
New Results on Boomerang and Rectangle

Attacks?

Eli Biham,1 Orr Dunkelman,1 Nathan Keller2

1Computer Science Department, Technion.
Haifa 32000, Israel

{biham,orrd}@cs.technion.ac.il
2Mathematics Department, Technion.

Haifa 32000, Israel
nkeller@tx.technion.ac.il

Abstract. The boomerang attack is a new and very powerful crypt-
analytic technique. However, due to the adaptive chosen plaintext and
ciphertext nature of the attack, boomerang key recovery attacks that re-
trieve key material on both sides of the boomerang distinguisher are hard
to mount. We also present a method for using a boomerang distinguisher,
which enables retrieving subkey bits on both sides of the boomerang dis-
tinguisher. The rectangle attack evolved from the boomerang attack.In
this paper we present a new algorithm which improves the results of the
rectangle attack.

Using these improvements we can attack 3.5-round SC2000 with 267

adaptive chosen plaintexts and ciphertexts, and 10-round Serpent with
time complexity of 2173.8 memory accesses (which are equivalent to 2165.3

Serpent encryptions) with data complexity of 2126.3 chosen plaintexts.

1 Introduction

Differential cryptanalysis [3] is based on studying the propagation of differences
through an encryption function. Since its introduction many techniques based
on it were introduced. Some of these techniques, like the truncated differentials
[11] and the higher order differentials [2, 11], are generalizations of the differ-
ential attack. Some other techniques like differential-linear attack [14] and the
boomerang attack [18] use the differential attack as a building block.

The boomerang attack is an adaptive chosen plaintext and ciphertext at-
tack. It is based on a pair of short differential characteristics used in a specially
built quartet. In the attack a pair of plaintexts with a given input difference are
encrypted. Their ciphertexts are used to compute two other ciphertexts accord-
ing to some other difference, these new ciphertexts are then decrypted, and the
difference after the decryption is compared to some (fixed known) value.

? The work described in this paper has been supported by the European Commission
through the IST Programme under Contract IST-1999-12324.

2

The boomerang attack was further developed in [10] into a chosen plaintext
attack called the amplified boomerang attack. Later, the amplified boomerang
attack was further developed into the rectangle attack [7].

In the transition from the boomerang attack to the rectangle attack the
probability of the distinguisher is reduced (in exchange for easing the require-
ments from adaptive chosen plaintext and ciphertext attack to a chosen plain-
text attack). The reduction in the distinguisher’s probability results in higher
data complexity requirements. For example, the data requirements for distin-
guishing a 2.5-round SC2000 [17] from a random permutation using a rectangle
distinguisher is 284.6 chosen plaintext blocks, whereas only 239.2 adaptive chosen
plaintext and ciphertext blocks are required for the boomerang distinguisher.

In this paper we present a method to retrieve more subkey bits in key recov-
ery boomerang attacks. We also present a better algorithm to perform rectangle
attacks. These improvements result in better key recovery attacks which re-
quire less data or time (or both) and are more effective. The improvement to
the generic rectangle attack reduces the time complexity of attacking 10-round
Serpent from 2217 memory accesses1 to 2173.8 memory accesses which are equiv-
alent to about 2166.3 10-round Serpent encryptions. We also prove that these
key recovery attacks succeed (with very high probability) assuming that the
distinguishers are successful.

The paper is organized as follows: In Section 2 we briefly describe the boomerang
and the rectangle attacks. In Section 3 we present our new optimized generic
rectangle attack and analyze its application to generic ciphers and to SC2000 and
Serpent. In Section 4 we present our optimized generic boomerang attack and
analyze its application to both a generic cipher and real blockciphers like SC2000
and Serpent. Section 5 describes a new technique to transform a boomerang dis-
tinguisher into a key recovery attack that retrieves more subkey material. We
summarize this paper and our new results in Section 6.

2 Introduction to Boomerang and Rectangle Attacks

2.1 The Boomerang Attack

The boomerang attack was introduced in [18]. The main idea behind the boomerang
attack is to use two short differentials with high probabilities instead of one dif-
ferential of more rounds with low probability. The motivation for such an attack
is quite apparent, as it is easier to find short differentials with a high probability
than finding a long one with a high enough probability.

We assume that a block cipher E : {0, 1}n × {0, 1}k → {0, 1}n can be de-
scribed as a cascade E = E1 ◦ E0, such that for E0 there exists a differential
α → β with probability p, and for E1 there exists a differential γ → δ with
probability q. The boomerang attack uses the first characteristic (α→ β) for E0

with respect to the pairs (P1, P2) and (P3, P4), and uses the second characteristic

1 In [7] it was claimed to be 2205 due to an error that occurred in the analysis.

3

(γ → δ) for E1 with respect to the pairs (C1, C3) and (C2, C4). The attack is
based on the following boomerang process:

– Ask for the encryption of a pair of plaintexts (P1, P2) such that P1⊕P2 = α
and denote the corresponding ciphertexts by (C1, C2).

– Calculate C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, and ask for the decryption of the
pair (C3, C4). Denote the corresponding plaintexts by (P3, P4).

– Check whether P3 ⊕ P4 = α.

We call these steps (encryption, XOR by δ and then decryption) a δ−shift.
For a random permutation the probability that the last condition is satisfied

is 2−n. For E, however, the probability that the pair (P1, P2) is a right pair with
respect to the first differential (α → β) is p. The probability that both pairs
(C1, C3) and (C2, C4) are right pairs with respect to the second differential is q

2.
If all these are right pairs, then they satisfy E−1

1 (C3)⊕E−1
1 (C4) = β = E0(P3)⊕

E0(P4), and thus, with probability p also P3⊕P4 = α. Therefore, the probability
of this quartet of plaintexts and ciphertexts to satisfy the boomerang conditions
is (pq)2. Therefore, pq > 2−n/2 must hold for the boomerang distinguisher (and
the boomerang key recovery attacks) to work.
The attack can be mounted for all possible β’s and γ’s simultaneously (as

long as β 6= γ), thus, a right quartet for E is built with probability (p̂q̂)2, where:

p̂ =

√

√

√

√

∑

β

α→β

Pr 2[α→ β] and q̂ =

√

√

√

√

∑

γ

γ→δ

Pr 2[γ → δ].

