we compute 2(1−α)n values ∆I(Yj), we obtain, with high probability, a
collision with one of the ∆I(Mi). As we already explained, ∆I is a good identifier
so we probably have Mi = Yj . However, there might be false alarms, i.e., apparent
collision not resulting from a real one. False alarms are easy to detect by computing
a few additional MAC values.

Given a real collision, we know that I(Mi) is equal to the MAC tag whose last
intermediate value is Yj . Thus, since we have learned the initial value of the CBC
chain, we can compute K through exhaustive search, as we previously explained.
This attack requires a total of approximately 2(α+β)n+2(1−α)n MAC computations for
chosen messages, with α+2β ≥ 1. The best compromise is obtained with α = β = 1/3
and the number of queried MAC tags is about 22n/3.

When using the DES, we need 243 messages followed by an exhaustive search
roughly equivalent to a simple exhaustive search on a single DES key.

10



The general case with arbitrary I and F . We finally explain that, even if I and F
are arbitrary transformations, the internal key K can still be attacked, even if the
complexity is less practical than in previous cases.
Always using the technique of section 4.2 we can consider 2αn intermediate values

Xi which are unknown but whose pairwise exclusive-or are known. This requires the
query of 2(α+1)n/2 MAC tags of chosen messages.
Then, for each intermediate value Xi, the technique of section 4.1 allows to com-

pute ∆i = EK(Xi) ⊕ EK(Xi ⊕ 1) asking 2
n/2 MAC computation for each Xi. With

this list of ∆i in mind, we know guess a key K ′ and a block X, and we compute
∆ = EK′(X)⊕EK′(X ⊕ 1). If K = K ′ and X is one of the Xis, ∆ is in the list of the
∆is. We do not know the related Xi value but we know δ = Xi ⊕Xj for any other j.
Consequently, we learn the following test

EK(X ⊕ δ)⊕ EK(X ⊕ δ ⊕ 1) = ∆j .

This allows to know if we have really guessed the correct key K or if it is only a false
alarm.
The probability to correctly guess K = K ′ and that X is one of the Xis is about

1 over 2k × 2(1−α)n, where k is the key size of K. The total number of MAC queries
is 2(α+1)n/2 + 2n/2 and the complexity of the search on K ′ and X is O(2k+(1−α)n).
According to the choice of α, we obtain different compromises. The main ones are:

α parameter number of MAC queries search complexity

α = 0 O(2n/2+1) O(2k+n)

α = 1/2 O(23n/4) O(2k+n/2)

α = 1 O(2n) O(2k)

7 Conclusion

The main conclusion of this paper is that the use of MAC algorithms based on an
internal CBC chain using a weak block cipher such as DES must be carefully recon-
sidered, whatever the initial and final transformation may be. A much more secure
approach is to use a strong block cipher such as AES with a provably secure MAC
algorithm.

Acknowledgments

We would like to thank the anonymous referees for pointing out important references.

References

1. ANSIX9.19, American National Standard–Financial institution retail message authentication,
1986.

2. ANSIX9.9, American National Standard–Financial institution message authentication (whole-
sale), 1982. Revised in 1986.

3. M. Bellare, J. Kilian, and P. Rogaway. The Security of the Cipher Block Chaining Message
Authentication Code. In Crypto ’94, LNCS 839, pages 362–399. Springer-Verlag, 1994.

11



4. B. Bollobás. Random Graphs. Academic Press, New York, 1985.
5. D. Coppersmith, L.R. Knudsen, and C.J. Mitchell. Key recovery and forgery attacks on the

MacDES MAC algorithm. In Crypto 2000, LNCS 1880, pages 184–196. Springer-Verlag, 2000.
6. D. Coppersmith and C.J. Mitchell. Attacks on MacDES MAC algorithm. Electronic Letters,

35:1626–1627, 1999.
7. ISO/IEC 9797–1, Information technology–Security techniques–Message Authentication Codes

(MACs)–Part 1: Mechanisms using a block cipher, 1999.
8. S. Janson, T. ÃLuczak, and A. Ruciński. Random Graphs. John Wiley, New York, 1999.
9. L.R. Knudsen and B. Preneel. MacDES: MAC algorithm based on DES. Electronic Letters,

34:871–873, 1998.
10. NIST. Computer Data Authentication, may 1985. Federal Information Processing Standards

PUBlication 113.
11. NIST. Recommendation for Block Cipher Modes of Operation: The RMAC Authentication

Mode, november 2002. NIST Special Publication 800-38B.
12. B. Preneel and P.C. van Oorschot. On the security of iterated Message Authentication Codes.

IEEE Transactions on Information Theory, 45(1):188–199, January 1999.

12