We refer the reader to [18, 7] for the complete description and the analysis.

2.2 The Rectangle Attack

Converting adaptive chosen plaintext and ciphertext distinguishers into key re-
covery attacks pose several difficulties. Unlike the regular known plaintext, cho-
sen plaintext, or chosen ciphertext distinguishers, using the regular methods of
[3, 15, 11, 4, 5, 14] to use adaptive chosen plaintext and ciphertext distinguishers
in key recovery attacks fail, as these techniques require the ability to directly
control either the input or the output of the encryption function.
In [10] the amplified boomerang attack is presented. This is a method for elim-

inating the need of adaptive chosen plaintexts and ciphertexts. The amplified
boomerang attack achieves this goal by encrypting many pairs with input differ-
ence α, and looking for a quartet (pair of pairs) for which, C1⊕C3 = C2⊕C4 = δ
when P1 ⊕ P2 = P3 ⊕ P4 = α. Given the same decomposition of E as before,
and the same basic differentials α → β, γ → δ, the analysis shows that the
probability of a quartet to be a right quartet is 2−(n+1)/2pq.
The reason for the lower probability is that no one can guarantee that the γ

difference (in the middle of the encryption; needed for the quartet to be a right
boomerang quartet) is achieved. The lower probability makes the additional

4

problem (already mentioned earlier) of finding and identifying the right quartets
even more difficult.

The rectangle attack [7] shows that it is possible to count over all the possible
β’s and γ’s, and presents additional improvements over the amplified boomerang
attack. The improvements presented in the rectangle attack improve the proba-
bility of a quartet to be a right rectangle quartet to 2−n/2p̂q̂.2

3 Improving the Rectangle Attack

The main problem dealt in previous works is the large number of possible quar-
tets. Unlike in the boomerang attack, in which the identification of possible
quartets is relatively simple, it is hard to find the right quartets in the rectangle
attacks since the attacker encrypts a large number of pairs (or structures) and
then has to find the right quartets through analysis of the ciphertexts. As the
number of possible quartets is quadratic in the number of pairs3, and as the
attacker has to test all the quartets, it is evident that the time complexity of the
attack is very large.

In this section we present an algorithm which solves the above problem by
exploiting the properties of a right quartet, and which tests only a small part
of the possible quartets. The new algorithm is presented on a generic cipher
with the following parameters: Let E be a cipher which can be described as a
cascade E = Ef ◦E1 ◦E0 ◦Eb, and assume that E0 and E1 satisfy the properties
of E0 and E1 presented in Section 2 (i.e., there exist differentials α → β with
probability p of E0 and γ → δ with probability q of E1). An outline of such an
E is presented in Figure 1. We can treat this E as composed of E ′ = E1 ◦ E0

(for which we have a distinguisher) surrounded by the additional rounds of Eb

and Ef . As mentioned in Section 2, for sufficiently high probabilities p̂, q̂, we can
distinguish E1 ◦ E0 from a random permutation using either a boomerang or a
rectangle distinguisher. However, we also like to mount key recovery attacks on
the full E.

Recall that the rectangle distinguisher parameters are α, δ, p̂, and q̂. Given
these parameters, the rectangle distinguisher of the cipher E ′ = E1 ◦ E0 can
easily be constructed.

Before we continue we introduce some additional notations: Let Xb be the
set of all plaintext differences that may cause a difference α after Eb. Let Vb be
the space spanned by the values in Xb. Note that usually n− rb bits are set to
0 for all the values in Vb. Let rb = log2 |Vb| and tb = log2 |Xb| (rb and tb are not
necessarily integers). Let mb be the number of subkey bits which enter Eb and
affect the difference of the plaintexts by decrypting pairs whose difference after

2 This is a lower bound for the probability. For further analysis see [7].
3 In the rectangle attack the quartet [(x, y), (z, w)] differs from the quartet
[(x, y), (w, z)].

5

E E E Eb 0 1 f
Plaintext Ciphertext

E’

E

Fig. 1. Outline of E

Eb is α, or formally

mb =

∣

∣

∣

∣

∣

{

K ′

∣

∣

∣

∣

∣

w(K ′) = 1 and ∃K,x :
E−1

bK
(x)⊕ E−1

bK
(x⊕ α) 6=

E−1
bK⊕K′

(x)⊕ E−1
bK⊕K′

(x⊕ α)

}∣

∣

∣

∣

∣

where w(x) denotes the hamming weight of x.
Similarly, let Xf is the set of all ciphertext differences that a difference δ

before Ef may cause. Let Vf denote the space spanned by the values of Xf and
denote rf = log2 |Vf |. Let tf = log2 |Xf |. Let mf be the number of subkey bits
which enter Ef and affect the difference when encrypting a pair with difference
δ or formally

mf =

∣

∣

∣

∣

{

K ′

∣

∣

∣

∣

w(K ′) = 1 and ∃K,x :
EfK (x)⊕ EfK (x⊕ α) 6=
EfK⊕K′ (x)⊕ EfK⊕K′ (x⊕ α)

}
∣

∣

∣

∣

.

We outline all these notations in Figure 2.
Our new algorithm for using rectangle distinguisher in a key recovery attack

is as follows:

1. Create Y = d2n/2+2−rb/p̂q̂e structures of 2rb plaintexts each. In each struc-
ture choose P0 randomly and let L = P0 ⊕ Vb be the set of plaintexts in the
structure.

2. Initialize an array of 2mb+mf counters. Each counter corresponds to a dif-
ferent guess of the mb subkey bits of Eb and the mf subkey bits of Ef .

3. Insert the N = Y · 2rb ciphertexts into a hash table according to the n− rf
ciphertext bits that are set to 0 in Vf . If a pair agrees on these n− rf bits,
check whether the ciphertext difference is in Xf .

4. For each collision (C1, C2) which remains, denote Ci’s structure by SCi
and

attach to C1 the index of SC2
and vice versa.

5. In each structure S we search for two ciphertexts C1 and C2 which are
attached to some other S′. When we find such a pair we check that the
P1 ⊕ P2 (the corresponding plaintexts) is in Xb, and check the same for the
plaintexts which P1 and P2 are related to.

6

E E E E0 1 f

δ difference between

m :subkey bits

b

b
m : subkey bits

f

differences in
the active bits
in X

values lead to
 difference.α

X :possible

differences in
the active bits
in X

X :possible
values cuased by
 difference.δ
V :set of all

α difference between

(C ,C) and (C ,C).(P ,P) and (P ,P).

V :set of all

b

431 2 1 43 2

f

fb

fb

Fig. 2. The Notations Used in This Paper

6. For all the quartets which passed the last test denote by (P1, P2, P3, P4)
the plaintexts of a quartet and by (C1, C2, C3, C4) the corresponding ci-
phertexts. Increment the counters which correspond to all subkeys Kb,Kf

(actually their bits which affect the α and δ differences, respectively) for
which EbKb

(P1) ⊕ EbKb
(P2) = EbKb

(P3) ⊕ EbKb
(P4) = α and E−1

fKf

(C1) ⊕

E−1
fKf

(C3) = E−1
fKf

(C2)⊕ E−1
fKf

(C4) = δ.

7. Output the subkey with maximal number of hits.

The data complexity of the attack is N = 2rbY = 2rbd2n/2+2−rb/p̂q̂e cho-
sen plaintexts. The time complexity of Step 1 (the data collection step) is N
encryptions. The time complexity of Step 2 is 2mb+mf memory accesses in a
trivial implementation and only one memory access using a more suitable data
structures (like B-trees).

Step 3 requires N memory accesses for the insertion of the ciphertexts into
a hash table (indexed by the n− rf bits which are set to 0 in Vf). The number
of colliding pairs is about N 2 · 2rf−n/2 as there are N plaintexts divided into
2n−rf bins (each bin correspond to a value of the n − rf bits). Note that we
not necessarily use all the bins due to large memory requirements (i.e., we can
hash only according the first 30 bits set to 0 in Vf). For each collision we check
whether the difference of the ciphertexts of the colliding pair belongs to Xf . We
keep all the 2tf values of Xf in a hash table, and thus, the check requires one
memory access for each colliding pair. Out of the 2rf possible differences for a
colliding pair, only 2tf differences are in Xf (i.e., can occur in a right quartet),
and thus, about N2 · 2tf−n−1 pairs remain. The time complexity of this step is
N +N2 · 2rf−n−1 memory accesses on average.

Step 4 requires one memory access for each pair which passes the filtering
of Step 3. In a real implementation it is wiser to implement Step 4 as part of
Step 3, but we separate these steps for the sake of simpler analysis. As there are

7

N2·2tf−n−1 such pairs, the time complexity of this step is on averageN 2·2tf−n−1

memory accesses.

Step 5 implements a search for possible quartets. In a right quartet both
(P1, P2) and (P3, P4) must satisfy that Eb(P1)⊕Eb(P2) = Eb(P3)⊕Eb(P4) = α,
and thus any right quartet must be combined from some P1, P2 ∈ S and P3, P4 ∈
S̃ where S and S̃ are two (not necessarily distinct) structures. Moreover, a right
quartet satisfies that E−1

f (C1)⊕ E−1
f (C3) = E−1

f (C2)⊕ E−1
f (C4) = δ, and thus

C1 is attached to SC3
and C2 is attached to SC4

and as P3, P4 are from the same
structure then – SC3

= SC4
. Therefore, in each structure S we search for colliding

attachments, i.e., pairs of ciphertexts in S which are attached to the same (other)
structure S̃. The N2 · 2tf−n−1 attachments (colliding pairs) are distributed over
Y structures, and we get that approximately (N ·2tf+rb−n−1)2/Y possible quar-
tets are suggested in each structure (where a quartet corresponds to a pair of
plaintexts from some structure attached to the same structure). We implement
the test in the same manner as in Step 3, i.e., keeping a hash table HS for each
structure S and inserting each ciphertext C to HSC according to the index of
the structure attached to C. Denoting the plaintexts of the suggested quartet
by (P1, P2, P3, P4) and their corresponding ciphertexts by (C1, C2, C3, C4), we
first check that P1 ⊕ P2 ∈ Xb. This test requires one memory access for each
possible quartet. The probability that the value P1 ⊕ P2 is in Xb is 2

tb−rb . A
quartet which fails this test can be discarded immediately. Therefore, out of the
N2 · 22tf+2rb−2n−2 possible quartets only N 2 · 22tf+rb+tb−2n−2 quartets remain.
As stated before, this filtering requires one memory accesses for each candidate
quartet, thus the algorithm requires N 2 ·22tf+2rb−2n−2 memory accesses. We can
discard more quartets by testing whether P3⊕P4 ∈ Xb. In total this step requires
N2 · 22tf+2rb−2n−2 · (1 + 2tb−rb) memory accesses and about N 2 · 22tf+2tb−2n−2

quartets remain after this step.

In Step 6 we try to deduce the right subkey from the remaining quartets.
Recall that a right quartet satisfies Eb(P1)⊕Eb(P2) = α = Eb(P3)⊕Eb(P4). Both
pairs are encrypted by the same subkey, hence, a right quartet must agree on Kb

(themb subkey bits which enter Eb and affect the output difference α). There are
2tb possible input differences that lead to α difference after Eb, therefore, 2

mb−tb

subkeys on average take one of these values into the difference α. As each pair
suggests 2mb−tb subkeys, they agree on average on (2mb−tb)2/2(2mb) = 2mb−2tb−1

subkeys for Eb. We can find these options by keeping in a precomputed table
either the possible values for any pair on its own, or for the whole quartet.
Repeating the analysis for Ef , (C1, C3), and (C2, C4) we get about 2

mf−2tf−1

subkeys suggestions from each quartet. Thus, each of the remaining quartets
suggests 2mb+mf−2tf−2tb−2 possible subkeys. There are 2mb+mf possible subkeys
and N2 ·22tf+2tb−2n−2 ·2mb+mf−2tf−2b−2 = N2 ·2mb+mf−2n−4 hits. The expected
number of hits for a (wrong) subkey is about N 2 · 2−2n−4. Since N ≤ 2n is the
number of plaintexts the expected number of hits per wrong subkey is less than
2−4 = 1/16, and we can conclude that the attack almost always succeeds in
recovering subkey bits (since the number of expected hits for the right subkey
is 4), or at least reduces the number of candidates for the right subkey. We

8

can insert the 2mb−tb subkeys suggested by (P1, P2) into a hash table, and for
each subkey suggested by the pair (P3, P4) we can check whether it was already
suggested. Doing the same for Ef we get that for each quartet we need 3 ·
2mb−tb +3 ·2mf−tf memory accesses. We can optimize this a little bit by storing
in advance a table and a list for each difference inXb and save the time of building
the hash table. This method saves 1/3 of the number of memory accesses. Using
this method this step requires about N 2 · 22tf+2tb−2n−3 · (2mb−2tb − 2mf−2tf) =
N2 · 2−2n−3 · (2mb+2tf + 2mf+2tb) memory accesses for the entire attack.

Step 7 requires 2mb+mf memory accesses using a trivial implementation,
which can be reduced to 1–4 memory accesses using a more efficient data struc-
ture (e.g., B-trees or dynamic hash tables).

Overall, this algorithm requires N = 2rbY = 2rbd2n/2+2−rb/p̂q̂e chosen
plaintexts, and time complexity of N +N 2(2rf−n−1 + 2tf−n + 22tf+2rb−2n−2 +
2mb+tb+2tf−2n−1+2mf+2tb+tf−2n−1) memory accesses. The memory complexity
is N + 2tb + 2tf + 2mb+mf .

Table 1 summarizes the time complexity of each step and the number of
plaintexts / pairs / quartets that remain after each step of the algorithm.

Step Short Time # Remaining Texts/
No. Description Complexity Pairs/Quartets

1 Data generation N encryptions N plaintexts
2 Subkey counters’ init. 1 MA No change
3 First filtering N +N22rf−n−1 MA N2 · 2tf−n−1 pairs
4 Suggesting quartets N22tf−n−1 MA No change
5 Eliminating quartets N222tf+2rb−2n−2 MA N222tf+2tb−2n−2 qts.
6 Subkey detection N22tb+tf−2n−1(2mb+tf+2mf+tb)MA No change
7 Printing subkey 1–4 MA No change

MA - Memory Accesses

Table 1. The Rectangle Attack Steps and their Effect

Using this algorithm we can break 3.5-round SC2000, using the following
decomposition: Eb consists of the first S4 layer, the following 1.25 rounds are E0,
the next 1.25 rounds are E1, and the final S4 layer is Ef . For this decomposition
the following properties were presented in [8]: rb = rf = mb = mf = 40, tb =
27, tf = 27.9, n = 128, p̂ = 2

−8.96, q̂ = 2−9.16. Thus, we conclude that the data
complexity is N = 284.6 chosen plaintexts and that the time complexity is 284.6

memory accesses, which slightly improves the results in [8].

We can also break 10-round Serpent using the following decomposition: Eb

consists of round 0. The following 4 rounds are E0, the next 4 rounds are E1,
and round 9 is Ef . For this decomposition the following properties are presented

9

in [7]:4 rb = mb = 76, rf = mf = 20, tb = 48.85, tf = 13.6, n = 128, p̂ =
2−25.4, q̂ = 2−34.9. Thus, we conclude that the data complexity is N = 2126.3

chosen plaintexts and that the time complexity is 2173.8 memory accesses. Note
that the time complexity of the attack presented in [7] is 2217 memory accesses
using 2196 memory cells (or 2219.4 memory accesses with 2131.8 memory cells).
Note that we can use the above algorithm in several other scenarios. One of

them is a chosen ciphertext scenario, where the above algorithm is applied on
E−1 = E−1

b ◦ E−1
0 ◦ E−1

1 ◦ E−1
f . The analysis of this case is the same as before

as long as we replace in the above equations all the sub-scripts b by f and vice
versa.
Sometimes, we might want to attack a cipher E with additional rounds only

at one side, i.e., to divide E to E = E1 ◦ E0 ◦ Eb (or E = Ef ◦ E1 ◦ Eb). In this
case our analysis still holds with mf = rf = tf = 0.

4 A Key Recovery Attack Based on Boomerang

Distinguisher

In this section we apply our ideas from the previous section to the boomerang
attack. We generalized the results of [18, 8]. Like the rectangle attack, we have
found that whenever the boomerang distinguisher succeeds then the key recovery
attack also succeeds.
There are various standard techniques to use distinguishers for a key recovery

attack [3, 15, 11, 4, 5]. The basic idea is to try all subkeys which affect the differ-
ence (or the approximation) before and after the distinguishers (i.e., in Eb and
Ef), and to deduce that the correct subkey is the one for which the statistical
distinguisher has the best results. However, this basic idea can be very expensive
in terms of time and memory complexities. Moreover, due to the adaptive chosen
plaintext and ciphertext requirement, using a boomerang distinguisher in a key
recovery attack can be done if either Eb or Ef is present but not when both
exist.
As both boomerang and rectangle distinguishers exploit the same α and δ,

we use the same notations of E = Ef ◦E1 ◦E0 ◦Eb, mb , rb , tb, mf , rf , and tf
as in the earlier sections.
The generic boomerang attack on E = E1 ◦ E0 ◦ Eb is as follows:

1. Initialize an array of 2mb counters. Each counter corresponds to a different
guess of the mb subkey bits of Eb.

2. Generate a structure F of plaintexts, choose P0 randomly and let F = P0⊕Vb

be the set of plaintexts in the structure.
3. Ask for the encryption of F and denote the set of ciphertexts by G.
4. For each ciphertext c ∈ G compute c′ = c ⊕ δ, and define the set H =
{c⊕ δ|c ∈ G}.

5. Ask for the decryption of H, and denote the plaintexts set by I.

4 As stated earlier, in [7] it was mistakenly claimed that tb = 64. We use the correct
value of 76, and derive the correct time complexity.

10

6. Insert all the plaintexts in I into a hash table according to the n−rb plaintext
bits which are set to 0 in Vb.

7. In case of a collision of plaintexts in the hash table:
(a) Denote the plaintexts which collide in the hash table by (P3, P4), and

test whether P3 ⊕ P4 ∈ Xb. If this condition is satisfied denote the
plaintexts from F which correspond to (P3, P4) by (P1, P2). Test whether
P1 ⊕ P2 ∈ Xb. If any of the tests fails, discard this quartet.

(b) For a quartet (P1, P2, P3, P4) which passes the above filtering we check
all possible Kb which enter Eb (actually its bits which affect the α)
and increment the counters which correspond to the subkeys for which
EbKb

(P1)⊕ EbKb
(P2) = EbKb

(P3)⊕ EbKb
(P4) = α.

8. Repeat Steps 2–7 until a subkey is suggested 4 times.

Steps 2–5 perform a δ-shift on structures (and not on the pairs directly).
From the analysis in [18] and the properties of the algorithm it is evident

that the data complexity of the attack is about 8(p̂q̂)−2. However, we generate
at least 2rb+1 plaintexts and ciphertexts, and thus the data complexity of the
attack is N = max{2rb+1, 8(p̂q̂)−2}.
The time complexity of Step 1 is equivalent to 2mb memory accesses. How-

ever, we can keep the counters in more efficient data structures (like B-trees, or
dynamic hash tables) for which Step 1 takes only one memory access.
In steps 2–5 we encrypt N/2 plaintexts, compute N/2 XOR operations and

decrypt N/2 ciphertexts. Thus, the total time complexity of Steps 2–5 for the
whole attack is N encryptions/decryptions.
Repeating the analysis from the previous section, we restrict our attention to

time complexity analysis for each F independently of other F ’s, as each execution
of Steps 6–7 for a given structure is independent of the execution of these steps
for other structures.
As we insert the plaintexts into a hash tables, each plaintext in I requires

one memory access. Thus, the time complexity of Step 6 is 2rb memory accesses
per structure, and therefore N/2 memory accesses for the entire attack.
Repeating the analysis from the previous section (with the relevant minor

changes), we get that Step 7 for each structure I (and therefore, for each F)
requires about 23rb−n−1 memory accesses. For the entire N/2rb+1 structures
this step requires 23rb−n−1 ·N/2rb+1 = N · 22rb−n−1 memory accesses.
Using the same arguing about right quartets (as in right quartet both (P1, P2)

and (P3, P4) have an α difference after Eb), we get that each pair suggests 2
mb−tb

subkeys, and both pairs agree on (2mb−tb)2/2(2mb) = 2mb−2tb−1 subkeys for Eb

on average. Hence, the expected number of memory accesses in Step 7(b) is
2tb+mb+rb−n for each structure. We conclude that the total time complexity of
Step 7(b) is expected to be N ·2tb+mb−n−1 memory accesses for the whole attack.
Each structure F induces about 22tb+rb−n−1·2mb−2tb−1 = 2rb+mb−n−2 subkey

hits. As there are N/2rb+1 structures, the total number of subkey hits is expected
to be N · 2mb−n−3, which are distributed over 2mb subkeys. Thus, the expected
number of hits for each subkey is N · 2−n−3. As N ≤ 2n, the expected number
of hits for a wrong subkey is less then 1/8 while the right subkey is expected to

11

get 4 hits. This is sufficient for either recovering the right subkey, or to reduce
the subkey candidates space by a very large factor.
In Step 8 we check whether one of the counters has the value of 4 (or more).

This has to be done whenever we finish Step 7(b) for some F . We can implement
this step as part of Step 7(b). Whenever a counter is increased we check that
it has not exceeded 4. However, this method results in enlarging the time of
Step 7(b). Using more appropriate data structures, we can perform the check
once whenever we replace the F structure we work with. This yields a time
complexity of N/2rb+1 memory accesses.
We conclude that the attack requires N = max{2rb+1, 8(p̂q̂)−2} adaptive

chosen plaintexts and ciphertexts and time complexity of about N(1+22rb−n−2+
2tb+mb−n−1) memory accesses.
Table 2 summarizes the time complexity of each step and the number of

plaintexts / pairs / quartets that remain after each step of the algorithm.

Step Short Time # of Remaining Plaintexts/
No. Description Complexity Pairs/ Quartets

1 Subkey counters’ init. 1 MA —
2+3 Data generation N/2 encryptions N/2 plaintexts
4 Data generation N/2 MA No change
5 Data generation N/2 decryptions N plaintexts
6 Finding possible quartets N/2 MA N · 22rb−n−2 quartets
7(a) Eliminating quartets N · 22rb−n−2 MA N · 22tb−n−2 quartets
7(b) Subkey detection N · 2rb+mb−n−1MA No change
8 Printing subkey N/2rb+1 MA No change

MA - Memory Accesses

Table 2. The Basic Boomerang Attack Steps and their Effect

Using this algorithm, we can break 3-round SC2000, using the following de-
composition: Eb consists of the first S4 layer, the following 1.25 rounds are E0

and the next 1.25 rounds are E1. For this decomposition the following properties
were presented in [8]: rb = mb = 40, tb = 27, n = 128, p̂ = 2

−8.96, q̂ = 2−9.16.
Thus, we conclude that the data complexity of the attack is N = 241 adaptive
chosen plaintexts and ciphertexts. The time complexity of the attack is about
241 memory accesses.
We attack 9-round Serpent, using this algorithm and the following decom-

position: Eb consists of round 0, the following 4 rounds are E0, and the next 4
rounds are E1. For this decomposition the following properties were presented
in [7]: rb = mb = 76, tb = 48.85, n = 128, p̂ = 2

−25.4, q̂ = 2−34.9. The data com-
plexity of the attack is N = 2123.6 adaptive chosen plaintexts and ciphertexts,
with time complexity of 2147.2 memory accesses. We can also attack rounds 1–9
of Serpent using the decomposition used in the previous section. In this attack
we are attacking rounds 9–1 (i.e., the attack is on E−1

0 ◦ E−1
1 ◦ E−1

f). For this

12

decomposition we get: rf = mf = 20, tf = 13.6, n = 128, p̂ = 2
−25.4, q̂ = 2−34.9.

Obviously the data complexity does not change, as we use the same underly-
ing distinguisher. However, the time complexity of this attack drops to 2123.6

memory accesses (instead of 2147.2).

5 Enhancing the Boomerang Attack

In this section we present a new method to use the boomerang attack with both
Eb and Ef . Recall that the main step of the boomerang attack is the δ-shift
(encryption of each plaintext, XORing of the corresponding ciphertext with δ,
and decryption of the outcome). Our method uses a generalization of the δ-shift.
The new algorithm to attack Ef ◦ E1 ◦ E0 ◦ Eb is as follows:

1. Initialize an array of 2mb+mf counters. Each counter corresponds to a dif-
ferent guess of the mb subkey bits of Eb and the mf bits of Ef .

2. Generate a structure F of plaintexts, choose P0 randomly and let F = P0⊕Vb

be the set of plaintexts in the structure.
3. Ask for the encryption of F and denote the set of ciphertexts by G.
4. For each c ∈ G and ε ∈ Xf compute c′ = c ⊕ ε, and define the set H =
{c⊕ ε| c ∈ G and ε ∈ Xf}.

5. Ask for the decryption of H, and denote the plaintexts set by I.
6. Insert all the plaintexts in I into a hash table according to the n−rb plaintext
bits which are set to 0 in Vb.

7. In case of a collision of plaintexts in the hash table:
(a) Denote the plaintexts which collide in the hash table by (P3, P4), and

test whether P3 ⊕ P4 ∈ Xb. If this condition is satisfied denote the
plaintexts from F which correspond to (P3, P4) by (P1, P2). Test whether
P1 ⊕ P2 ∈ Xb. If any of the tests fails, discard this quartet.

(b) For a quartet (P1, P2, P3, P4) which passes the above filtering we obtain
from a precomputed table the possible values for the mb subkey bits
which enter Eb and affect the α difference. We also obtain from a precom-
puted table the possible values for themf subkey bits which enter Ef and
affect the δ difference. The specific implementation aspects of this step
are described later on. We increment counters which correspond to sub-
keys Kb,Kf for which EbKb

(P1)⊕EbKb
(P2) = EbKb

(P3)⊕EbKb
(P4) = α

and E−1
fKf

(C1)⊕ E−1
fKf

(C3) = E−1
fKf

(C2)⊕ E−1
fKf

(C4) = δ.

8. Repeat Steps 2–7 until a subkey is suggested 4 times.

We call Steps 2–5 an ε-shift as each plaintext is encrypted, then shifted by
all possible ε’s and the values of the shifted ciphertexts are decrypted.
The time complexity of Step 1 is equivalent to 2mb+mf memory accesses.

However, we can keep the counters in a more efficient data structures (like B-
trees, or dynamic hash tables), for which Step 1 takes only one memory access.
Each F induces a set of 2rb ciphertexts in G, and each ciphertext is shifted

by 2tf possible values, hence |H| = |I| = 2rb+tf . Even though we expand the

13

number of possible quartets (by multiplying the size of I by 2tf), the number
of right quartets does not change. Hence, we still need about d8(p̂q̂)−2/2rb+1e
structures.

The data complexity of the attack is N = 2rb+tf · d8(p̂q̂)−2/2rb+1e. However,
we might get that N > 2n. We can implement these cases in one of two ways.
The first way is to ask for the encryption/decryption N (not necessarily differ-
ent) oracle queries. The second way to implement this is to store the already
encrypted/decrypted values in a table, and test for each encryption/decryption
if it is already in the table, in order to save most of the encryptions/decryptions.
This way the attack requires 2n known plaintexts and N memory accesses.

Like in the previous section we perform the time complexity analysis for each
F independently of other F ’s, as each execution of Steps 6–7 for a given structure
is independent of the execution of these steps for some other structure.

Like in the previous section, Step 6 inserts into a hash table the plaintexts.
Thus, the time complexity of Step 6 is 2rb+tf memory accesses per structure,
and N memory accesses in total.

Since each collision in the hash table of Step 6 suggests a quartet, we have
in this step about 23rb+2tf−n−1 memory accesses for each structure F , and the ex-
pected number of remaining quartets is 23rb+2tf−n−1·(2tb−rb)2 = 22tb+rb+2tf−n−1.
Since there are N/2rb+tf structures we conclude that for the whole attack this
step requires about N · 22rb+tf−n−1 memory accesses.

We recover subkey material both in Eb and Ef . By repeating the analysis
from Section 3, each remaining quartet suggests 2mb+mf−2tb−2tf−2 subkeys for
Eb and Ef , and thus, we get 2

rb+mb+mf−n−3 hits (on average) from each struc-
ture and N · 2mb+mf−n−tf−3 subkey hits in total. We conclude that Step 7(b)
requires N ·2tb+tf−n−1 ·(2mb+tf +2mf+tb) memory accesses for the whole attack.

As there are about N · 2mb+mf−tf−n−3 subkey hits in total, the expected
number of hits per subkey is about N · 2−tf−n−3. Note that N might be bigger
than 2n but on the same time, N ≤ 2n+tf (as we take at most 2n ciphertexts
and shift them by 2tf values). We again find that the number of hits per wrong
subkey is ≤ 1/8.

In Step 8 we check whether one of the counters has the value of 4 (or more).
Using the same methods as in the previous section, we can use more appropriate
data structures which reduce the time complexity of this step to 1 memory
accesses for each F , and for the entire attack N/2rb+tf memory accesses.

The data complexity of the attack is N = 2rb+tf · d8(p̂q̂)2/2rb+1e adaptive
chosen plaintexts and ciphertexts (and as stated earlier if N > 2n we can replace
it by 2n known plaintexts using a table of size 2n). The expected time complexity
of the attack is N(2+22rb+tf−n−1+2mb+tb+2tf−n−1+2mf+2tb+tf−n−1) memory
accesses. The memory complexity of the attack is 2mb+mf + 2rb+tf .

Table 3 summarizes the time complexity of each step and the number of
plaintexts / pairs / quartets that remain after each step of the algorithm.

We use the same decomposition of 3.5-round SC2000 as in Section 3. For this
decomposition the following properties were presented in [8]: rb = rf = mb =
mf = 40, tb = 27, tf = 27.9, n = 128, p̂ = 2

−8.96, q̂ = 2−9.16. Hence, the data

14

Step Short Time # Remaining Texts/
No. Description Complexity Pairs/ Quartets

1 Subkey counters’ init. 1 MA —
2+3 Data generation N/2tf encryptions N/2tf plaintexts
4 Data generation N MA No change
5 Data generation N decryptions N Plaintexts
6 Eliminating wrong pairs N MA N22rb+2tf−n−2 qts.
7(a) Eliminating quartets N22rb+tf−n−1 MA N22tb+2tf−n−2 qts.
7(b) Subkey detection N2tb+tf−n−2(2mb+tf+2mf+tb)MA No change
8 Printing subkey N/2rb+tf MA No change

MA - Memory Accesses

Table 3. The Steps of the Improved Boomerang Attack and Their Effect

complexity of the attack is 267.9 adaptive chosen plaintexts and ciphertexts (this
complexity can be reduced to 267 by attacking E−1). The attack requires 267.9

memory cells (when we attack E−1 it requires only 267 memory cells). The time
complexity of the attack is 268.9 memory accesses (the attack on E−1 requires
268 memory accesses).
We also use the same decomposition of 10-round Serpent like in Section 3.

For this decomposition the following properties were presented in [7]: rb = mb =
76, rf = mf = 20, tb = 48.85, tf = 13.6, n = 128, p̂ = 2

−25.4, q̂ = 2−34.9. The
data complexity of the attack is N = 2123.6+13.6 = 2137.2. As mentioned before,
we can either treat this as 2137.2 queries to the encryption/decryption oracle (of
course not distinct queries) or we can just ask the encryption/decryption of any
plaintext/ciphertext we need, and store it in a table. The attack requires 2173.8

memory accesses.

6 Summary

This paper presents several contributions. The first contribution is an improved
generic rectangle attack. The improved attack algorithm can attack 10-round
Serpent with data complexity of 2126.3 chosen plaintexts and time complexity
of 2173.8 memory accesses. This new result enables attacking 10-round Serpent
with 192-bit subkeys. We also have shown that the algorithm is very successful
and almost always reduces the number of candidate subkeys.
The second contribution is a generic boomerang key recovery attack. The

attack uses similar techniques as in the rectangle key recovery attack and the
result is an efficient algorithm for retrieving subkey material. In the analysis of
this attack we found out that this attack also almost always succeeds.
The third contribution is extending the generic boomerang key recovery at-

tack to attack more rounds. This contribution allows for the boomerang attack
to attack as many rounds as the rectangle attack despite its adaptive chosen
plaintext and ciphertext nature. This allows to attack 10-round Serpent with

15

the enhanced boomerang attack using 2137.2 adaptive chosen plaintexts and ci-
phertexts (or 2128 known plaintexts), and 2173.8 memory accesses.
In Table 4 we compare the requirements of the generic attacks, and in Table 5
we present our new results on Serpent and SC2000. For comparison, we also in-
clude the previous boomerang and rectangle results and the best known attacks
against these ciphers.

Attack Rectangle Boomerang Enhanced
(Section 3) (Section 4) Boomerang (Section 5)

Cipher’s parts Ef ◦ E1 ◦ E0 ◦ Eb E1 ◦ E0 ◦ Eb Ef ◦ E1 ◦ E0 ◦ Eb

being attacked

Type of Chosen Plaintext Adaptive Chosen Adaptive Chosen
Attack Plaintext and Ciphert. Plaint. and Ciphertext

Data max{2rb , 2n/2+2/p̂q̂} max{8(p̂q̂)−2, 2rb} 2tf max{2rb , 8(p̂q̂)−2}
Complexity (N)

Memory N2(2rf−n−1 + 2tf−n N(1 + 22rb−n−2+ N(2 + 22rb+tf−n−1+
Accesses +22tf+2rb−2n−2 2tb+mb−n−1) 2mb+tb+2tf−n−1+

+2mb+2tf+tb−2n−1 2mf+tf+2tb−n−1)
+2mf+2tb+tf−2n−1)
+N

Memory Cells 2mb+mf +N 2rb + 2mb 2rb+tf + 2mb+mf

Subkey Bits mb +mf mb mb +mf

Hits per ≤ 1/16 ≤ 1/8 ≤ 1/8
Wrong Subkey

Table 4. Comparison of the Boomerang and the Rectangle Generic Attacks

References

1. Ross Anderson, Eli Biham, Lars R. Knudsen, Serpent: A Proposal for the Advanced
Encryption Standard, NIST AES Proposal, 1998.

2. Eli Biham, Higher Order Differential Cryptanalysis, unpublished paper, 1994.
3. Eli Biham, Adi Shamir, Differential Cryptanalysis of the Data Encryption Stan-

dard, Springer-Verlag, 1993.
4. Eli Biham, Alex Biryukov, Adi Shamir, Cryptanalysis of Skipjack reduced to 31

rounds, Advances in Cryptology, proceedings of EUROCRYPT ’99, LNCS 1592,
pp. 12–23, Springer-Verlag, 1999.

5. Eli Biham, Alex Biryukov, Adi Shamir, Miss in the Middle Attacks on IDEA
and Khufu, proceedings of Fast Software Encryption 6, LNCS 1636, pp. 124–138,
Springer-Verlag, 1999.

6. Eli Biham, Orr Dunkelman, Nathan Keller, Linear Cryptanalysis of Reduced Round
Serpent, proceedings of Fast Software Encryption 8, 2001, to appear.

7. Eli Biham, Orr Dunkelman, Nathan Keller, The Rectangle Attack – Rectangling the
Serpent, Advances in Cryptology, proceedings of EUROCRYPT ’01, LNCS 2045,
pp. 340–357, Springer-Verlag, 2001.

16

Cipher Attack Number Complexity
of Rounds Data Time Memory

SC2000 Rectangle – this paper 3.5 284.6 CP 284.6 MA 284.6

Boomerang – this paper 3 241 ACPC 241 MA 240

Boomerang – this paper 3.5 267 ACPC 267 MA 267

best Linear [19] 4.5 2104.3 KP 283.3 MA 280

Serpent Amp. Boomerang[10] 9 2110 CP 2252 MA 2208

Rectangle[7] 10 2126.8 CP 2217 MA 2192

Rectangle[7] 10 2126.8 CP 2219.4 MA 2126.8

Boomerang – this paper 9 2123.6 ACPC 2123.6 MA 221.5

Boomerang – this paper 10 2128 KP 2173.8 MA 296

Rectangle – this paper 10 2126.3 CP 2173.8 MA 2126.3

best Linear [6] 11 2118 KP 2214 MA 285

MA - Memory Accesses
CP - Chosen Plaintexts, KP - Known Plaintexts
ACPC - Adaptive Chosen Plaintexts and Ciphertexts

Table 5. New Boomerang and Rectangle Results on SC2000 and Serpent

8. Orr Dunkelman, Nathan Keller, Boomerang and Rectangle Attacks on SC2000,
preproceedings of the NESSIE second workshop, 2001.

9. Louis Granboulan, Flaws in Differential Cryptanalysis of Skipjack, proceedings of
Fast Software Encryption 8, 2001, to appear.

10. John Kelsey, Tadayoshi Kohno, Bruce Schneier, Amplified Boomerang Attacks
Against Reduced-Round MARS and Serpent, proceedings of Fast Software Encryp-
tion 7, LNCS 1978, pp. 75–93, Springer-Verlag, 1999.

11. Lars Knudsen, Truncated and Higher Order Differentials, proceedings of Fast Soft-
ware Encryption 2, LNCS 1008, pp. 196–211, Springer-Verlag, 1995.

12. Lars Knudsen, H̊avard Raddum, A Differential Attack on Reduced-Round SC2000,
preproceedings of the NESSIE second workshop, 2001.

13. Lars Knudsen, Matt J.B. Robshaw, David Wagner, Truncated Differentials and
Skipjack, Advances in Cryptology, proceedings of CRYPTO ’99, LNCS 1666,
pp. 165–180, Springer-Verlag, 1999.

14. Suzan K. Langford, Martin E. Hellman, Differential-Linear Cryptanalysis, Ad-
vances in Cryptology, proceedings of CRYPTO ’94, LNCS 839, pp. 17–25, Springer-
Verlag, 1994.

15. Mitsuru Matsui, Linear Cryptanalysis Method for DES Cipher, Advances in Cryp-
tology, proceedings of EUROCRYPT ’93, LNCS 765, pp. 386–397, Springer-Verlag,
1994.

16. NESSIE - New European Schemes for Signatures, Integrity and Encryption.
http://www.nessie.eu.org/nessie/.

17. Takeshi Shimoyama, Hitoshi Yanami, Kazuhiro Yokoyama, Masahiko Takenaka,
Kouichi Itoh, Jun Yajima, Naoya Torii, Hidema Tanaka, The Block Cipher SC2000,
proceedings of Fast Software Encryption 8, 2001, to appear.

18. David Wagner, The Boomerang Attack, proceedings of Fast Software Encryption
6, LNCS 1636, pp. 156–170, Springer-Verlag, 1999.

19. Hitoshi Yanami, Takeshi Shimoyama, Orr Dunkelman, Differential and Linear
Cryptanalysis of a Reduced-Round SC2000, these proceedings.

